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Abstract:

Brain tumour diagnosis in early stages is important for planning for the treatment in advance,

patient prognosis and medical management. However, it is difficult for radiologists and

medical practitioner to make an accurate diagnosis and plan. It interprets brain tumours from

medical images, making the process time-consuming. The aim of this proposal is to better

understand and assess the mechanism of 3D deep learning U-Net-R can help us detect

precisely the brain tumours from medical images which has special feature of comprehensive

understanding of the spatial context with in the data, preserving fine grained details and also

the ability to demarcate the complex structures. Problems like merging multi-image data (3D)

using instantaneous volume analysis. The scarcity of dis aggregated images and annotated

data will be the primary focus and also perform a volume analysis to determine the correct

sectional image and volume of the tumour can also be used in this research as a symbol is

improved segmentation. The goal of this update is to target medical aid in the initial surgical

staffing decision. 3D U-Net-R model which is combination of U-net architecture and residual

learning has shown superiority performance compared to previous models, providing

improved analytical accuracy and reliability.

1. Introduction:
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Near the beginning detection of brain tumours is important for impelling treatment planning,

patient therapy success. However, the process of accurate diagnosis and interpreting brain

tumours from clinical images is a formidable challenge for radiologists, making it a time-

consuming task. This review initiates a comprehensive investigation into the feasibility of

using deep learning models to dramatically improve the detection of tumours[1-3] which we

aim to address. In addition, our study shows that volumetric analysis is key, seeking to

provide clinicians with a more accurate signal to make early decisions about the need for

surgery.

It can also be used to recall the effectiveness of the early diagnosis in the sphere of brain

tumours. Presumably, the identification of the disease is useful for starting the treatment and

is a vital shift to the progress of the development of the disease. Fascinatingly, neural

structures do not stay innocent; tumour development being inconspicuous at its early stages it

is essential that such diseases are detected on time [4-6]. Several factors can present

challenges to early diagnosis, and this implies that even when diagnosis is done early enough,

the diseases may be in the advancement stage and this may complicate the therapeutic

measures that are required to be done on those affected. Attention is to be paid, therefore, to

new scientific advancement in this field, as well as to the attention devoted to the diagnostic

opportunities that play such an indispensable role in this context to speed up the procedure

and, thus, enhance the medical result.

Despite tremendous advances in diagnostic imaging, radiologists face significant obstacles

when diagnosing brain tumours. Since there are highly complex organizational neural

structures differentiating minor pathologies is a complex and lengthy procedure. In addition,

as computers integrate data from different source of images like MRI, CT scans, and PET

scans, the picture gets blurred[7-8]. Combined, these modalities give a better impression of

the brain structures and are depicted in Figure 1 However, the accuracy of the tumour

identification is somewhat complicated by the integration of these types of methods. Further,

the lack of annotated datasets to train accurate algorithms from scratch is also a limitation,

since annotated datasets are important for building more accurate and generalize brain tumour

detection models.

The Role of deep learning in brain cancer research : The discussion on using deep learning as

one of the subcategories of machine learning signals hope in overcoming the challenges

coupled with brain tumour detection. In particular, Neural Net, especially Convolutional

2



Neural Net (CNN), highlights high-performance characteristics significantly in image

recognition and pattern identification. Due to features such as large input data, complex

relationships between inputs and outputs, asynchronous, and high dimensionality of the

medical image, deep learning methodologies have the ability to bring a dramatic change in

diagnosis. Furthermore, these technologies can assist in lightening the load of Radiologists

plus they enable the identification of brain tumours with a higher rate of accuracy and

expeditiously. This works aims to identify with assess the effect of deep learning methods

with specific emphasis on applicability and the main difficulties in the analysis of brain

tumours from the combination of the MRI ,PET images, as well as the scarcity of annotated

data.

Figure 1: Brain structure with a tumour

To be more particular 3D U-Net is a deep learning algorithm which is used for the

segmentation of three-dimensional data is normally used in medical imaging scenarios. It is

an evolution of the 2D U-net design for 3D structures, which are common for CT or MRI

scans, for instance. The ultimate purpose of the 3D U-Net is semantic segmentation, as this

involves categorizing each voxel in a 3D image.

Lastly, this research endeavour aims to bring a radical shift in the ways of detecting tumours

through the appliance of deep learning methods, especially in conjunction with the volumetric

analysis approach. Some of issues that need to be tackled include; multimodal image fusion,

scarcity of annotated images and this makes the present study as a valuable input towards the

advancement of diagnostic tools to give early and accurate detection of brain tumour. As we

navigate through the intricate landscape of medical diagnostics, the amalgamation of cutting-

edge technologies in this research seeks to empower medical professionals with enhanced

tools for timely decision-making and improved patient care. Understanding edema, solid core

necrosis, and the enhancing core in the context of brain tumors is crucial for a comprehensive
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evaluation of tumor characteristics and guiding treatment decisions. These features are often

assessed through advanced imaging techniques, aiding clinicians in determining the nature

and behaviour of the tumor.

2. Literature survey

In our comprehensive brain tumor detection and prognosis research work, we performed an

extensive comparative analysis in which several traditional methods are compared against

some of the recently proposed advanced methods. Our comparative study shown in Table 1 is

done meticulously taking into consideration all possible parameters, namely accuracy,

sensitivity, specificity, computational efficiency, robustness, and measures of volumetric

analysis. The article summarizes our findings and discusses the advantages and limitations of

each psychological diagnostic method.

Table 1: Comparative Analysis of ExistingWork

Ref. Author & Year Methodology Dataset Performance
Metrices

[1]

Tabatabaei,
Sadafossadat, et
al., 2022

Attention Transformer
Mechanism, Fusion-based
Deep Learning BraTS 2018

Accuracy: 92%,
F1-score: 0.89

[2]
Saurav, Sumeet,
et al., 2021

Attention-Guided
Convolutional Neural
Network

Private dataset
Accuracy: 90%,
Sensitivity: 0.87

[3]

Zahoor, Mirza
Mumtaz, et al.,
2020

Deep Residual Network,
Regional CNN BraTS 2017

Accuracy: 88%,
Precision: 0.86

[4]
Rai, Hari Mohan,
et al., 2021

Deep Convolutional
Neural Network BraTS 2019

Accuracy: 89%,
F1-score: 0.88

[5]
Haq, Ejaz Ul, et
al., 2021

Deep Convolutional
Neural Network Private dataset

Accuracy: 87%,
Specificity: 0.85

[6]

Chaki,
Jyotismita, et al.,
2021

BTSCNet (Four-fold
approach) BraTS 2020

Accuracy: 91%,
Sensitivity: 0.90

[7]
Zhang, Yuhao, et
al., 2021

Attention Guided Deep
Learning Model Private dataset

Accuracy: 92%,
F1-score: 0.91

[8]

Alanazi,
Muhannad Faleh,
et al., 2020

Transfer Deep Learning
Model

BraTS 2018,
BraTS 2019

Accuracy: 86%,
Precision: 0.84
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[9]
Gupta, Sachin, et
al., 2021

Multi-Task Attention
Guided Network BraTS 2019

Accuracy: 93%,
F1-score: 0.92

[10]

Masood,
Momina, et al.,
2020 Mask R-CNN Private dataset

Accuracy: 88%,
Sensitivity: 0.86

[11]
Ficici, Cansel, et
al., 2020 Symmetry Analysis

BraTs 2018 +

TCIA dataset
Accuracy: 85%,
Specificity: 0.83

[12]
Agustin, Hapsari
Peni, et al., 2019 Volumetric Analysis Private dataset

Accuracy: 80%,
Sensitivity: 0.78

[13]

Mitra,
Somosmita, et
al., 2020 Visual Saliency BraTS 2017

Accuracy: 82%,
Precision: 0.81

[14]
Ahmed, Imran, et
al., 2021 Otsu Segmentation BraTS 2018

Accuracy: 79%,
F1-score: 0.77

[15]
Salman, Yasser
M., et al., 2020

Modified Technique (T-
RG) to (MRGM) for
Volumetric size Private dataset

Accuracy: 81%,
Specificity: 0.80

[16]
Gupta, Manu, et
al., 2020 Volumetric Analysis BraTS 2017

Accuracy: 84%,
Sensitivity: 0.82

[17]
Mehta, Raghav,
et al., 2018 3D U-Net BraTS 2018

Accuracy: 90%,
F1-score: 0.88

[18]
Futrega, Michał,
et al., 2021 Optimized U-Net BraTS 2019

Accuracy: 91%,
Sensitivity: 0.89

[19]
Chen, Wei, et al.,
2020 Separable 3D U-Net Private dataset

Accuracy: 88%,
Precision: 0.86

[20]
Dong, Hao, et al.,
2020

U-Net Based Fully
Convolutional Networks BraTS 2018

Accuracy: 87%,
F1-score: 0.85

There is huge gap in the findings from the above researchers in terms of different parameters

like sensitivity, Precision, F1-Score, accuracy, specificity and also factors impacting the

details and outcome which has lot of scope of improvements and areas to work , where in

only picking up a model which are most likely CNN and also we know there many techniques

in identifying the brain tumour and immediate volumetric analysis has to be done but there is

no such end-end solution , now that in every segment transformers have step in so intended

to take baby steps towards more segmentation using 3D images and also focusing on every
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details its relation with each other along with the implementation of volumetric analysis so as

to enhance the diagnosis capabilities with more appropriate information and effected areas in

more accurate way so as to provide early prognosis.

3. Proposed methodology

3D U-Net models are used to segment brain tumors in planning operations.The basic steps in

using segmentation techniques include data collection, data preprocessing, image and label

extraction, and classification of data into training and testing. A detailed description of these

steps is provided below, and the architecture diagram is depicted in Figure 2.

Figure 2: Proposed Architecture

3.1 Dataset: We have used BraTS dataset. BraTS which are of multiple scans provided in

the form of NIFTI files (.nii.gz) -> MRI, which are used to store brain information used for

traditional clinical procedures and interpretation of different MRIs.
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1. T1 represents weighted, raw image, longitudinal plane or transverse 2D acquisition,

slice thickness 1-6 mm.

2. T1 represents weighted, Gadoliniumimage which is contrast-enhanced, with 3D

acquisition and 1 mm isotropic voxel size for most patients denoted by T1c.

3. T2 represents weighted image, axial 2D acquisition,slice thickness is 2–6 mm.

4. T2 represents weighted FLAIR image, transverse, frontal ,or longitudinal 2D

acquisitions, 2–6 mm slice thickness.

Numerous institutions (n=19) used various clinical systems and scanners to collect data.
Every imaging data set was examined by hand using the same scoring technique by one or
four raters, respectively. Skilled neuroradiologists approved the raters' decisions. According
TMI article and the most recent BRATs paper collection, annotations included necrotic non-
enhancing tumor cores (label 1), peritumoral edema (label 2), and GD enhancement tumor
(label 4). The provided data are shown following preprocessing, which includes trimming the
skull, co-registering on the same anatomical template, and interpolating at the same resolution
(1 mm^3).

Figure 3:Text(0.5, 1.0, 'Mask')

Above Figure 3 explain the different type of MRI images and a corresponding mask from the

same patient or sample where we have displayed it as five subplots arranged in one row, each

displaying a different slice of an image. The images represent different MRI modalities: T2

represents weighted FLAIR image, T1 represents weighted image, T1 represents weighted

contrast-enhanced image, T2 represents weighted image, and a mask that likely highlights

regions of interest such as abnormalities. Each subplot shows a slice taken from the middle of

the image volume (offset by a small amount, slice_w), with appropriate titles and color maps

to distinguish the different types of images. This setup helps in comparing the different MRI

modalities and understanding how they capture different aspects of the brain's structure and

pathology which would in tactically a great help for good prognosis.

3.2 Image Pre-processing: After the labels have been extracted, the image will be pre-

processed before it can be used for further analysis. This involves resizing the image,
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converting it to grayscale, or normalizing the pixel values, data augmentation, data

resampling, super pixel segmentation.

Figure 4: Data augmentation, data resampling, super pixel segmentation

The hard-drilled resampling method shows (a) ground-truth segmentation results and (b)

segmented results using R-2D-U-Net, and the red box is the background cube of the hard-

drilled resampling of a is depicted in Fig. 4 by all the lesion areas in the prediction including

ground truth and false positives.

3.3 Image and Label extraction: Expert neuroradiologists determined the scoring of the one

to four raters who manually classified all imaging data using the same scoring methodology.

The BraTS 2012–2013 TMI document and the most recent BRATs consolidated document

featured the following codes: necrotic non-enhancing tumor cores (label 1), peritumoral

edema (label 2), and GD enhancement tumor (label 4). Following preprocessing, which

included co-registration on the same anatomical template, interpolation at the same resolution

(1 mm^3), and cranial-band.

3.4 Data partitioning: Pre-processing, the image should be partitioned into training and test

data. The training data will be used to train the deep learning model, while the test data will

be used to test the performance of the model.
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Figure 5: Distribution of MRI images in Training,Validation and test

The quantity of MRI pictures in the training, validation, and testing datasets is displayed in

the above bar chart in Figure 5. A visual representation of the data distribution across these

three groups is helpful. The chart displays the number of images in each set, verifies that the

data is evenly distributed, and shows that each contains enough images to train and test a

predefined model. The three bars are colored differently (orange for training, green for

validation, and red for testing)..

3.5 Building 3D U-NET-R for Brain Tumor Segmentation

By giving a quick heads up about 3D U-NET and the importance of 3D U-NET is well said

by different authors and proved to be giving good results ,where there is improved version of

3D U-NET where more features could be seen in 3D U-NET-R which is an extension of the

U-Net architecture by incorporating transformer layers, known for their ability to confine

long-range dependencies. Adding transformer layers to convolutional layers increases the

capability to capture both local and global context. Capable of capturing long-range

dependencies effectively through the self-attention mechanism of transformer layers, enabling
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better understanding of global context within the image. It can also capture local and global

context, enhancing his understanding of the spatial relationships between different areas of

the image. More complex architecture that potentially offers superior performance,

particularly in tasks where understanding long-range dependencies is crucial, such as medical

imaging. Particularly useful in tasks where capturing global context is essential, such as scene

parsing, aerial image segmentation, and complex medical imaging tasks.In summary, while

U-Net,U-NET-R share the same foundational idea of the same architecture for image

segmentation

U-NET-R is distinguished by the inclusion of transformer layers in addition to convolutional

layers, in order to better capture the remote dependence and global context. This architectural

enhancement makes U-NET-R particularly suitable for tasks requiring a comprehensive

understanding of spatial relationships within images. Our study proves that by considering all

the views different traditional methods on image segmentation are swept by a simple touch

transformers which are truly gives magical results in many fields. The architectural detail of

3D U-NET-R is explained below and shown in Figure 6.

3.5.1 Architecture Details of 3D U-NET-R

Input /Output

Input: Similar 3D volumetric data as the 3D U-Net.

Output: Segmented 3D volumes, maintaining the same dimensions as the input.

Layers and Components

Convolutional Layers: Standard 3D convolutions are used, but with residual connections.

Residual Blocks: Instead of plain convolutional layers, residual blocks are used, which
include shortcut connections that bypass one or more layers.

Max-Pooling Layers: 3D max-pooling layers for downsampling, similar to 3D U-Net.

Up-Convolutional Layers:3D transposed convolutions for upsampling, maintaining spatial
resolution.

Skip Connections: They are used to combine feature maps from the related encoder and
decoder layers.

Depth and Feature Maps:
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Depth: Can be deeper than standard 3D U-Net due to the stability provided by residual
connections.

Feature Maps:Similar strategy of doubling feature maps during down-sampling and halving
during up-sampling.

Residual Connections:

Purpose:To reduce the problem of stray slope and allow construction of a deeper mesh.

Implementation: Residual connections often flow through one or more convolutional layers
before adding the input of the layer to its output.

Loss Function:

Uses similar loss functions as 3D U-Net (e.g., cross-entropy, Dice coefficient), but potentially

with added regularization terms to stabilize training of deeper networks.Enhanced robustness

and stability during training, particularly for deeper networks. Improved gradient flow due to

residual connections, leading to potentially faster convergence and better performance.

Figure 6: Architecture of 3D U-Net-R
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Algorithm: Building 3D U-NET-R for Brain Tumor Segmentation

Input: Accept 3D medical imaging inputs.

Contracting Path:Use 3D convolution with 32 filters, kernel size (3, 3, 3), and ReLU

activation. Apply another 3D convolution with the same parameters. Introduce a residual

connection by applying a 1x1x1 convolution to the input and concatenate it with the current

layer. Apply batch normalization and dropout.

Repeat Contracting Blocks: Repeat the contracting blocks with residual connections as

needed.

Expanding Path: Apply 3D upsampling. Apply 3D convolution with 256 filters, kernel size

(2, 2, 2), and ReLU activation. Introduce a residual connection by concatenating with the

corresponding contracting path layer. Apply batch normalization and dropout.

Repeat Expanding Blocks: Repeat the expanding blocks with residual connections as

needed.

Final Output Layer:Use 3D convolution with 4 filters, kernel size (1, 1, 1), and softmax

activation for segmentation output.

Model: Return the constructed U-NETR model.

4. Results Section

This segment looks at the outcomes of using medical picture data to detect and classify brain

tumours using the 3D U-Net-R algorithm. section examines the results of using the 3D U-

Net-R algorithm for brain tumour detection and classification using medical image data. Our

study evaluates model performance through quantitative measures such as accuracy, precision,

sensitivity, specificity shows significant improvements over traditional CNN, 3D U-Net and

other models described in the literature review. Visual examples of segmented tumours are

provided to illustrate the qualitative performance of the model. Furthermore, we describe in

detail the results of quantitative analysis, demonstrating the capability of the model to

accurately estimate tumour volume, which is important for treatment planning.

4.1 Training and Validation
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Precision and loss tracking in brain tumour classification help ensure that the model

accurately identifies tumour locations from MRI images. The mean IOU measures the ratio

between predicted and actual tumour location, which is important for localization accuracy.

The Dice coefficient examines the balance between detecting true positives and avoiding false

positives, ensuring reliable classification. Together, these metrics guide modification of the

model for more accurate and reliable tumour diagnostic tests.

Figure 7: Training and Validation

The accuracy of the training (blue line) and validation (red line) datasets is displayed in the

first plot. The training accuracy steadily rises to approximately 0.994 from a starting point of

roughly 0.981. Similar trends may be seen in validation accuracy, which starts out slightly

lower and ends up around 0.992. This suggests that for the two data sets, the model's

predictions get increasingly accurate over time.

The second plot denotes the loss of the training (blue line) and validation (red line) datasets.

The training loss is around 0.125 to under 0.01, representing that the model is enhancing by

lowering the training error. The validation loss decreases initially and remains stable around

0.02, indicating that the model continues to perform well on unseen data.

Training and Validation Dice Coefficient:The third plot shows the dice coefficient, which is

a measure of the overlap between predicted and true separations for training (blue line) and

validation (red line).The training dice coefficient starts at about 0.35 and increases to
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approximately.The validation dice coefficient follows a similar trend, reaching approximately

0.62, indicating that the model is good at detecting tumor locations correctly.

Training and Validation Mean IoU: The fourth plot shows the mean Intersection over Union

(IoU) for training (blue line) and validation (red line) datasets. The training mean IoU starts at

about 0.45, shows some fluctuation, and stabilizes around 0.8. The validation mean IoU also

fluctuates but stabilizes around 0.85, indicating an improved and consistent segmentation

performance.

Overall, the plots shown in figure 7 show that the model is improving in performance as

training progresses and is capable of generalizing well to the validation dataset.

4.2 Qualitative Analysis

The next graphics provide us with a thorough and in-depth view of several components of an

MRI picture and related segmentation mask. We load an MRI scan (FLAIR modality) and its

segmentation mask (which indicates the tumour region) from specified file paths. Each

subplot uses a different plotting function to show various perspectives of the MRI image:

Figure 8 (a): Annotated Tumour

Annotated Tumor: Displays the anatomical structure of the MRI image with tumor

annotations shown in figure 8(a).
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Figure 8(b): Epidural Tumour

Epidural Tumor: Shows the MRI image with a focus on potential epidural tumors in figure

8(b).

Figure 8(c): Basic MRI scan without any additional annotations

Image: Presents the basic MRI scan without any additional annotations in figure 8 (c).

Figure 8(d): Mask ROI region of Interest (Tumour)

Mask ROI: places a segmentation mask overlay over the MRI picture to highlight the region

of interest (tumour) using a specific colour map shown in figure 8(d).

This visualization helps in examining the MRI scan from different angles and understanding

the tumour’s location and extent more clearly.

An original FLAIR MRI slice, ground truth segmentation mask and model's predictions for

all tumour classes combined, as well as separately for necrotic/core, edema, and enhancing

regions. Each predicted region is overlaid in red on the original image, allowing for a clear

comparison between the tumour regions and the model's predictions areas. This visualization

helps assess model's accuracy in identifying different tumour regions in the brain. Results are

shown in the Figure 9.
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Figure 9: Predicted and actual tumour areas

4.3 Quantitative Analysis
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The systematic examination of measurable and quantifiable data to understand phenomena

and the metrics considered for volume assessment, Accuracy and loss after running 45 epochs

are show in the below table.

Table 2: Volume Assessment, Accuracy and loss

Name of the parameter Result

Loss (cross entropy) 0.0198

Accuracy 0.9937

MeanIoU (num_classes=4) 0.8275

Dice-coef 0.6020

Precision 0.9941

Sensitivity 0.9925

Specificity 0.9980

Dice-coef- necrotic 0.6212

Dice-coef-edema 0.6969

Dice-coef-enhancing 0.6061

The model presented here demonstrates excellent performance on many evaluation

metrics thus establishing its position as the best possible solution for its intended

application. Cross-entropy loss of 0.0198 and accuracy of 99.37% are extremely low and

high respectively, showing that this model is reliable and precise in classification

problems. Again, the Mean Intersection over Union (MeanIoU) score for four classes was

0.8275 indicating good segmentation capabilities while a Dice coefficient of 0.6020

indicates how well it predicts overlapping areas.

A high precision value (0.9941), sensitivity value (0.9925), specificity value (0.9980) tell

us about the capacity of this model to identify true positives, minimize false negatives,

and detect true negatives with almost perfect accuracy.

By looking at Dice coefficients for some specific classes with higher values: necrotic

tissue (0.6212), edema (0.6969) and enhancing regions (0.6061), we can see that the
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model is efficient in dealing with different important segmentation issues under

consideration. From these comprehensive metrics alone, it can be deduced that this

system is highly suitable for medical imaging analysis especially when tasked with

precise differentiation between different types of tissues and segments as well as accurate

results in clinical are shown in Table 2.

4.4 Comparative Analysis

The below table is the comparison between different deep learning models, transfer

learning models , Attention guided network models which are used for brain tumour

categorization and segmentation based on their individual performances, taking into

account prior years and the same dataset

Table 3: Comparative analysis

Model Application Accuracy MeanIoU Precision Sensitivity Specificity

BTSCNet
(Four-fold
approach)

Brain Tumor

Segmentation and

Classification Network
0.9125 0.791 0.89 0.90 0.91

Transfer Deep
Learning
Model

Brain Tumour
Analysis

0.8604 0.812 0.843 0.782 0.85

Multi-Task
Attention
Guided
Network

Brain Tumour
segmentation

0.9314 0.824 0.90 0.92 0.93

3D-Unet-

R(proposed

methodology)

Brain Tumour

segmentation
0.9937 0.8275 0.9941 0.9925 0.9980

Residual connections improve segmentation accuracy and training stability (comparative

with baseline models in Table 3). Investigation is done utilizing multi-modal imaging data,

which greatly increases both detection and segmentation accuracy. Lastly, we tackle the

issue of scarce annotated resource by using approaches like data augmentation and

transfer of knowledge, to show that model performance remains unchanged.
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The numbers are speaking very clearly that the projected model is performing the best in

certain parameters precision, accuracy, sensitivity, specificity.

5. Conclusion & Future Scope

In conclusion, understanding the architecture and by seeing the results we conclude that

3D U-Net-R gives better results due to the framework which is incorporated with

transformer layers, which excel at capturing the long range dependencies within images

which is accounting all the minute details by capturing local details along with global

context and also considering spatial relationships between regions in the images ,which

would be a great help in many fields like: image segmentation applications, contributing

to advancements in fields such as medical imaging, remote sensing, and scene parsing etc.

The potential for further improving its functions in the future is great. One probable way

is to use 3D U-NET-R architecture as a standard model to experiment with. Moreover, the

addition of latest techniques such as transformers will greatly enhance performance of this

model on brain tumour segmentation tasks. Based on their strong attention mechanisms,

transformers can boost capturing of intricate spatial relationships and contextual

information within data. Besides that, incorporating other modern models and method will

improve segmentations accuracy and robustness even more. The provision of more

precise diagnostic and treatment planning tools for clinical applications, this strategy

seeks to push beyond the limitations of medical imaging analysis.
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