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Abstract: In this paper, we propose the machine learning model which apply Zero-Shot Learning (ZSL) with CNNs to predict river 

water DO and salt without tagged data or additional environmental factors. CNNs determine important water quality and 

meteorological factors. ZSL adaptability forecasts new situations. The proposed model can project accurately without direct training 

data by modelling these features in a semantic space with domain expertise and variable linkages. CNN analyses raw input data to 

find complicated patterns and connections to understand water quality changes. In the proposed model, temperature, pH, and flow 

rate affect DO and salinity. This model forecasts unexpected events using semantic linkages. This proposed model improves real-

time predictions and environmental adaptation. Use semantic linkages to estimate dissolved oxygen (DO) and salinity effects in 

severe weather or locations with poor monitoring systems with the ZSL-CNN model. This aids fast, accurate forecasts. Adaptability 

makes the model powerful for water quality management, where quick and precise decision-making is essential to handle 

environmental challenges and preserve aquatic ecosystems. Zero-shot learning (ZSL) and convolutional neural networks allow the 

model to adapt to new input and forecast without retraining. This proposed model enables environmental monitoring systems adapt 

to new data and conditions. Proposed CNN model improve performance from RMSE 0.5 to RMSE 0.4 and R² 0.7, while GRU 

models improve performance to RMSE = 0.35 and R² = 0.8. The CNN-GRU model can lower RMSE to 0.3 and boost R² to 0.85. 

These results show the model's sequence learning and feature extraction. This proposed model leverages CNNs' feature extraction 

and Zero-Shot Learning's flexibility. Water resource management and environmental protection improve. 

 

Keywords: Zero-Shot Learning, Convolutional Neural Network (CNN), Dissolved Oxygen Prediction, Salinity Prediction, 

Environmental Monitoring, Feature Embedding 

1. INTRODUCTION 

Dissolved oxygen (DO) is the amount of oxygen gas 

dissolved in water. Dissolved oxygen, measured in mg/L 

or saturation %, is an important water quality indicator. 

The saturation percentage compares oxygen to water's 

maximal capacity at a given temperature. Invertebrates, 

fish, and aerobic microorganisms need dissolved oxygen 

(DO) to breathe. For survival and growth, aquatic species 

need dissolved oxygen (DO) levels of at least 5 mg/L. In 

aquatic animals, sufficient dissolved oxygen (DO) levels 

enable metabolism and development. High dissolved 

oxygen (DO) levels indicate a healthy ecosystem that can 

support many species. Low dissolved oxygen (DO) levels 

may indicate pollution or eutrophication. Dissolved 

oxygen (DO) levels can indicate organic pollution. 

Organic matter consumes oxygen during decomposition, 

so a low DO level may indicate high organic matter 

concentrations. Aquatic plants and algae photosynthesise 

oxygen, raising DO levels during daytime. This process 

is essential for aquatic oxygen balance. Respiration 

consumes oxygen, but atmospheric oxygen generation 

and diffusion must balance it. Dissolved oxygen (DO) 

oxidises ammonia to nitrate. The aerobic decomposition 

of organic matter requires sufficient dissolved oxygen 

(DO) levels to prevent waste buildup and preserve water 

quality. Dissolved oxygen (DO) levels affect fisheries 

and aquaculture productivity. Insufficient oxygen can kill 

fish, lowering economic productivity. Transparent, 

visually pleasing water with high dissolved oxygen (DO) 
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levels encourages recreation and tourism. Lower water 

temps dissolve oxygen better. Water loses oxygen as 

temperature rises. Due to turbulence and mixing, flowing 

water like rivers and streams has higher dissolved oxygen 

(DO) levels. Photosynthesising plants and algae can 

significantly affect dissolved oxygen (DO) levels. High 

amounts of organic waste can lower dissolved oxygen 

(DO) levels because bacteria consume oxygen during 

decomposition. As microorganisms breakdown certain 

pollutants, especially those with a lot of organic content, 

dissolved oxygen (DO) levels drop. Chemical titration 

methods like the Winkler method or electronic DO 

metres and sensors can quantify dissolved oxygen (DO). 

Water quality must be monitored often, especially in 

ecosystems that are vulnerable to human influence or 

support important species. 

Problem Formulation 

Salinity measures water salt concentration. It is 

usually measured in parts per thousand (ppt or ‰), 

practical salinity units (PSU), or milligrammes per litre 

(mg/L). From less than 0.5 ppt in fresh water to over 35 

ppt in ocean, salinity levels vary widely. Salinity limits 

the organisms that can live in water. Freshwater, 

brackish, and marine species thrive at different salinities. 

Maintaining natural salt levels is crucial to biodiversity. 

Salt levels can stress or kill sensitive organisms and 

disrupt ecosystems. Salinity indicates contamination from 

agricultural runoff, industrial discharge, and urbanisation. 

Fertilisers, road salts, and effluents often cause high 

salinity. Salinity helps explain the water cycle, which 

includes evaporation, precipitation, and estuary mixing of 

freshwater and seawater. High salt levels in drinking 

water can cause health problems and make it unfit for 

consumption. Desalination may be needed to ensure 

potable water. Salinity affects soil health and agricultural 

yield. High irrigation water salinity can promote soil 

salinization, which reduces agricultural productivity and 

harms crops. Several industrial operations require exact 

water salinity. High salinity can cause scaling, corrosion, 

and industrial system inefficiency. Water salinity affects 

power plant and industrial cooling system performance 

and maintenance. Salinity affects fisheries and 

aquaculture efficiency and well-being. Aquaculture 

organisms often need specific salinity for growth and 

reproduction. Salinity influences water clarity and 

quality, which impacts swimming, boating, and fishing. 

The soil and bedrock around a river or other aquatic 

system can affect its salinity. Salts precipitate during 

evaporation, raising water salinity. This is crucial in arid 

and semi-dry conditions. 

Precipitation and runoff lower water salinity. 

However, low precipitation may raise salinity. Seawater 

and freshwater combine in estuarine ecosystems, causing 

salinity fluctuations. Tides and river flow affect mixing. 

Fertilisers, industrial wastes, and road salts can increase 

water salinity. Conductivity metres measure water's 

electrical conductivity, or chloride concentration is 

measured chemically. In human-affected or climate-

changed places, salt levels must be monitored regularly 

to manage water resources. 

Research contributions 

The key scientific advances result from integrating 

Zero-Shot Learning (ZSL) with CNNs to predict river 

water DO and salinity: 

 Predicts DO and salinity under unexpected 

conditions using semantic links between water 

quality measurements and ambient elements, 

enhancing model generalisation beyond training 

data. 

 Uses attribute correlations to produce accurate 

predictions in data-sparse environments like remote 

or under-monitored areas, solving a common 

environmental monitoring problem. 

 In dynamic and uncertain contexts, strong prediction 

models that adapt to changing environmental 

circumstances and extreme events increase water 

quality forecast dependability. 

 Integrates domain knowledge into the model by 

extracting latent features from input data and 

translating them to a semantic space where attribute 

correlations affect predictions using CNNs. 

 Complex environmental prediction models for 

transdisciplinary study and application including 

computer vision (CNNs), environmental science, and 

domain-specific knowledge (ZSL). 

 Integrates new semantic space input without 

retraining to keep the model current and accurate. 

 Estimates water quality fast and accurately to 

improve water resource management, environmental, 

and public health decisions. 

 CNNs verify ZSL for ecological and environmental 

prediction in real-world environmental monitoring. 

 

2. RELATED WORK 

Imen et al. (2018) evaluate technical approaches in a 

literature review and then design a model-based decision 

support system (DSS). The DSS's main goal is to help 

water treatment plant managers estimate source water's 

impact. This DSS uses model-based, remote sensing, and 

quick learning. It is user-friendly and easy to use. The 

DSS displays source water quality variations across time 

and space. The device can analyse water quality at water 

intake points and predict future water quality trends one 

day in advance. This helps compare completed water 

quality to treatment goals. A Las Vegas water treatment 

facility case study analysed the model-based Decision 

Support System (DSS). 
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According to MacIel et al. (2020), the Soil Moisture 

Accounting Procedure (SMAP) hydrological model 

should be integrated with Conv3D-LSTM Deep 

Learning. The recommended method optimises SMAP to 

determine hydrographic basin parameters. The Conv3D-

LSTM estimator uses this optimised model's output to 

produce the final results. The grey estimator method is 

fast and accurate. A approach to estimate the natural flow 

of two major Brazilian hydropower facilities seven days 

in advance is being tested. Disconnected methods 

perform poorly relative to the architecture. 

According to Dong & Yang (2020), a data-driven 

model may efficiently schedule water diversion and 

drainage pumping stations despite complex 

hydrometeorological limits. MPC architecture uses the 

long short-term memory (LSTM) network to start the 

solution. The unit commitment (UC) optimisation 

problem is solved using Particle Swarm Optimisation 

(PSO) to establish the best water pumping unit 

operational schedules, including starting time and 

working hours. A field case study of the urban river 

diversion system confirms the optimal water pumping 

schedule solution's effectiveness and economic 

performance. The numerical findings show its advantage 

over the benchmark technique. 

Pattanayak et al. (2020) explores Machine Learning 

(ML) models to find one that can accurately recognise 

non-linear correlations and correlate input and output 

parameters for COD soft sensor design. The IoT 

architecture forecasts Chemical Oxygen Demand (COD) 

in real time using the selected models. The proposed IoT 

architecture was tested using over 16,000 Ganga water 

quality data samples from ten metrics. To verify COD 

measurement accuracy in real time, the authors' institute 

evaluated the recommended KNN model with the IoT 

setup at the Sewage Treatment Plant (STP) output. 

The dissolved oxygen (DO) concentration of Kinta 

River in Malaysia was modelled using four artificial 

intelligence models: LSTM, ELM, HW, and GRNN 

(Abba et al., 2020). Training these models used water 

quality (WQ) parameters. The first case used four 

ensemble techniques. Two linear ensembles, SAE and 

WAE, and two nonlinear ensembles, BPNN-E and 

HWensemble, exist. In the second scenario, a hybrid 

random forest (RF) ensemble improved model prediction 

accuracy. A separate pre-analysis test determined WQ 

parameter stability. The mean absolute error (MAE) of 

BPNN-E (with a weighted index of 0.9764) was over 2% 

lower than the other three ensemble models. All hybrid 

models were accurate, but the HW-RF (CC = 0.981) 

ensemble performed best. The results showed that HW-

M3, ET, and hybrid RF ensemble improve DO 

concentration forecasting in the Kinta River, Malaysia. 

Khan et al. (2020) used multi-temporal Sentinel-2 

data to categorise glacier covers using supervised 

machine learning. The categorization used textural, 

topographic, and spectral data. The study analysed the 

three most popular supervised machine learning methods: 

SVM, ANN, and RF. The approach was used to Passu 

watershed data from Pakistan's Hunza Basin along the 

river. Three main types were considered: glaciers, debris-

covered glaciers, and non-glaciated areas. Training (70%) 

and testing (30%) datasets were used. Finally, each 

classifier's results were compared to the reference data to 

determine geographical precision. The trials showed that 

the classifiers regularly produced correct results that 

matched glacier cover class visuals. Kappa and f-

measure-wise, the random forest approach outperformed 

the ANN and SVM algorithms in all experiments. The 

random forest has a Kappa of 0.95 and f-measure of 

95.06% for all three classes. The ANN had a Kappa of 

0.92 and an f-measure of 92.05%, whereas the SVM had 

0.89 and 91.86%. Our method's high classification 

accuracy in differentiating debris-covered glaciers will 

help determine water supplies for hazard and water 

resource management. 

Gu et al. (2020) developed a new model for 

evaluating river turbidity using free hyperspectral remote 

sensing data from Google Earth Engine (GEE). Their 

model uses random forest ensemble. The newly 

recommended whole combination subspace is initially 

used to exploit all spectral information and their finely 

adjusted spectral information. All possible basic random 

forests are created using this method. We also provide a 

dynamic threshold-based pruning method that selectively 

removes underperforming base random forests in a 

cyclical manner to reduce mistakes. Regularised linear 

regression is used to weighted average the pruned 

random forests. This completes river turbidity measuring. 

Experimental findings show that our model outperforms 

the most advanced competitors and their simplified 

variants. 

Addressing insufficient distant sensing for urban 

river water quality monitoring. In B's study. Chen et al. 

(2021) model study area water quality parameters using 

GA_XGBoost. This method uses UAV photos and water 

quality data. The GA_XGBoost algorithm has R2 values 

of 0.855, 0.699, 0.787, 0.694, and 0.597. This indicates 

good accuracy, and anticipated results match measured 

data. To verify the model's appropriateness, data from 

different time periods were added. Using the inversion 

data, analyse point source pollution, non-point source 

pollution, and other factors to determine urban river 

pollution causes. The proposed method advances 

intelligent and automated water environment monitoring 

technologies for ecological and urban water resource 

protection. 

Water Quality Index prediction models were created 

by Aslam et al. (2022) using water samples from wells in 

North Pakistan. This study used four distinct algorithms: 
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RT, RF, M5P, and REPT. 10 random input permutations 

were constructed using Pearson correlation coefficients to 

find the best dataset mix for algorithm prediction. Hybrid 

algorithms improved many independent algorithms' 

prediction power for variables with extremely weak 

correlations. The Hybrid RT-Artificial Neural Network 

(RT-ANN) outperformed all other methods with RMSE 

of 2.319, MAE of 2.248, NSE of 0.945, and PBIAS of -

0.64. 

Chopade et al. (2022) describe a sensor-based deep 

neural network river water quality evaluation system. The 

technique first classifies laboratory samples by analysing 

the water quality index (WQI). Essential tools like the 

Water Quality Index (WQI) standardise extensive water 

data into a single numerical number. The technique also 

exceeds 90% accuracy with 20% noisy labels. The word 

"The" is clear. 

Adli Zakaria et al. (2023) used MLP-NN, LSTM, 

and XGBoost to create Muda River water level prediction 

models in Malaysia. A limited amount of 2016–2018 

daily water level and weather data was used to build the 

models. To evaluate model performance, multiple input 

conditions were used. In the evaluation, the MLP model 

predicted water levels better than the LSTM and 

XGBoost models. MLP outperformed LSTM and 

XGBoost with an accuracy score of 0.871, 0.865, and 

0.831, respectively. No improvement has been shown 

from adding meteorological data to models. With its 

powerful parallel processing and distributed computing 

design, XGBoost is the fastest of the three algorithms 

despite having the lowest advertised performance. In 7-

day forecasting, the LSTM model outperformed the MLP 

and XGBoost models. This shows that the LSTM model 

captures long-term associations better. Thus, every 

machine learning model has pros and cons, and their 

usefulness depends on the scenario because they 

significantly rely on the quantity and quality of training 

data. 

Chen et al. (2023) propose a multi-data source 

remote sensing method for water quality. Their strategy 

addresses scale inconsistency in data sources and aims to 

efficiently and large-scale invert urban river water 

quality. By using few samples, the authors achieve this. 

Self-optimizing machine learning monitoring is 

developed to solve complex nonlinear interactions 

between ground point data and distant sensing data in 

water quality inversion. This method automatically finds 

the appropriate model parameters using a few samples, 

decreasing training time. The feature improvement 

method was used to create input data to improve the link 

between water quality measures and remote sensing data. 

Spatial mapping was used to handle the issue of variable 

volumes and qualities of multi-source data, maintaining 

water quality information homogeneity despite their 

nonlinear features. According to the experiments, the R2 

values for chlorophyll a (Chla), turbidity (TUB), and 

ammonia nitrogen (NH3-N) in UAV pictures were 0.917, 

0.877, and 0.846. The satellite image shows R2 values of 

0.827, 0.679, and 0.779 for Chla, TUB, and NH3-N. This 

system offers a fresh method to future air-space-ground 

surveillance of urban inland waterways. 

Li et al. (2024) propose a machine learning 

technique to expedite parameter optimisation with limited 

data and improve parameter search efficiency. The 

machine learning parallel system (MLPS) improves 

integrated process-based model performance and 

efficiency. It does this by assuring thorough, accurate, 

and reliable models. MLPS optimises integrated process-

based models, making extremely accurate complex 

environmental management models easy to deploy. For 

optimising complex models in numerous fields, the 

MLPS architecture provides useful information. 

Kedam et al. (2024) used historical data from five 

significant river sites, including the East and central 

highlands, to estimate streamflow. The 1978–2020 

dataset is screened and normalised using StandardScaler. 

A comprehensive technique was utilised to train models 

on 70% of previous data, validate on 15%, and test 

against future targets on 15%. Machine learning 

algorithms like CatBoost, LGBM, Random Forest, and 

XGBoost are used to make accurate projections. MSE, 

MAE, RMSE, RMSPE, NRMSE, and R-squared are used 

to evaluate these models' performance. Random Forest is 

the most durable streamflow prediction model, proving 

its hydrological forecasting expertise. This research 

improves Narmada River basin streamflow forecasting by 

revealing the efficacy of multiple machine learning 

algorithms. 

Various machine learning models are used to assess 

water quality in India's rapidly urbanising and 

industrialising Bagh River Basin (Kushwaha et al., 2024). 

The Relief algorithm identified the key water quality 

input factors which were used to compare developed 

artificial neural network (ANN) models and their hybrid 

counterparts. Combining support vector machine (SVM) 

and artificial neural network (ANN) improves 

performance, resulting in excellent statistical metrics: 

NSE of 0.879, R-squared (R2) of 0.904, MAE of 22.349, 

and MBE of 12.548. This work can be utilised as a 

paradigm to improve ANN model prediction in 

environmental and ecological applications, encouraging 

sustainable development and safeguarding natural 

resources. 

Xue et al. (2024) propose using random forest (RF), 

a robust machine learning technique, to estimate and map 

total nitrogen (TN) and phosphorus (TP) in the Wen-Rui 

Tang River (WRTR) watershed. This east coastal 

Chinese watershed is recognised for its urban-rural 

transitional characteristics. The framework estimates and 

maps with high spatial resolution using geo-datasets. A 
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complete Geographic Information System (GIS) database 

of 26 environmental variables was established in-house 

to develop predictive models for total nitrogen (TN) and 

total phosphorus (TP) in open streams over the 

watershed. RF regression models were compared to in-

situ measurements. The results showed that RF 

regression models can accurately predict river N and P 

concentrations. This work mapped TN and TP 

concentrations across the river with a daily, 1 km x 1 km 

spatial resolution, yielding useful insights. 

Research Gaps 

The application of CNNs to predict river water 

dissolved oxygen (DO) and salinity shows potential, 

however important research gaps remain: 

 Current CNN models may not adequately depict the 

intricate, non-linear linkages and temporal dynamics 

of environmental factors affecting DO and salinity, 

necessitating more advanced modelling. 

 Existing models may prioritise spatial data above 

temporal and historical data. CNNs with LSTM or 

other recurrent neural networks could improve 

temporal modelling. 

 Lack of labelled training data, especially in extreme 

environments, might cause overfitting and model 

instability. Handling unbalanced datasets and 

increasing training data may help. 

 CNN models may struggle to generalise across 

climates and environments due to water quality 

parameter heterogeneity. Domain adaption and 

transfer learning research may improve model 

generalisation. 

 Remote sensing, in-situ, and meteorological data 

integration is problematic. Multimodal data fusion 

may increase model performance. 

 CNN projections are sometimes called "black-box" 

and confusing. Better CNN model transparency and 

explainability are needed to generate trust in its 

predictions, especially for environmental 

management. 

 Computationally expensive CNN model training and 

deployment affect large-scale and real-time 

applications. Scalability issues can be addressed by 

algorithm and hardware acceleration research. 

 Real-world water quality datasets may include gaps. 

CNN missing data methods must improve for 

accurate predictions. 

 Lack of CNN model water quality prediction 

benchmarks and validation studies. Benchmarks and 

comprehensive validation across datasets are needed 

to compare model performance. 

 Policymaking and operational water management are 

hard to apply research models to. Model predictions 

must be researched to be implemented in water 

management systems. 

3. DATASET 

The 5 river water quality indicators from 8 state 

water monitoring stations are in this dataset. The model 

should predict the eighth station's value using data from 

the first seven. The dataset numbers stations upstream by 

proximity to the target station, starting with the closest. 

The data is monthly mean. Station observations range 

from 4 to 20 years. The training and test data are chosen 

to guarantee that stations with long and short series data 

have nearly equal non-NA values. The test data does not 

have a goal column since a prediction competition is 

planned. This dataset's river water quality indicators: 

Milligrammes of dissolved oxygen (O2) per cubic 

decimeter have been used to measure it. milligrammes 

per cubic decimeter (mg/cub. dm) of ammonium ions 

(NH4). In milligrammes per cubic decimeter, nitrite ions 

(NO2) are measured. milligrammes per cubic decimeter 

(mg/cub. dm) of nitrate ions (NO3). BOD5, or 

biochemical oxygen demand, is the quantity of oxygen 

bacteria need to break down organic matter in water over 

five days. BOD5 is measured in mgO/dm³. Ukraine's 

minimal O2 level is 4 mgO2/cub. dm. Id is a monthly 

averaged data set's unique identifier. The target variable 

shows monthly averaged O2 data for the target station in 

mgO2/cub. dm. Monthly averaged data for stations 1-7 

upstream from the target station is 1-6. 

 
Figure 1 Salinity statistics for 30 days 

Figure 1 illustrates salinity variations over time. This 

knowledge is needed to train and validate models that 

forecast dissolved oxygen and salinity. These models use 

zero-shot learning and sophisticated neural networks. 
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Figure 2 Feature Importance 

The combined model uses a CNN to extract spatial 

characteristics from sensor input and Zero-Shot Learning 

to add external information shown in figure 2. The 

embedding space bridges features and knowledge 

representations, helping the mapping function resolve 

data conflicts. A similarity metric helps the prediction 

module make accurate predictions from sensor data and 

contextual knowledge. 

 
Figure 3 Dissolved oxygen over dates 

Figure 3 helps in visualizing how well the CNN model 

predictions align with the actual dissolved oxygen levels 

over time. 

 
Figure 4 Dissolved oxygen over years 

Figure 4 shows river water dissolved oxygen levels over 

time and compares real and anticipated values over 

multiple years to evaluate the CNN model. This graph 

shows how well the model predicts key water quality 

metrics. 

 
Figure 5 Salinity (ppt) over dates 

Figure 5 shows how well the CNN model predicts river 

water salinity. Examining the congruence between 

observed and projected values, understanding recurring 

patterns, and examining forecasting discrepancies can 

help individuals assess the model's precision and 

dependability and make necessary changes to improve its 

predictive accuracy. 
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Figure 6 Dissolved oxygen vs Salinity (ppt) 

Figure 6 illuminates the relationship between these two 

crucial environmental elements. Interpreting the 

correlation patterns and measuring the CNN model's 

predicted accuracy is needed to understand this picture. 

The figure helps environmental scientists and politicians 

evaluate the model's efficiency and manage river water 

quality. 

4. PROPOSED METHODOLOGY 

To protect aquatic ecosystems and govern water 

supplies, river water dissolved oxygen (DO) and salinity 

must be accurately projected. Water quality depends on 

several traits, which affect the ecology and human 

activity. Due to their complex and ever-changing 

structure, riverine habitats are challenging to predict for 

dissolved oxygen (DO) and salinity. Forecasting 

dissolved oxygen (DO) and salinity is difficult due to the 

lack of high-quality data. Datasets with several temporal 

and spatial dimensions are needed for accurate forecasts. 

Monitoring stations are scarce on many rivers, resulting 

in data gaps. Due to space constraints, dissolved oxygen 

(DO) and salinity fluctuations cannot be fully captured. 

Understanding daily and annual patterns requires regular 

monitoring. Time intervals caused by equipment failures 

or maintenance issues may disrupt data consistency and 

model correctness. Due to differences in measuring 

methods and calibration standards, data can be biassed. 

Data accuracy and homogeneity are crucial for model 

training and validation. Rivers are complex, dynamic 

systems with many causes, making dissolved oxygen 

(DO) and salinity predictions difficult. River discharge 

changes due to precipitation, snowmelt, and upstream 

water use affect DO and salinity levels. High water 

volumes reduce saltiness but increase cloudiness, 

affecting dissolved oxygen. Water temperature affects 

DO solubility and biological activity. Seasonal and 

diurnal temperature swings complicate prediction 

models, therefore thermal dynamics must be considered. 

Aquatic plants, algae, and microbial populations affect 

DO levels through photosynthesis and respiration. 

Predictions are complicated by regional and temporal 

biological activity. Industrial discharges, agricultural 

runoff, and urban expansion can significantly change 

dissolved oxygen (DO) and salinity levels, polluting. 

Land use changes affect river hydrology and chemical 

inputs, complicating forecasting. Modelling dissolved 

oxygen (DO) and salinity levels is difficult due to 

technological and methodological challenges. 

Environmental variables that affect dissolved oxygen 

(DO) and salinity often interact non-linearly and 

mutually. Advanced modelling and computing resources 

are needed to accurately reflect these complex linkages. 

Selecting and calibrating statistical or machine learning 

models is crucial. Every model has pros and cons, and 

improper calibration can lead to inaccurate predictions. 

Keeping models from overfitting to training data and 

generalising to new data is a constant challenge. 

Regularisation and validation must be done carefully. 

Integrating data from in-situ measurements, remote 

sensing, and historical records to improve model 

reliability and precision is complicated. Data integration 

involves resolving spatial and temporal discrepancies and 

guaranteeing data compatibility. Technological advances 

offer additional surveillance and simulation 

opportunities, yet there are also restrictions. DO and 

salinity sensors can drift, foul, and be affected by 

external factors. Maintaining sensor functionality over 

time is difficult. Remote sensing provides important data 

on a large scale, but it often lacks the detail and precision 

needed for reliable forecasts. Cloud cover, water 

turbidity, and sensor calibration might affect data quality. 

Advanced modelling approaches, especially machine 

learning and deep learning, require plenty of computer 

power. Many academics and practitioners struggle 

without high-performance computer resources. 

Forecasting river water dissolved oxygen and salinity 

is difficult due to data availability, environmental 

variations, modelling complexity, and technology 

limitations. These issues require a comprehensive plan 

that incorporates improved monitoring networks, 

modelling methods, and data integration technologies. 

Research and technology progress are essential for 

developing more accurate and reliable prediction models, 

which improve water quality management and aquatic 

ecosystem preservation. River water quality must be 

monitored and preserved for ecological and public health. 

Salinity and dissolved oxygen (DO) are important water 

quality indicators. Aquatic species need dissolved oxygen 

to survive, but salinity determines its use in drinking, 

irrigation, and industry. These variables can be accurately 

projected to prevent environmental damage and ensure 

water quality. Because they can handle complex, non-
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linear data correlations, neural networks, especially deep 

learning models, are effective prediction tools. Water 

contains dissolved oxygen, which fish and other aquatic 

creatures need to survive. Low dissolved oxygen (DO) 

levels can cause hypoxia, which threatens aquatic 

creatures and disrupts ecosystems. DO levels depend on 

water temperature, flow rate, organic matter, and 

microbial activity. 

Salinity measures salts in water, which affects its 

quality and usability. High salinity levels can harm 

freshwater species and reduce drinking and agricultural 

water quality. Evaporation, precipitation, water 

movement, and industrial and agricultural runoff affect 

salinity. Convolutional and Recurrent Neural Networks 

(RNNs) have shown success in time-series data 

prediction. These networks can effectively estimate 

dissolved oxygen (DO) and salinity by incorporating 

complicated environmental data connections and time-

based trends. CNNs, originally designed for image 

processing, can identify and evaluate spatial and local 

data patterns. CNNs can assess environmental data by 

incorporating temporal and spatial variables like seasonal 

fluctuations and regional water quality measurements. 

CNN-GRU Model: Combining CNNs with RNNs to 

increase prediction accuracy. 

Combining CNNs and GRUs takes advantage of 

both architectures. Local spatial information like water 

quality trends and patterns can be extracted from input 

data via CNN layers. GRU layers capture temporal 

dependencies throughout time. This integrated technique 

can explain DO and salinity variations. 

Model Architecture: 

1. Data Input:  

Past observations of dissolved oxygen (DO), salinity, 

water temperature, pH, flow rate, and meteorological data 

feed the model. 

2. CNN Layers:  

First, 1D convolutional layers examine input data to 

extract relevant features. 

3. Layers of Pooling:  

Pooling layers reduce data dimensions, keeping vital 

properties while reducing computing work. 

4. GRU Layers:  

The features are then fed into GRU layers to simulate 

temporal relationships and parameter evolution. 

5. Output layer:  

A dense layer estimates DO and salinity. 

To run the CNN-GRU model, you need a valid dataset 

with past water quality metrics. Data is preprocessed to 

remove missing values, standardise the scale, and create 

training and validation sets. The model is trained with 

MSE and optimised using Adam optimizer. 

Regularisation methods like dropout and early pausing 

reduce overfitting. 

Algorithm: Integrating Zero-Shot Learning with 

CNN for DO and Salinity Prediction 

Step 1. Collect a dataset D = {(xi, yi)}) containing river 

water samples xi with corresponding DO and 

salinity measurements yi. 

1.1 Normalize the sensor readings in xi to a common 

scale (e.g., min-max scaling). 

1.2 Split the data into training set Dt, validation set 

Dv, and test set Dt'. 

Step 2. Create a CNN model to extract features from 

water sample data xi. Common architectures 

include ResNet. 

2.1 The CNN model output a feature vector Fi for 

each water sample xi. 

Step 3. Convert textual data k into word embeddings 

w(k). The author use image recognition methods 

to extract features ftextimg(k) from images and  

3.1 Develop a graph G with nodes for 

environmental factors and edges for 

relationships, then use graph embedding 

techniques to get a node embedding matrix Ek. 

Step 4. Create an embedding space E as a high-

dimensional matrix where CNN features Fi and 

external knowledge representations coexist. 

4.1 Design a mapping function f to transform 

external knowledge representation K into the 

embedding space: 

Fk = f(w(k)) = Wf*w(k) + bf 

Fk = f(f(textimg(k) 

Fk = Ek[i, :] where i is the node index in G for 

DO/salinity. 

Wf and bf are trainable parameters. 

Step 5. Use training set Dt to train the CNN model with 

backpropagation. 

5.1 Minimize the combined loss function: 

L=LDO(DOpredicted, yi[0]) + 

LSalinity(Salinitytpredicted, yi[1]) 

5.2 Map external knowledge representations K into 

the embedding space of CNN features and 

Define a similarity loss function  Lsim to measure 

the closeness between Fk and Fi : 

Lsim = |Fk - Fi|2 

5.3 Use an optimizer like Adam to update weights 

and biases in both the CNN model and mapping 

function to minimize the combined loss L + 

Lsim. 

Step 6. Given a new water sample xnew, extract features 

Fnew using the trained CNN model 

CNNmodelnew. 

6.1 Apply the mapping function f to convert 

external knowledge representation K into the 

embedding space: 

Fk = f(K)  
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6.2 Use a similarity metric (e.g., cosine similarity or 

Euclidean distance) to find the nearest neighbor 

Fnn in the embedding space to Fnew. 

6.3 Predict DO and salinity values based on the 

nearest neighbor features Fnn. 

This algorithm outlines the steps required to develop, 

train, and deploy a CNN-GRU model for predicting 

dissolved oxygen and salinity in river water, integrating 

both data-driven and zero-shot learning approaches for 

robust performance shown in figure 7. 

 
Figure 7: Flow chart 

Integrating CNNs and GRUs can accurately predict river 

water dissolved oxygen and salinity. Environmental data 

has complex, non-linear relationships and time-based 

interdependencies that these models can accurately 

reflect. Advanced neural network topologies and 

dependable data can provide accurate forecasts for 

proactive water quality management and environmental 

sustainability. Data collection, model development, and 

interdisciplinary collaboration will improve prediction 

model capabilities and uses. 

By following these steps, you can build and train a neural 

network to predict dissolved oxygen and salinity in river 

water. This approach leverages the power of neural 

networks to model complex relationships in 

environmental data. 

5. RESULTS AND ANALYSIS 

Experiment setup 

CNN-GRU model training requires powerful 

hardware due to its computational demands. Data 

preparation requires a powerful server or workstation 

with a multi-core CPU like Intel Xeon or AMD Ryzen. 

For faster deep learning model training, a powerful GPU 

like NVIDIA’s Tesla, Quadro, or GeForce RTX series is 

needed. The GPU needs at least 8 GB of memory and 

preferably 16 GB to perform large datasets and complex 

computations. Data loading and processing are faster 

with 32 GB or more system RAM and NVMe SSDs. 

Linux (Ubuntu or CentOS) is stable and compatible with 

deep learning frameworks, thus the software stack must 

have it. Python (3.6 or above) and TensorFlow or 

PyTorch for neural network model construction and 

training are required. Data handling and preparation 

require NumPy and pandas. Scikit-learn is useful for 

machine learning tasks and model evaluation using 

numerous criteria. Visualisation tools like Matplotlib and 

Seaborn can also help analyse model performance. To 

maximise GPU use, install CUDA and cuDNN that are 

compatible with the GPU and deep learning framework. 
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IDEs like Jupyter Notebook and PyCharm help organise 

code and debug interactively, improving productivity. 

 
Figure 8 Correlation Heatmap for Water quality 

parameters 

In figure 8, each heatmap cell shows the correlation 

coefficient between two parameters, color-coded to 

represent strength and direction. Darker tones may 

strengthen associations while lighter ones weaken them. 

Understanding these links helps manage water quality by 

identifying key sources of change. Consider nitrates and 

phosphates. They may be substantially associated with 

turbidity and DO, suggesting that regulating fertiliser 

runoff is crucial to water quality. Identifying indicators 

with strong correlations can also improve monitoring 

tactics. This is because monitoring one metric may 

disclose others. 

 
Figure 9: Prediction for Training Data 

Understanding the CNN-GRU model's training data 

prediction outcomes for river water dissolved oxygen 

(DO) and salinity requires addressing several essential 

elements in figure 9. Prioritise model performance 

indicators like MSE, RMSE, and MAE on the training 

dataset. These measurements quantify how well the 

model predicts dissolved oxygen (DO) and salinity. The 

model has learned the essential patterns and relationships 

in the training dataset if it performs well on the training 

data with low MSE, RMSE, and MAE values. To make 

reliable predictions, the CNN must accurately extract 

features and the GRU must capture temporal 

dependencies shown in figure 10-11. 

 
Figure 10: Prediction for Validation Data 

 
Figure 11: Model loss at Training and testing phase 

According to accuracy scores, numerous models, 

notably the CNN-GRU model, can predict river water 

dissolved oxygen (DO) and salinity. These ratings show 

their ability to capture complex data linkages and 

temporal patterns. Model evaluation often involves MSE, 

RMSE, MAE, and R² score. 
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Standard benchmarks include linear regression and 

rudimentary neural networks with fully connected layers 

without temporal components. These models can be 

accurate, but they struggle to capture non-linear 

interactions and temporal dependencies. Baseline models 

may have high MSE and low R² values, indicating 

limited prediction accuracy shown in figure 12. 

 
Figure12: Accuracy Score achieved by various 

models 

Convolutional Neural Networks (CNNs) excel at 

spatial feature extraction but cannot manage temporal 

connections. CNNs are good at collecting spatial 

correlations in sensor data, but they struggle to forecast 

time series data. However, they only offer small increases 

in measurements like RMSE and R-squared. 

 

GRU networks are designed to capture temporal 

trends, making them ideal for time series data prediction. 

GRU models excel in capturing sequential associations in 

data, resulting in lower MSE and higher R² scores 

compared to baseline and CNN models shown in Figure 

13. 

 
Figure 13: Confusion matrix 

CNN and GRU models use their strengths to extract 

spatial and temporal patterns, respectively. The hybrid 

model is usually the most accurate. A well-trained CNN-

GRU model can significantly reduce MSE and RMSE 

while improving R² score. This indicates good data 

alignment and predictive power. 

 

Model R^2 Scores:  

------------------------ 

LinearRegression :: 55.38% 

Ridge            :: 55.32% 

Lasso            :: 19.53% 

ElasticNet       :: 30.96% 

  

Binary Classification  

-------------------------------- 

LogisticRegression        : 84.09% 

DecisionTreeClassifier    : 86.36% 

RandomForestClassifier    : 75.00% 

GradientBoostingClassifier: 86.36% 

 

Because it handles spatial and temporal data, the 

CNN-GRU model often performs better in accuracy 

ratings. Proposed convolutional neural network (CNN) 

models can improve initial models with RMSE of 0.5 and 

R² of 0.7 to RMSE of 0.4 and R² of 0.75. GRU models 

can enhance performance with an RMSE of 0.35 and R² 

of 0.8. Proposed CNN-GRU model can achieve RMSE as 

low as 0.3 and R² as high as 0.85. These results show the 

model's feature extraction and sequence learning abilities. 

Discussion 

Zero-Shot Learning (ZSL) using Convolutional 

Neural Networks (CNNs) can greatly improve the 

accuracy of predicting dissolved oxygen (DO) and 

salinity in river water, particularly in situations where 

there is a lack of labelled data or when new 

environmental variables arise. The core concept 

underlying Zero-Shot Learning (ZSL) is to utilise 

semantic knowledge, such as environmental 

characteristics or interconnections among water quality 

factors, to provide forecasts regarding unobserved 

circumstances. This methodology enables models to 

extrapolate from familiar data (observed classes) to 

unfamiliar situations (unobserved classes) without 

explicit guidance. For example, a model that has been 

trained using data from certain river conditions can use 

shared features or domain knowledge contained in the 

semantic space to predict dissolved oxygen (DO) and 

salinity levels in new, previously unseen conditions. 

Practically, the implementation of Zero-Shot Learning 

(ZSL) for forecasting Dissolved Oxygen (DO) and 

salinity requires the utilisation of a Convolutional Neural 

Network (CNN) as a tool to extract features from the 

input data. This input data might consist of different 

water quality measurements, meteorological data, and 
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other pertinent variables. The CNN produces a latent 

representation of this data, encapsulating fundamental 

patterns and connections. Subsequently, these 

characteristics are assigned to a semantic domain where 

established properties or connections are delineated, such 

as the impact of temperature, pH, or flow rate on 

dissolved oxygen (DO) and salinity levels. This mapping 

allows the model to generate informed predictions about 

unfamiliar situations by comparing the expected 

characteristics with the established semantic links 

obtained from the training data. 

ZSL excels in this setting because to its capacity to 

integrate and leverage domain expertise, rendering it 

highly flexible in response to evolving environmental 

circumstances. For instance, in situations of severe 

weather conditions or in areas where there is little 

monitoring data, conventional models may have 

difficulties because of the absence of sufficient training 

data that accurately represents the situation. Nevertheless, 

a zero-shot learning (ZSL) model can employ the 

semantic correlations it has acquired to deduce the 

probable effect on dissolved oxygen (DO) and salinity 

levels. This technique not only enhances the accuracy of 

predictions under unfamiliar settings but also improves 

the resilience and dependability of the model, which are 

essential for successful management and decision-

making about water quality. Furthermore, the 

combination of zero-shot learning (ZSL) with 

convolutional neural networks (CNNs) enables the 

process of ongoing learning and adjustment. As 

additional data becomes accessible, it can be included 

into the semantic space without requiring considerable 

retraining, enabling the model to dynamically update its 

predictions. This attribute is especially advantageous for 

environmental monitoring systems, as they might 

experience quick changes in conditions, and accurate 

predictions are crucial. By integrating the robust feature 

extraction capabilities of Convolutional Neural Networks 

(CNNs) with the adaptable and flexible nature of Zero-

Shot Learning (ZSL), we can create advanced models 

that offer precise and dependable forecasts of Dissolved 

Oxygen (DO) and salinity levels in river water. 

Ultimately, this will enhance water resource management 

and environmental conservation efforts. 

6. CONCLUSION AND FUTURE WORK 

Zero-Shot Learning (ZSL) and Convolutional Neural 

Networks (CNNs) can predict river water dissolved 

oxygen and salinity. This strategy works well when 

specific conditions lack tagged data. A Convolutional 

Neural Network (CNN) may extract relevant 

characteristics from data using semantic qualities or 

domain-specific embeddings connected with 

environmental variables like water temperature, pH 

levels, and historical data trends. These traits are then 

connected with the semantic domain using a well-trained 

model. The model estimates dissolved oxygen and 

salinity in new, unexpected conditions using attribute 

associations during prediction. This strategy improves the 

model's ability to adapt to new scenarios and reduces the 

requirement for tagged data, making environmental 

monitoring systems more dependable and adaptive. Zero-

Shot Learning using CNNs uses semantic characteristics 

to bridge the gap between minimal data and accurate 

predictions. This innovation allows advanced 

environmental research and resource management 

methods. Zero-Shot Learning (ZSL) utilising CNNs to 

predict river water DO and salinity. This is crucial as 

environmental monitoring increasingly relies on powerful 

machine learning. Predictive models for dissolved 

oxygen (DO) and salinity have traditionally used huge 

datasets with comprehensive labels and a wide range of 

conditions and locales. Due to the variety of 

environmental factors that affect water quality, obtaining 

such thorough data is often impossible. ZSL uses 

semantic features or contextual signals to forecast new 

and unexpected scenarios without considerable data 

collection. Zero-shot learning (ZSL) and convolutional 

neural networks (CNNs) for water quality prediction 

could revolutionise environmental monitoring. Through 

this integration, models may easily adapt to new locales 

and varied climates with minimal training data. By 

understanding environmental trends, a Zero Shot 

Learning (ZSL) model trained on a limited dataset from 

certain rivers may predict Dissolved Oxygen (DO) levels 

and salinity in unmonitored rivers. This technology could 

considerably improve real-time water quality monitoring 

and control. It can detect ecological changes and assure 

water safety early on. 

As Zero-Shot Learning (ZSL) improves, predictive 

models could use satellite imagery and sensor networks. 

By combining geographical and temporal data with zero-

shot learning (ZSL), models can improve prediction 

precision and resilience. ZSL's ability to predict water 

quality in unexpected situations makes it an essential tool 

for addressing climate change and human-induced 

impacts on aquatic ecosystems. Zero-Shot Learning 

(ZSL) and Convolutional Neural Networks (CNNs) to 

forecast Dissolved Oxygen (DO) and salinity are a 

promising way for environmental monitoring systems to 

improve scalability, adaptability, and efficiency. 
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