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ABSTRACT 

 

We summarize our algorithm for simulating Hamiltonian evolution and show that the cost of the 

simulation, in terms of black-box calls to the Hamiltonian oracle, is nearly linear in time and the 

space complexity for given sparseness is nearly constant. 

 

 BRIEF HISTORY 

 

Quantum computers are touted as revolutionary systems for tractably factorizing integers and 

solving discrete logarithms, but, in 1982, Feynman made the first proposal of a quantum 

computer application. He suggested that a quantum computer could efficiently simulate any local 

quantum system; moreover he claimed that such systems cannot in general be efficiently 

simulated by a (classical) Turing computer (Feynman,1982).Although Feynman's intuition is 

legendary, the implications of his conjecture are profound, as proving a quantum computer is 

strictly superior to a classical computer would also prove that the complexity classes P and 

PSPACE are not equal. 

 

In 1985, Deutsch generalized the Turing machine to a quantum version (Deutsch ,1985). This 

introduction of a quantum computer opened the doors to studying the computation power of 

quantum systems in much the same way that decades of Computer Science research had explored 

the prowess and limits of classical mechanical computational devices. The theoretical side lay 

dormant, however, until Lloyd's analysis of Feynman's conjecture in 1996(Lloyd,1996).  Lloyd's 

approach to Feynman's conjecture was to discretize the continuous-time  t  evolution in terms of 

steps of size t/r  for t the number of intervals into which the total time is divided: 
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Lloyd demonstrated the efficiency of the protocol by showing that the cost of iterations is a 

polynomial function of  r , m  (the number of Hamiltonians that add together to yield the full 

Hamiltonian), and  n  the number of qubits over which the full Hamiltonian operates. 

Subsequently Abrams and Lloyd suggested a fast algorithm for simulating many-body Fermi 

systems on a universal quantum computer (Abrams and Lloyd,1997). Sørensen and Mølmer 

suggested a purpose-built cold-atom quantum computer to study magnetism (Sørensen and 

Mølmer,1999). These two papers drove further research into quantum computer research for the 

purpose of studying physical systems that are regarded as intractable on classical computers. 
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In 2003, Aharonov and Ta-Shma introduced a rigorous computer science approach to the field as 

they studied the problem of quantum state generation by Hamiltonian evolution and related this 

problem to the complexity class of statistical zero knowledge (SZK) (Aharonov and Ta-

Shma,2003). In the course of their study, they Introduced an efficient technique to simulate 

evolution for any sparse Hamiltonian as an oracle (black-box) problem, where efficient  

implies that the total resources, measured as the total number of qubits ntotal  and total number of 

gates  N    is a polynomial function of  n, t , and 1/ε  with  ε  the tolerance for distance between 

the ideal state and the computed state. 

 

 

 OUR SCHEME: 

 

The concept behind our scheme is depicted in Fig. 1. The initial state Ψ0  evolves under 

Hamiltonian     for time  t  to a final state Ψt in Hilbert space . In the quantum computer, the 

initial state is represented by the approximation Ψ0

 in the tensor product space 2
⊗n

total , the approximated Hamiltonian by   , and the resultant 

state by  Ψt . The goal is to obtain a  Ψt  that is no further (in the sense of distance on Hilbert 

space) from the ideal state  Ψ0 by    for any initial state and sparse Hamiltonian. 

In our case we assume that the Hamiltonian matrix    is sparse and efficiently computable: the 

number of non-zero terms in the matrix is at most a polynomial function of  n , whereas the 

dimension of    is 2n 2n
, i.e. exponential in  n. 

We use Suzuki's method (Suzuki,1991). to decompose the unitary evolution operator into a 

sequence of unitary evolution operators, each generated by a one-sparse Hamiltonian  j  . 

Beginning with the standard `Trotter formula',  
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Suzuki's iterant, enumerated by index  k  , are  
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 Suzuki then proved that  
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We `Wick-rotated' λ   to it  and converted Suzuki's `order estimate' into a strictly bounded 

expression; then we prove the inequality  (rather than an order estimate) (Berry, Ahokas, Cleve, 

and Sanders,2007).  
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 Our theorem then states that  
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The exponential dependence on k is not a problem; for given time of evolution, we just optimize 

k   to obtain  
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 The number of steps thus has slightly super linear dependence on time. 

 

 

 
                  

 
FIG. 1:  Simulating Hamiltonian evolution in a physical space on a quantum computer. 

 
 
 

 

 

 

COLORING GRAPHS: 
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We employ a graph representation of the Hamiltonian with vertices representing either row or 

column number and weighted edges the nonzero entries for each row or column; the weight of 

the edge is the value of the Hamiltonian for that row and column (because of Hermiticity, the 

graph can be undirected). 

 

Using the graph representation, we develop a decomposition algorithm for the Hamiltonian into a 

union of degree-one graphs based on deterministic coin tossing (Cole and U. Vishkin,1992). 

Then we devise circuits based on sequentially implementing unitary evolutions generated one-

sparse Hamiltonians (represented by degree-one graphs) and concatenate them as shown in Fig. 2 

 
 

Fig. 2:  Decomposition of unitary evolution into a series of unitary gates each 

generated by one-sparse Hamiltonians. 
 
 

 NUMBER OF BLACK-BOX CALLS: 

 

Ultimately the question for us is not how many  U -steps are required for the evolution but rather 

the number of black-box calls Nbb 

. The number of black-box calls represents the full use of all resources in the quantum computer. 

Our result  
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is an order estimate and not a strict inequality. Of course this result can be optimized for given  t  
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and using 
k koptimal.

 

 

 

CONCLUSIONS: 

 

We have found an algorithm for quantum computer simulation of state evolution for a time-

independent Hamiltonian. This algorithm is highly efficient: the number of black-box calls scales 

as  log n  for n  the number of qubits for the physical system and is nearly linear in time t. More 

recently we have been making progress with the time-dependent case (Wiebe,   Berry,  Høyer.  

and  Sanders, 2008). 
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