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ABSTRACT 

 Let  
m

  be the m-dimensional projective space over the field of complex numbers    acted on 

by the algebraic torus  T m 1
 . Let X be an equivariantly embedded variety in  

m
  via 

the map  , i.e.,    is an embedding and  t. x X   whenever  t T  and  x X . We 

begin a study of T-equivariant rational equivalence of T-equivariant cycles on a B-variety X, 

namely a non-singular projective variety with an action of a torus  T m 1
  with many 

fixed points. First, we compute the T-equivariant Picard group of such a variety with the help of 

fixed point and their associated characters. This result is then applied to study more generally T-

equivariant rational equivalence of T-equivariant cycles.

INTRODUCTION

The diagonal group  Gn g GLn : gij 0  for   i j   is a closed subgroup of the general 

linear group  GLn   of  invertible matrices over   , which is evidently isomorphic  to  

GL1
n

 . An algebraic group isomorphic to  Gn   is called an  n-dimensional torus. Throughout 

this manuscript note that T will denote an  m 1  dimensional  torus. The projective space  
m

  over    admits a natural action  of the algebraic torus  T m 1
 . The multiplicative 

one-parameter  subgroups in T are the elements of  X T Hom , T  . Since the character 

group   X T Hom T,  , we compose to obtain the dual pairing  X T X T    given 

by  , t tk
 .  

We say that  X   is an equivariantly embedded variety in  
m

  if there is an embedding    such 

that  t. x X   whenever  x X  and  t T . Throughout this paper we assume that  X   is 

an equivariantly embedded B-variety in  
m

  via a fixed embedding. Fix a system of 

homogeneous coordinates  x0 , . . . , xm  . Let  i   be the character of T defined by  

i t0 , . . . , tn ti  . Given the characters  0 , . . . , n   where  j i 0
m

i

n ij

 , nij  . Identify X 

with its image  X  . Then T acts on X via  t.xj j
1 t xj  , and on points  a0 , . . . , am  , this 

action is given by  
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t. a0 , . . . ,am 0 t a0 , . . . , m t am .

If  f : X 1
  is a rational function on X then T acts on  f x   via  

t. f x f t 1 . x f 0
1 t x0 , . . . , m

1 t xm .

This paper is devoted to characterize T-equivariant rational equivalence of T-equivariant cycles 

on a B-variety X. A cycle on an arbitrary algebraic variety (or scheme) X is a finite formal sum  

nV V   of irreducible subvarieties of X, with integer coefficients. A rational function f on any 

subvariety of X determines a cycle  f   of the principal divisor  f  . Cycles differing by a sum 

of such cycles are defined to be rationally equivalent. The group of rational equivalence classes 

on X is denoted  A X  (see (Fulton, 1984)  Chap. 1). The group  A X  will play a roll analogous 

to homology groups in topology. When X is non-singular,  A X A X ; in the non-singular 

case, but not in general,  A X  will have a ring structure. The ring  A X  is often called the 

Chow ring of X. The actual relation of these groups to homology groups is discussed in Chapter 

19 of (Fulton, 1984) . 

In (Edidin and Graham, 1998), Edidin and Graham introduced Chow groups of a scheme X and 

they proved the localization theorem for torus actions in equivariant intersection theory. On the 

other hand, in (Edidin and Graham, 1998), they introduced definition and basic properties of 

equivariant Chow groups of a scheme and more generally algebraic spaces acted on by linear 

algebraic groups. These are algebraic analogues of equivariant cohomology groups which have 

all the functorial properties of ordinary Chow groups. In addition, they enjoy many of the 

properties of equivariant cohomology. The definition of that paper is modeled after Borel's 

definition of equivariant cohomology. 

Let  S   be the tautological bundle on    whose sheaf of sections is  1  , and let  

BT n
 . The principal T-bundle ET over BT is defined to be  ET 1S . . . nS

where  i : BT   is the  ith
  projection map. If now X is a topological space with a T-

action, put  XT ET T X , which is it self a fiber bundle over BT with fiber X. The equivariant 

cohomology of X is defined to be  HT X H XT   where  H XT   is the ordinary 

cohomology of  XT  . Let  : XT BT  be the equivariant projection map induced by the 

trivial map  X point . Let    be the constant sheaf on  XT  . The key lemma of this work, 

namely Lemma 2.13 paves the way to prove the main result of this work. It indicates that the 

sheaf  
2

  on  BT  is a direct sum of k copies of the constant sheaf    where k is the 

dimension of the vector space  H
2 X,  . 

Consider the q-th direct image sheaf  
q

  on BT associated to the presheaf  

U Hq ı U ,   where  U   is an open set in BT. The  Leray  spectral sequence, is a spectral 

sequence  r   with 



f

X X

X

X X

S

1 nS

i

T T X

T T

T T BT

point T

BT

ı U eray

r
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H XT , ,

2

p,q
Hp BT, q .

This sequence degenerates i.e.,  
p,q

2

p,q
 ,  p, q 0   and we obtain the following filteration of  

H2

H2 F0H2 F1H2 F2H2 . . . FnH2 Fn 1H2 0

such that  F
pH2 /Fp 1H2 p,2 p

 . For simplicity we let  F
p

  denote for  F
p H2

 . Then  

F0 /F1 0,2
H0 BT, 2

  and  F
1 /F2 1,1

H1 BT, 1 0  because  
1 0  . But  F

1 0   implies  F
1 F2

 . Also  

F2 /F3 2,0
H2 BT, 0 H2 BT,   and  F

3 /F4 3, 1
0  .Thus  F

3 0   and by a 

similar argument  F
4 F5 . . . 0  . Therefore, we obtain the filteration  F

0 F1 F2
 . This 

gives rise to the short exact sequence 

0 F2 F0 F0 /F2 0

Thus we get the exact sequence 

0 H2 BT, H2 XT , H0 BT, 2 0

This was crucial in the proof of the key lemma. 

Finally, in (Edidin and Graham, 1998), Edidin and Graham have computed more generally T-

equivariant Chow groups of any variety with T-action via a localization formula. However, the 

approach taken here is more straightforward. We characterize T-equivariant rational equivalence 

of T-equivariant cycles on a B-variety X using the torus action and weights. Again the methods 

of the present paper are simpler and the characterization obtained is more explicit. 

T-EQUIVARIANT LINEAR EQUIVALENCE IN A B-VARIETY

The purpose of this section is to determine the  T-equivariant Picard group of a B-variety X, 

namely the group   HT
2 X  . Equivariant cohomology enjoys many of the usual properties of 

ordinary cohomology such as the existence of flat equivariant pullbacks and proper equivariant 

pushforwards. These maps play an important role in describing T-equivariant linear equivalence. 

Note that  HT point H BT  . By pullback via  X point , we see in genenral that  H XT

is an  H BT   module. Thus  H BT   may be regarded as the coefficient ring for equivariant 
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cohomology. 

We let  M T   be the character group of the torus T. For each  M T  , we get a 1-

dimensional vector space    with a T-action given by   . If  L T   is the 

corresponding line bundle over BT, then the assignment  c1 L   defines an isomorphism  

: M T H2 BT  , which is in turn induces a ring isomorphism  Sym M T H BT  . We 

call    the weight of   . In particular, if  i   is the character of T defined by  

i t0 , t1 , . . . , tm ti   then we let  i   denote the weight of  i  , i=0,1,...,m. Thus we get the 

isomorphism  HT point H BT 0 , . . . , m  . 

For simplicity, we let  i   denote  i   in  H XT   where  : XT BT  is the equivariant 

projection map induced by the trivial map  X  point (Cox  David  and Katzt, 1999) and  

: H BT H XT   is the pullback map. 

We denote the line bundle  L i   by  i  , so that  i c1 i  . On the other hand, 

consider the action of T on  
m

  given by  t0 , . . . , tm . x0 , . . . , xm t0
1x0 , . . . , tm

1xm  . The 

inverses has been chosen so that  t0 , . . . , tm   acts on the homogeneous form  xj H0 n 1

as multiplication by  tj  . 

Remark 2.1 The fiber bundle  T
m

  is the projectivization of the vector bundle  

FT i 0
m

i   over BT which gives the tautological line bundle  T
m 1  , and we have  

p c1 T
m 1   belongs to  HT

m
 . We refer to  p   as the equivariant hyperplane class. 

Furthermore, the class  xj 0 T p j  .  

If X is a topological space with a T-action and  Y  is a principal T-bundle, we recall that a 

fiber bundle  T X  is defined to be  T X X / u, x u t 1 , t x   for any  

x X ,  t T , and  u  . 

Following Fulton ((Fulton, 1984)  Example 1.9.1) we say that a scheme X has a cellular 

decomposition if there is a filtration  X Xn Xn 1 X0 X 1   by closed subschemes 

with each  Xi Xi 1   a disjoint union of schemes  Uij   isomorphic to affine spaces  
n ij  . The  

Uij  's are called the cells of the decomposition. 

Proposition 2.2((Ellingsrud and Strømme, 1987)) Let X be a scheme with a cellular 

decomposition. Then for  0 i  dim X  

(i)  H2i 1 X 0  . 



i

i i i i

T

i i T T BT

T

i i i 1 i

0
1

m

0 m

j

T
m

i 0
m

T

p
T T p

j

Y

T X T

X T

n n 1 0 1

i i 1 ij

ij

2i 1 0
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(ii)  H2i X   is a   module freely generated by the classes of the  closure of the  i

dimensional cells. 

(iii) The cycle map  cl : A X H X   is an  isomorphism.  

The following lemma is useful. The proof is straightforward. 

Lemma 2.3  Let X be a B-variety, and let    be the constant sheaf on  XT  .  Then the sheaf  

  is isomorphic to the constant sheaf    where     is the pushforward induced by the 

equivariant projection map   . 

Remark 2.4 We say that a subset  Y X  is T-equivariant if  t.y Y  whenever  y Y  and  

t T . 

Definition 2.5 Let  V ET  be an open subset of ET. Let   : ET BT  be  a principal T-

bundle. Let  L   be a line bundle over  BT  that  corresponds to a character   . Let  

g : V L   be a local section of the line bundle  L ET  . Then  

g y L y y   and  g y y, g y   where  g : V   is a continuous  function. 

We define the ring  L V   to be the set of all continuous functions  g : V  . The sheaf  

L   is a sheaf of rings. We use  L   to denote the line bundle associated to the sheaf of 

rings.  

Definition 2.6 Let  V X  be  a T-equivariant open subset of a B-variety X such that   

VT ET T V , and let  y,x   denote a class in  VT  .  We define a local section  

: VT L   by  y,x y,x , u x g y    where  u : V   and   g : ET

are continuous functions. We define the ring  L VT : u x g y : u x   is a continuous 

function from V to   , and  g y   is a continuous function from  ET  to   . We use  L   to 

denote the line bundle associated to the sheaf of rings.  

Remark 2.7 In algebraic geometry, divisors are a generalization of codimension one subvarieties 

of algebraic varieties; two different generalizations are in common use, Cartier divisors and Weil 

divisors. The concepts agree on non-singular varieties over algebraically closed fields. 

To every Cartier divisor  D X  (X arbitrary variety or scheme) there is an associated line 

bundle (strictly, invertible sheaf) commonly denoted by  OX D  , and the sum of divisors 

corresponds to the tensor product of line bundles. Isomorphism of bundles corresponds precisely 

to linear equivalence of Cartier divisors, and so the divisor classes give rise to elements in the 

Picard group. In otherwords, this defines a group morphism from the group of Cartier divisors 

modulo linear equivalence to the Picard group. This morphism is injective but is not always 

surjective. We are interested in the case where X is a B-variety. 

Definition 2.8 Let  V X  be  a T-equivariant open subset of a B-variety X such that   

VT ET T V . Let  y,x   denote a class in  VT  . We define the ring  
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OXT
DT VT : h x g y : h x   is a meromorphic function on V, and  g y   is a continuous 

function on ET such that  h D 0   and  h tx g ytı h x g y  . The sheaf  OXT
DT   is a 

sheaf of rings. For simplicity, we use  O DT   to denote  OXT
DT  . 

Definition 2.9  Let  V X  be a T-equivariant open subset of a B-variety X. Let   f : V 1

be a rational function such that  t. f t f . Let  fı 0  ,  fı   be the divisor of zeros and the 

divisor of poles of f respectively. Then the equivariant divisor  f T fı 0 T fı T  . We 

define  O f T VT   to be the ring  O f T VT : : V fı T   :   

y, x g y f x    where  g : ET   is a continuous function associated to a section  g   of 

the line bundle  L  . We use  O f T   to  denote the line bundle associated to the sheaf of 

rings.  

Lemma 2.10 Let  f : X 1
  be a rational function on a B-variety  X. Then there exists a 

character    such that  t. f t f . 

Proof. Let  t T  then  t. f  and  f  have the same zeros and poles since  D D   is T-equivariant. 

So  

t .f

f   has no zeros or poles in  X   where  X   is a compact set. Therefore  

t .f

f
ct

  where  c t

is a constant. To check that  c t   is a character, write  f t 1x f t 1 x   where  t 1
  defines 

the bijection on X given by  x t 1x . Now  ct .t f x t. t . f x f t 1 t 1 x  . It follows  

ct .t f x f t 1 t 1x ct f t 1x ct f t 1x ct ct f x  . 

Proposition 2.11 Let  f : X 1
  be a rational function on a B-variety X. Then the  sheaf  

O f T   is isomorphic  to the sheaf  L   where  t. f x t f x  . 

Proposition 2.12 Let  Y X  be a T-equivariant subvariety of X. Let  Di Y  be a T-

equivariant subvariety of Y such that  D1 D2 f   where  f : Y 1
  is a rational function 

on Y. Then  the restriction of  O D1 T   to  YT   is  isomorphic to the restriction of  

O D2 T L ı
  to   YT  . 

Proof. By Lemma 2.10 there exists a character    such that  t. f t f . Let V be a T-

equivariant open subset of Y.  Then  VT ET T V . Let  a,x   denote a class in   VT  . Define 

the morphism   

VT : O D2 T VT YT L ı VT Y T O D1 T VT YT

  by  

VT h x g a k x l a k x h x fı x g a l2 a .

Now  khfı D1 k h D2 0 , since  k 0   and  h D2 0  .  

ı ı ı ı ı

ı ı ı ı

ı

ı

ı ı

ı

ı ı



XT T T g

0 ı
XT T

T XT T

X

f ı ı

T
ı

T
ı

T

T T T T
ı

T

g g

T

f

T f f
t .f

X X
t .f

t

t

x t .t
1

t .t
1

t
1

t
1

t t

T

X i Y

1 2 f

1 T T

T
ı

T

f

T T V T

ı

ı

ı
1 2 0 0 2 0
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On the other hand,  h tx g atı h x g a  ,   k tx l2 atı ı t k x l2 a   and  f
ı tx t fı x  . 

Thus, 

k tx h tx fı tx g atı l2 atı k x h x fı x g a l2 a .

Therefore,  k x h x fı x g a l a O D1T VT  . The other details is a routine check. 

Let X be a projective variety. So X is a noetherian integral separated scheme which is regular in 

codimension one. We recall that two divisors  D   and  D   are said to be linearly equivalent, 

written  D D  , if  D D   is a principal divisor((Hartshorne, 1977) ). If X is equivariantly 

embedded in  
m

  via the embedding   ,  D   and  D   are T-equivariant subsets of  X

then the linear equivalence is called T-equivariant linear equivalence. 

On the other hand, two cycles  D   and  D   are said to be linearly equivalent, written  

D D  , if  D D   is a cycle of a principal divisor. If X is equivariantly embedded in  
m

via the embedding   ,  D   and  D   are T-equivariant subsets of  X   then the linear 

equivalence is called T-equivariant linear equivalence. Furthermore, the cycles are called T-

equivariant cycles. 

Recall the map  iX : HT X H X    which is defined by  iX ZT Z   where Z is a T-

equivariant subvariety  of a B-variety X. Then  iX j 0  . On the other hand, X has a  cellular 

decomposition and the k-dimensional  vector space  H2 X,   over    is generated by the set  

D1 , . . . , Dk   of classes of the closure of the one-dimensional cells of X (see (Ellingsrud and 

Strømme, 1987) ,(Fulton, 1984) ). Furthermore,  Di X  is a T-equivariant subvariety of X. 

Let  
2

  be the sheaf associated to the presheaf    on  BT  where  

U H2 ı U ,  ,  U   open in  BT . The following key lemma paves the way to prove the 

main result of this section. 

Lemma 2.13.  Let X be a B-variety, and let    be the constant sheaf on  XT  . Then   
2

is isomorphic to a direct sum  
k

  of k copies of    where k is the dimension of   H2 X,  . 

Proof. Fix a  T -equivariant divisor  D X . Then  DT XT   is an equivariant divisor . Let  

DT   denote the line bundle  O DT   on  XT   associated to the divisor  DT  . Then  

c1 DT
ı U H2 ı U , U   where  U   is an open subset of  BT . Let  sU  = 

c1 DT
ı U  . Let  V   be an open subset of  U  , consider the restriction map  

V
U : U V   which is defined by  V

U sU sU   where  : ı V ı U   is the 

inclusion map. Then  V
U sU sV  . Therefore we get a global section  D BT H2 XT ,

. Consider the exact sequence 
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0 H2 BT, H2 XT , H0 BT, 2 0

Define  : H2 X, H0 BT, 2
  by  D D  where  D D  . We show that  

  is an isomorphism. 

First, we check that    is well-defined. Suppose  D   and  D   are T-equivariant linear 

equivalent cycles. Then  D   is T-equivariant linear equivalent to  D  . So there exists a rational 

function  f : X 1
  such that  D D f  . By Lemma 2.10, there exists a character    such 

that  t. f t f . Now we show that  D D
i 0

m
ai i   where  ai  :  

Let  Ui   be an open cover for BT. For simplicity, we let  i   denote the pullback map  

i ı U i
: H XT , H ı Ui ,   of the inclusion map  i ı U i : ı Ui XT  . Then  

U i

BT D D i c1 DT
c1 DT  . Thus, by Proposition 2.12 we have  

U i

BT D D i c1 O DT DT i c1 O f T  . But  O f T L   and  

L O
i 0

m
ai i   where  i 0

m
ai i   is the weight of the character   . It follows  

U i

BT D D
i 0

m
ai i   since  i   is a  0 , . . . , m  module homomorphism. Therefore,  

U i

BT D D
i 0

m
ai i 0  for all  i  implies  D D

i 0

m
ai i 0  (sheaf axiom). It 

follows that  D D
i 0

m
ai i i 0

m
ai i 0  since the sequence above 

is exact. Therefore    is well-defined. 

Second, we show that    is injective. Suppose that  D 0  . But the sequence is exact, so  

D
i 0

m
ai i   where  ai   and  U i

BT D
i 0

m
ai i 0 . So  

c1 DT
ı U i 0

m
ai i 0 . If  j : ı U ı BT   is the inclusion map then  

j c1 DT i 0

m
ai i 0 . So  j c1 O DT i 0

m
ai i 0 . Thus  DT i 0

m
ai i   is 

linearly equivalent to zero. Applying the map  iX   we get  D 0  . So    is injective. Third,  

is surjective because  iX   and    is surjective. 

Finally,    is a ring homomorphism follows immediately from the definition of   . 

Theorem 2.14. Let  X   be a B-variety with a fixpoint set  XT p j j 1
n

 ,  n m 1  . Let  

Di X  be a  T equivariant  subvariety of codimension one,  i 1,2  . Then 

•
D1 D2    D1T D2T Span i : i 0, 1, . . . ,m  , where  

Span i : i 0, 1, . . . ,m
i 0

m
ci i : ci

• Let  ij : HT X HT p j   be  the pullback induced by the equivariant inclusion  

•

•



D

D

f

f i 0 i i

i

ı
i

ı
ı

i
ı

T

i T

U i T

i 0

m

i 0

m
i

i i 0 i 0 m

i i 0
0 i i 0

0

i 0 i 0
0

0

i 0

m
i i i i 0

m
0

ı
i 0

m
0 j ı ı

j
i 0

m
0 j

i 0

m
0

i 0

m
i

X 0

X

X
n

1

i X ant 2

•
1 2 1T 2T i

i 0

m

• T T
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ij T
: p j T

XT  . If   DT   is any cycle class of an equivariant divisor such that  

ij DT i 0

m
ai i  ,  for all j, then  DT i 0

m
ai i  . 

Proof.

• We prove one direction. The other direction is straight forward.  Suppose that  D1 D2

then  D1 D2 T ker iX  .  We show that  ker iX   Span i : i 0, 1, . . . ,m  . Recall  

from Lemma 2.13 the isomorphism of k-dimensional spaces  

: H2 X, H0 BT, 2
 . Let  

1
  then  iX   and    is an 

isomorphism of k-dimensional spaces. Furthermore,  H2 BT,   Span 

i : i 0, 1, . . . ,m  . Also note that  iX 0map  , where  0map   is the zero map since  

iX j 0 .

Now we show that    is injective  ker iX H2 BT,  . 

(  ): Suppose  s 0   where  s H0 BT, 2
 . Since    is surjective there exists  

w H2 XT ,   such that  w s . It follows  w s 0 . But  iX

implies  iX w 0   which implies  w
i 0

m
b i i  ,  b i   . It follows  

s w
i 0

m
bi i i 0

m
bi i i 0

m
bi. 0 0 . Hence    is 

injective. 

 : Let  ker iX   then  0 iX  . But    is injective implies  0

which implies  ker im  . Thus  H2 BT,  . Hence  ker iX H2 BT,  . On 

the other hand  ker iX   contains  H2 BT,   since  iX 0map  . Therefore  

ker iX Span i : i 0, . . . , m  . 

• Let  0 , . . . , m   be the field of fractions of  0 , . . . , m  . Consider the map  

: HT X j 1
n HT pj   where  f ij . f j 1

n
 . 

Let  DT HT
2 X HT

2 X   such that for each  j   we have  ij DT l

where  l
i 0

m
ai i  . Then  l 1 DT 1   and    is injective implies  

l 1 DT 1  which implies  DT l  . 

T-EQUIVARIANT RATIONAL EQUIVALENCE IN A B-VARIETY  

In this section we investigate more generally T-equivariant rational equivalence in a B-variety X. 

The field of rational functions on X is denoted  R X  ; the non-zero elements of this field form 

the multiplicative group  R X  . 

Definition 3.1  Suppose that V and  V   are subvarieties of X of dimension k. We say that V and  

V   are rationally equivalent if there are a finite number of  k 1  dimensional subvarieties  
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Vi   of X, and  fi R Vi   such that  V V fi  . If X is equivariantly embedded in  
m

via the embedding   ,  V   and  V   are T-equivariant subsets of  X  , then the rational 

equivalence is called T-equivariant rational equivalence. 

Definition 3.2 Suppose that V and  V   are subvarieties of X of dimension k. We say that two k-

cycles  V   and  V   are rationally equivalent if there are a finite number of  k 1

dimensional subvarieties  Vi   of X, and  fi R Vi   such that  V V fi  . If X is 

equivariantly embedded in  
m

  via the embedding   ,  V   and  V   are T-equivariant 

subsets of  X  , then the rational equivalence is called T-equivariant rational equivalence. The 

cycles are called T-equivariant cycles. 

Theorem 3.3. Let  X   be an n-dimensional  B-variety with a fixpoint set  XT q j j 1
d

 . Let  

Z X  be a  T  equivariant subvariety of dimension  k 1 n , and let  Di Z  be a  T

equivariant subvariety of dimension  k  ,  i 1,2  . Then 

•  If  Z  is irreducible then 

D1 D2 in Z D1T D2T Span i. ZT : i 0, 1, . . . , m

where  Span i. ZT : i 0, 1, . . . ,m
i 0

m
ci i. ZT : ci  . 

• Let  ij : HT X HT q j   be  the pullback induced by the equivariant inclusion  

ij T
: q j T

XT  .  If  D1 D2   in  Z  and  Z  is an irreducible subvariety of   X  ,  then there 

exists an  l i 0

m
ai i  ,  such that  ij D1T D2T l ij ZT  ,  j 1, . . . , d  . 

• Let  Di k 1
s Zk  ,  i 1,2  , be a T-equivariant subvariety of dimension  r  , and let  

Zk X  be an irreducible T-equivariant subvariety of dimension  r 1 n . If  D1   and  

D2   are T-equivariant rational equivalent, and  Di k 1

s
Dik   such that  D1k D2k   in  Zk

. Then there exists  lk i 0

m
aik i   such that  

ij D1T D2T

k 1

s

lk . ij ZkT

•  where  j 1, . . . , d  . 

Proof.

• Suppose that  D1 D2   in  Z  where  Di  ,  Z   are T-equivariant subvarieties of X. Then  

D1 D2 f   where  f : Z 1
  is  a rational function on  Z . By Lemma 2.10 there 

exists a character    such that  t. f t f . Now let   i 0

m
ai i   be the weight of the 

character   . Then  D2 T D1 T f T   follows from Proposition 2.11 and Proposition 

2.12 above. But  f T c1 L |ZT c1 L . ZT i 0

m
ai i . ZT   which lives 



i i i i

i i i i

X
d

X n i Z

k 2

• Z

i 0

m

• T T

T T 1 2 Z Z X

i 0

m
i j d

• k 1
s

k 2 r

k X n 1

2 k 1

s

1k 2k k

i 0

m
i

• j d

• 1 2 Z i Z

1 2 f Z

f i 0

m
i

2 T 1 T T

i 0

m
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in Span  i. ZT : i 0, 1, . . . , m  . The other parts of the theorem follows easily. 
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