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ABSTRACT

We summarize our algorithm for simulating Hamiltonian evolution and show that the cost of the
simulation, in terms of black-box calls to the Hamiltonian oracle, is nearly linear in time and the
space complexity for given sparseness is nearly constant.

BRIEF HISTORY

Quantum computers are touted as revolutionary systems for tractably factorizing integers and
solving discrete logarithms, but, in 1982, Feynman made the first proposal of a quantum
computer application. He suggested that a quantum computer could efficiently simulate any local
quantum system; moreover he claimed that such systems cannot in general be efficiently
simulated by a (classical) Turing computer (Feynman,1982).Although Feynman's intuition is
legendary, the implications of his conjecture are profound, as proving a quantum computer is
strictly superior to a classical computer would also prove that the complexity classes P and
PSPACE are not equal.

In 1985, Deutsch generalized the Turing machine to a quantum version (Deutsch ,1985). This
introduction of a quantum computer opened the doors to studying the computation power of
quantum systems in much the same way that decades of Computer Science research had explored
the prowess and limits of classical mechanical computational devices. The theoretical side lay
dormant, however, until Lloyd's analysis of Feynman's conjecture in 1996(Lloyd,1996). Lloyd's

approach to Feynman's conjecture was to discretize the continuous-time ! evolution in terms of
steps of size #/r for ¢ the number of intervals into which the total time is divided:

m N " 2

exp —itZHj =(Hexp{—it—Hj }J + Z[Hj,Hj,]t—+Error. 1
j=l i=l r i>j 2r

Lloyd demonstrated the efficiency of the protocol by showing that the cost of iterations is a

polynomial function of 7, 7z (the number of Hamiltonians that add together to yield the full

Hamiltonian), and % the number of qubits over which the full Hamiltonian operates.
Subsequently Abrams and Lloyd suggested a fast algorithm for simulating many-body Fermi
systems on a universal quantum computer (Abrams and Lloyd,1997). Serensen and Mglmer
suggested a purpose-built cold-atom quantum computer to study magnetism (Serensen and
Mplmer,1999). These two papers drove further research into quantum computer research for the
purpose of studying physical systems that are regarded as intractable on classical computers.
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In 2003, Aharonov and Ta-Shma introduced a rigorous computer science approach to the field as
they studied the problem of quantum state generation by Hamiltonian evolution and related this
problem to the complexity class of statistical zero knowledge (SZK) (Aharonov and Ta-
Shma,2003). In the course of their study, they Introduced an efficient technique to simulate
evolution for any sparse Hamiltonian as an oracle (black-box) problem, where Jefficientus
implies that the total resources, measured as the total number of qubits 7, and total number of

gates NV is a polynomial function of %, ¢, and 1/ with € the tolerance for distance between
the ideal state and the computed state.

OUR SCHEME:

The concept behind our scheme is depicted in Fig. 1. The initial state ¥, evolves under
Hamiltonian H for time ¢ to a final state ¥, in Hilbert space . In the quantum computer, the

initial state is represented by the approximation ¥y

~

in the tensor product space 7{2®“mtal , the approximated Hamiltonian by yz , and the resultant
state by ¥; . The goal is to obtain a ¥; that is no further (in the sense of distance on Hilbert
space) from the ideal state ‘¥, by € for any initial state and sparse Hamiltonian.

In our case we assume that the Hamiltonian matrix 7 is sparse and efficiently computable: the
number of non-zero terms in the matrix is at most a polynomial function of Z , whereas the
dimension of & is 27> 2" , 1.e. exponential in 7.

We use Suzuki's method (Suzuki,1991). to decompose the unitary evolution operator into a

sequence of unitary evolution operators, each generated by a one-sparse Hamiltonian £/ .
Beginning with the standard "Trotter formula',

Sz(/l)=Hexp(ﬁj/1/2)f[exp(ﬁjl/2), 2)

Suzuki's iterant, enumerated by index £ , are

Sy =[Sy (P DI Sy (1= 4p )V [Ss 2 (P DT (3)
for

p, = (4_41/(21{—1))‘1. (4)
Suzuki then proved that

‘exp(ﬁjl)—Szk (/1)‘60(|/1|2"”). (5)

We "Wick-rotated' A to it and converted Suzuki's “order estimate' into a strictly bounded
expression; then we prove the inequality (rather than an order estimate) (Berry, Ahokas, Cleve,
and Sanders,2007).
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),

2mS* ! [T (1-4p,.) |max,
Qk +1)1r*

<

t
(6)

i=1

exp (—it YA, j—SZk & t;)

Our theorem then states that
m5* (m [Hﬁzzz(l - 4pk,)] max
2[(2k +1)!eg]

The exponential dependence on £ is not a problem; for given time of evolution, we just optimize
k to obtain

A

H .

J

1+1/2k
t)

N <2

(7)

H,

1
K opiimal zE\/logs(mmaxj t/e) (8)

SO

A

,

N <4m’max, Hﬁj Ht exp{Z\/log5 (mmaxj

t)} 9)

The number of steps thus has slightly super linear dependence on time.
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FIG. 1: Simulating Hamiltonian evolution in a physical space on a quantum computer.

COLORING GRAPHS:
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We employ a graph representation of the Hamiltonian with vertices representing either row or
column number and weighted edges the nonzero entries for each row or column; the weight of
the edge is the value of the Hamiltonian for that row and column (because of Hermiticity, the
graph can be undirected).

Using the graph representation, we develop a decomposition algorithm for the Hamiltonian into a
union of degree-one graphs based on deterministic coin tossing (Cole and U. Vishkin,1992).
Then we devise circuits based on sequentially implementing unitary evolutions generated one-
sparse Hamiltonians (represented by degree-one graphs) and concatenate them as shown in Fig. 2
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Fig. 2: Decomposition of unitary evolution into a series of unitary gates each
generated by one-sparse Hamiltonians.

NUMBER OF BLACK-BOX CALLS:

Ultimately the question for us is not how many U -steps are required for the evolution but rather
the number of black-box calls Ny,
. The number of black-box calls represents the full use of all resources in the quantum computer.

Our result
1+1/2k
/]
(10)

log'nd*5™ [dz [H’,}zz(l—4pk,)}maxj
is an order estimate and not a strict inequality. Of course this result can be optimized for given ¢
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[(2k +1)le]
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k= koptimal .

and using

CONCLUSIONS:

We have found an algorithm for quantum computer simulation of state evolution for a time-
independent Hamiltonian. This algorithm is highly efficient: the number of black-box calls scales

as log"z for n the number of qubits for the physical system and is nearly linear in time t. More
recently we have been making progress with the time-dependent case (Wiebe, Berry, Hoyer.
and Sanders, 2008).
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