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ABSTRACT

In this paper we discuss a classical maximum principle for weakly coupled second order
homogeneous elliptic systems. We find a sufficient condition for the classical maximum principle
which extend the result of Winter and Wong for negative semidefinite matrix to a more general
form.

1. INTRODUCTION

We first introduce some remarks and notations :

(1) Unless otherwise stated, all matrices considered in this paper will be over the complex

field.

(2) Let 4 be an m xn matrix, then A", A ,and A (4" = ZT ) denote its transpose,
complex conjugate, and adjoint, respectively.

(3) Both Hermitian positive definite and real symmetric positive definite matrices will be
named positive. Similar abbreviations hold for semipositive, negative, and
seminegative definite matrices.

(4) The notations B > (0, B =0, B < 0, and B < () mean that the square matrix B is
positive, semi-positive, negative and semi-negative, respectively.

(5) ||-]|o,2 denotes the sup norm over £2 thus for complex valued vector functions u = (u;,
uy ..., uy). [Chow, Dunninger, (1974); Dow, (1975); Franciosi, (1989); Hille, Protter,
1977)]

1
lall, , = szl = sz (P + .+ [y ()2
xeQ xeQ n

In Liapunov’s Second Method, positive definite solutions B of the matrix equation AB + BA =
—E (E > 0) have been used to construct Liapunov functions, and to prove stability of some

ordinary differential systems. % = Au, [Massera, (1956); Protter and Weinberger, (1984);
X
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Snyders and M. Zakai, (1970); Sperb, (1981); Staring, (1980); Takac, (1996); Wasowski, (1972);
Winter, Wong, (1972); Yoshizaea, (1966)].

Chow and Dunninger (1974), used this method to obtain a generalized maximum principle for
some classes of n-metaharmonic functions.

In this paper we use the idea of Liapunov’s Second Method to find a generalized maximum
principle for a class of weakly coupled second order homogeneous elliptic systems.

Lu+Au=0 in QcR"

Where L is the second order elliptic operator

: Pu 3 5
L [u(x)] = LJZZI aij(x) ﬁ + ; a; (X) % , 8jj = aji, U= (u1, u, ..., un)T.

The following Lemma is a well-known result in Liapunov stability theory and will be used in this
paper.

Liapunov Lemma: Let A be an n X n complex or real matrix.

(a) Assume that no eigenvalues of A has positive real part, and moreover that the elementary
divisors of A corresponding to eigenvalues with vanishing real part are linear. Then there
exist matrices B > 0 and E > 0 such that.

A'B+BA=-E

(b) If each eigenvalue of A has negative real part, then for any E > 0, there exist a unique B >

0 such that AB + BA=—E

The proof of this Lemma can be found in [Yoshizaea, (1966)].

2. THE GENERALIZED MAXIMUM PRINCIPLE

Consider a second order operator

n 2 n
Llux)] =Y ajx) 83—5; + > aix) aax_u » @i = i (2.1

ij=1 i=1 i

in a bounded domain Q in R". We assume that L is elliptic in Q, i.e., for all xe Q and all y=(y,,
V2, oo Vi) € R"{0).
a; (x)yiy; >0 (2.2)
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holds, we also suppose that the coefficients a;; and a; are bounded and real-valued functions in £2.
Now consider the following weakly coupled second order elliptic system,
Lug(x) + ag (x) up(x) =0,s =12, ...n in £
or in matrix from,
Lu(x) + A(x) u(x) =0 in Q2 (2.3)

Here A(x) = (ag (x)) is an n x n complex matrix function and u is a C° [ nxI]complex vector
function.
Associated with (2.3) the following characteristic equation of A4,

|Al—A| = 0.
Theorem (2.1): Assume that there exists a constant complex matrix B > 0 such that

A (x) B+ BAx) <0, xef2 (2.4)

2 _
Then for all solutions ue C (Q)NC (£2) of (3.3) there exist a constant k > 0 such that

lll, , < & ], (2.5)

Here k = (A, / A1), where A, and A, are the smallest and biggest eigenvalues of B, respectively.

Proof: Let

v =u*Bu = u. Bu = Bu.u = by Eku,
where “.”” denotes the dot product in C" defined by xy =y x= Zxk ; i
k=1
Then v is a nonnegative function and,

v

ViE — =bks U i uy +bks U j U,
ox;
0%y — — -
Vi = = bks u kij Us + bks U Ui + 2 Re {bks Uy USJ};
dx;0x
du 92
_ k _ v
where uy,; = W, Ukij = % o etc, and,
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Lv=al~jv4~,~+a,-v,-
=bksa,~j Mkij'us+bkg uka,-jus,»j+2bkga,-j U ki Usj

+bksai ukius+bks U a; Ug;

= bis (Lut, ) us + by i (Luy) + 2 ayuz Buy= (Lw)” Bu + u” B (Lu) + 2 ay B" u. B" u,

Thus Lv=—u (A'B+BAu+2 ajj B” u;. B* u =0 (2.6)
Since A'B + BA <0 and a; vi. v; =0
For any vectors v;. vy, ..., V.

Therefore, by the maximum principle for the elliptic operator L, we have

V) o VO, Vxe2
yEOQ

Suppose that

fi }, are the eigenvalues of B with 4; <4, < ... <4,

Since B > 0, we know that
Ar>0and A |u)f’ <vx) = ux)” Bux) < |u)|
Hence, from (2.7)

2

A
|u(x)|2 < }\‘n max luy)
1 yeoR

and ||ul|o.0 <k ||ullo.ge  where k= (A/A;)"

The Liapunov lemma yields the following theorem.

(2.7)

Theorem (2.2): Let A(x) = g(x) I + D in (2.3), where g(x) < 0 in Q and D is a constant matrix

over C. Assume that none of the eigenvalues of D has a positive real part, and moreover that the

elementary divisors of D corresponding to eigenvalues with vanishing real part are linear. Then

there exit a constant k > 0 such that for all solutions ue C* (Q)mC(ﬁ) of (2.3).

lullo.e < k||ulloae

Proof: by Liapunov lemma, there exist matrices B > () and £ = () such that

<0.
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Since g <0 1in £2, we get

A"(x) B+ BA(x) =2 g(x) B+ D"B + BD <0.

Now the result of this Theorem follows from Theorem (2.1).

Theorems (2.1) and (2.2) are generalized maximum principles since the value of £ in (2.5) may

be larger than 1.

The best value of & in (2.5) for any matrix A, is k<=1 which corresponds to the classical maximum

principle.

3. THE CLASSICAL MAXIMUM PRINCIPLE
Theorem (3.1):
(a) A sufficient condition that:
[ulloa < [[ulloae (3.1)
2 _
holds , for all solutions ue C (Q)NC () of (2.3) is
A'(x) + A(x) <0. (3.2)
(b) Assume that the variable matrix A=A(x) in (2.3) is normal (i.e., A (x) A(x) = A(x)
A’(x), xe Q), and all its eigenvalues have nonpositive real parts for all xe Q.
2 _
Then (3.1) holds for all solutions ue C (Q)NC () of (2.3).

Proof. (a) By choosing B=/ in Theorem (2.1), (2.5) with K=/ (i.e., 3.1) follows from the
condition (3.2)

(b) suppose
M(X) Aa(X), ..., An(X)

are all the eigenvalues of A(x). Since A(x) is normal, there exists a unitary matrix U(x) such that
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0 )
U'(x) A (x) Ux) = 4,0 |
i A n(x)]
Therefore, by the assumption,
[2Rek (x) ]
U'(x) (A"(x) + Ax)) U(x)= N =: A(x) 0.
' 2Re A ()

Hence A"+ A = UAU" <0; and then 3.1 follows from (a).

Example: For n = 2, consider

a b
Lu+{ }uzo, a,b,c,deR.
c d

The associated characteristic equation,
A (a+d)A + (ad — be) = 0,

has roots

(a+d)+ (a+d) —4(ad —be)

Ar=
B 2

_la+d)xJla—d) +4be
2

Hence, by Theorem (2.2) the inequality (2.5) is valid provided one of the following conditions is

satisfied:

i. a+d<0,(a—d)+4bc<0;

ii. a+d<0,(a—d)>+4bc>0,ad—bc>0;
11i. a+d=0,ad—bc>0.
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The inequality (2.5) is not valid for the general case, when a + d > 0 or

Au+[2 _4]:|u:0
0 -1

Au + u=20
o)

in 2= (0, m) x(0, n) and vanishes on 2 but (2.5) does not hold.

1
a+d=0,ad—bc <0. In fact, u = sin x sin y {—2} solves the systems

Theorem (2.1) gives a sufficient condition for which (2.5) holds. It raises some open questions as
to whether Theorem (2.1) can be extended to a more general system (2.3) with weaker
restrictions on the matrix 4, and as to whether necessary conditions can be determined so that

(2.5) holds.

Following from the inequality

L(u" Bu) >—u" (A'B+BA) u + 2a; B*u; B* u; >0, (2.6)

in the proof of Theorem (2.1), and form Protter and Weinberger [6], are the following two
maximum principles for system (2.3)

Corollary (3.1): if ue C* (Q)N C(.f_.?) is a solution of (2.3), and if u” Bu attains a maximum in Q
for some positive definite matrix B such that A"(x) B+BA(x) is negative semidefinite in €, then
u is a complex constant vector in 2. Moreover, if A*(x) B+ BA(x) is negative definite at some

xe Q or, if A (x) is invertible for some xe Q then u=01in Q .

Proof. Under the assumption of this corollary, by the proof of Theorem 2.1, inequality 2.6 holds.
Thus, by the maximum principle of the second order elliptic equation (see [Sperb, (1981);
Staring, (1980); Takac, (1996); Wasowski, (1972)]), u Bu = constant. Hence, from (2.6) again,

we have
0=L " Bu

=—u (A" B+BA)u + 2a;B" u; B” u; >0  in 2
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Which implies that u” (4" B + BA) u= 0 and ajj B” u; B” u; = 0, and then.

B” ui=0and uy;=01in Q for I < i <n. Thus u is a complex constant vector in Q, Moreover, if
A’ (x) B+ BA (x) <0 at some xeQ then, from u’(A"(x) B+BA (x) u=0, we have u= 0 in Q and

if A(x) is invertible for some xe € then, from the system 2.3 we still have u =0 in Q.

Corollary (3.2): Letue C*(Q) NC (@) be a solution of 2.3 Suppose that u Bu £ MinQand
that u” Bu= M at a point P €9 Q for some positive definite B such that A” B+ BA is negative

semidefinite. Here M is a nonnegative constant. Assume that P lies on the boundary of a ball in

Q, and that the outward directional derivativedu/dv exists at P. Then

N JRe {M*B—} =2 Re (Bl 2uj —~ 2 |>0 arP
ov dv v

Unless u is a complex constant vector such that u” Bu = M; equivalently,

B‘Bl/ u
v

> () at P

Unless u is constant and |B” u| = M”

4. CONCLUDING REMARKS
1. The condition 3.2 is also necessary for the proof of the classical maximum principle by
the method imposed here.
2. Theorem 3.1 contains the result of [Winter and Wong, (1972)] for real negative
semidefinite A=A (X, u,Vu) as a special case; one may view, for given u, A (X, u (x),Vu
(x)) as a matrix function A; (x).

3. By Liapunov Lemma, there exist at least one positive definite matrix B > 0, satisfying
D" B+BD= —E < (, if the matrix D meets the assumption of Theorem (2.2). See [
Massera, (1956); Protter, Weinberger, (1984); Snyders, Zakai, (1970)].

4. Corollary 3.1 actually holds even if £21is unbounded, since inequality (2.6) holds and if
A" (x) B+ BA (x) <0 at some x€Q , then we still have u=0in Q .
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