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ABSTRACT

Let P™ be the m-dimensional projective space over the field of complex numbers C acted on
by the algebraic torus T= (C*)™'  Let X be an equivarianily embedded variety in P” via

the map @ ,ie., @ isan embedding and t9(x) € ®(X) whenever t€ 1 and X€ X . We
begin a study of T-equivariant rational equivalence of T-equivariant cycles on a B-variety X,

namely a non-singular projective variety with an action of a torus T = (€)™ with many
fixed points. First, we compute the T-equivariant Picard group of such a variety with the help of
fixed point and their associated characters. This result is then applied to study more generally T-
equivariant rational equivalence of T-equivariant cycles.

INTRODUCTION

The diagonal group Gn = {g€ GL,C : 2;=0 for i#j; isaclosed subgroup of the general
linear group GL,C  of invertible matrices over € | which is evidently isomorphic to
(GL,C)" | An algebraic group isomorphic to G» is called an n-dimensional torus. Throughout
this manuscript note that T will denote an (m+ 1) — dimensional torus. The projective space
P™ over C admits a natural action of the algebraic torus 7= (C*)™!  The multiplicative
one-parameter subgroups in T are the elements of Xix(7) = Hom(C*, 7) . Since the character
group X(7) = Hom(7;C*) | we compose to obtain the dual pairing X(7) x Xi(7) > Z given
by < g >= (o =t

We say that X is an equivariantly embedded variety in P” if there is an embedding ¢ such
that £¢(x) € (X) whenever X€ X and € 7. Throughout this paper we assume that X is
an equivariantly embedded B-variety in P” via a fixed embedding. Fix a system of
homogeneous coordinates  Xo,---»Xm . Let Pi be the character of T defined by
pily,....ta) = & . Given the characters Xos---»Xn where Xj = P’ , 1 € 7 Identify X

- 1 . .
with its image @(X) . Then T acts on X via &% = %, (0% | and on points (do,--.,am) | this
action is given by
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[-(30’---’3117) - (%O(t)aoa---’%m(t)am)-

If £: X~ P! isarational function on X then T acts on #£X) via

tAx) = £t'.x) = Lxo "Dx0s. s Xm " (Dxm).

This paper is devoted to characterize T-equivariant rational equivalence of T-equivariant cycles
on a B-variety X. A cycle on an arbitrary algebraic variety (or scheme) X is a finite formal sum

2.1 V] of irreducible subvarieties of X, with integer coefficients. A rational function f on any

subvariety of X determines a cycle [(#)] of the principal divisor (i . Cycles differing by a sum
of such cycles are defined to be rationally equivalent. The group of rational equivalence classes

on X is denoted A«X (see (Fulton, 1984) Chap. 1). The group A«X will play a roll analogous
to homology groups in topology. When X is non-singular, A*X =~ A..X ; in the non-singular

case, but not in general, A«X will have a ring structure. The ring A«X is often called the
Chow ring of X. The actual relation of these groups to homology groups is discussed in Chapter
19 of (Fulton, 1984) .

In (Edidin and Graham, 1998), Edidin and Graham introduced Chow groups of a scheme X and
they proved the localization theorem for torus actions in equivariant intersection theory. On the
other hand, in (Edidin and Graham, 1998), they introduced definition and basic properties of
equivariant Chow groups of a scheme and more generally algebraic spaces acted on by linear
algebraic groups. These are algebraic analogues of equivariant cohomology groups which have
all the functorial properties of ordinary Chow groups. In addition, they enjoy many of the
properties of equivariant cohomology. The definition of that paper is modeled after Borel's
definition of equivariant cohomology.

Let S be the tautological bundle on CP”  whose sheaf of sections is Ocp=(=1) | and let
BT= (CP*)” | The principal T-bundle ET over BT is defined to be E7=7]S®...H7;S
where 7;: BT — CP” jisthe 7" projection map. If now X is a topological space with a T-
action, put X7 = ETxX7 X  which is it self a fiber bundle over BT with fiber X. The equivariant
cohomology of X is defined to be H(X) = H'(X7)  where H(X7) is the ordinary
cohomology of X7 . Let 7 :Xr — BI be the equivariant projection map induced by the

trivial map X — poin  Let C be the constant sheaf on X7 . The key lemma of this work,
namely Lemma 2.13 paves the way to prove the main result of this work. It indicates that the

sheaf R°m«C on BT is a direct sum of k copies of the constant sheaf C where k is the
dimension of the vector space H(XC) .

Consider the g-th direct image sheaf R%.C  on BT associated to the presheaf
U— H(n'(U),C) where U isan open setin BT. The Leray spectral sequence, is a spectral
sequence i€ with
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gor, = HK(XT,C),
9 = HP(BT,Rr,C)

This sequence degenerates i.e., ga’ = 57 , 14> 0 and we obtain the following filteration of

()
HC)=FPHC) > FFC)> PHC)>.> FEC)> FF'TH(C)=0

such that F*H(C)/FP" H2(C) ~ €42 7 For simplicity we let /7 denote for F7H (C) . Then
PIF = 7 = (BT, R*7.C) and F/FP = &X' = HH(BT,R'7,.C) = 0 because
R'7z.C=0 But F' #0 implies F =F _Also

PIP = £’ = F(BTRn.C) = F(BT,C) and FP/F* =£% ' =0 Thus ¥ =0 andbya

similar argument F=F=.=0, Therefore, we obtain the filteration P > F = F  This
gives rise to the short exact sequence

0O-FP o - FF -0
Thus we get the exact sequence
0 - F#(BT.C) =™ H(X;,C) —»¥ (BT, R*n,C) -0

This was crucial in the proof of the key lemma.

Finally, in (Edidin and Graham, 1998), Edidin and Graham have computed more generally T-
equivariant Chow groups of any variety with T-action via a localization formula. However, the
approach taken here is more straightforward. We characterize T-equivariant rational equivalence
of T-equivariant cycles on a B-variety X using the torus action and weights. Again the methods
of the present paper are simpler and the characterization obtained is more explicit.

T-EQUIVARIANT LINEAR EQUIVALENCE IN A B-VARIETY

The purpose of this section is to determine the T-equivariant Picard group of a B-variety X,

namely the group HH(X) Equivariant cohomology enjoys many of the usual properties of
ordinary cohomology such as the existence of flat equivariant pullbacks and proper equivariant
pushforwards. These maps play an important role in describing T-equivariant linear equivalence.

Note that H7(pomt) = H'(BT) By pullback via X — poin | we see in genenral that H*(X7)
is an H(BT)— module. Thus *(B7) may be regarded as the coefficient ring for equivariant
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cohomology.

We let M(T) be the character group of the torus T. For each x € M(T) | we get a 1-
dimensional vector space C;  with a T-action given by 1 . If L= €7 s the
corresponding line bundle over BT, then the assignment X = —¢i (Ly) defines an isomorphism
v : M(T) » H (BT) , which is in turn induces a ring isomorphism Sym(M(7)) ~ H*(BT) . We
call v(x) the weight of % . In particular, if P, is the character of T defined by

p(lo,t,...»tm) = li then we let A denote the weight of P, i=0,1,...,m. Thus we get the
isomorphism Hy(point) = H*(BT) ~ C[2o,...,2n]

For simplicity, we let A; denote 7*2; in H"(X7) where 7 :Xr — BI is the equivariant
projection map induced by the trivial map X = point (Cox David and Katzt, 1999) and
n* : H*(BT) > H(X7) is the pullback map.

We denote the line bundle Lp; by O(=17) ,sothat ;= c1(O(1})) . On the other hand,
consider the action of Ton P” given by (fs--+»tm)- (X05-+ s Xm) = (§' X05- -, £ Xm) . The
inverses has been chosen so that (%,---,%m) acts on the homogeneous form Xj € H (Ops(1))

as multiplication by & .

Remark 2.1 The fiber bundle P7 is the projectivization of the vector bundle
Fr = ®Z, O(=2;) over BT which gives the tautological line bundle Opz(1) | and we have

p=c(Opp(1)) belongs to Hy(P™) . We refer to £ as the equivariant hyperplane class.
Furthermore, the class [(x;=0)7]=p-12, .

If X is a topological space with a T-action and B — Y is a principal T-bundle, we recall that a
fiber bundle B X7 X s defined to be Bx7r X=(BxX)/((4,x) ~ (u-t',t+ %) for any
xe X tel and ue B,

Following Fulton ((Fulton, 1984) Example 1.9.1) we say that a scheme X has a cellular
decomposition if there is a filtration X = X» 2 X, 1 © X0 2 X1 = ¢ by closed subschemes
with each X;— X; 1 a disjoint union of schemes U} isomorphic to affine spaces A7 . The

Uy 's are called the cells of the decomposition.

Proposition 2.2((Ellingsrud and Strgmme, 1987)) Let X be a scheme with a cellular
decomposition. Then for 0 <7< dim X

() Hru1(X) =0,
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(iiy H2AX) isa Z — module freely generated by the classes of the closure of the 7—
dimensional cells.

(iii) The cycle map ¢/: A«(X) - Hi(X) is an isomorphism.
The following lemma is useful. The proof is straightforward.

Lemma 2.3 Let X be a B-variety, and let C be the constant sheaf on X7 . Then the sheaf
7.C s isomorphic to the constant sheaf C where 7« is the pushforward induced by the
equivariant projection map T .

Remark 2.4 We say that a subset Y < X is T-equivariant if £¥€ ¥ whenever ¥€ Y and
te 1.

Definition 2.5 Let V< E£7 be an open subset of ET. Let 7 : £7'— B7 be a principal T-
bundle. Let Lp be a line bundle over B7 that corresponds to a character £ . Let
2:V->7v"Ly, be a local section of the line bundle ¥"Lp © ETxC, _ Then
e L)y = *xCp and &) = (%&)) where &: V- C isa continuous function.
We define the ring 7" Lo(V) to be the set of all continuous functions £: V= C . The sheaf

Y*Ly is a sheaf of rings. We use 7Ly to denote the line bundle associated to the sheaf of
rings.

Definition 2.6 Let V< X be a T-equivariant open subset of a B-variety X such that
Vi=ETxr V | and let [%X] denote a class in V7 . We define a local section
o:Vr>n"Ly by o([yal) = (xalw(xg0) where v : V->C and & : ET-C
are continuous functions. We define the ring 7 "Lo(Vr) = {Ux)&) : X) s a continuous

function from Vto C ,and &) is a continuous function from £7 to C} . Weuse 7*Lp to
denote the line bundle associated to the sheaf of rings.

Remark 2.7 In algebraic geometry, divisors are a generalization of codimension one subvarieties
of algebraic varieties; two different generalizations are in common use, Cartier divisors and Weil
divisors. The concepts agree on non-singular varieties over algebraically closed fields.

To every Cartier divisor D < X (X arbitrary variety or scheme) there is an associated line

bundle (strictly, invertible sheaf) commonly denoted by Ox(D) | and the sum of divisors
corresponds to the tensor product of line bundles. Isomorphism of bundles corresponds precisely
to linear equivalence of Cartier divisors, and so the divisor classes give rise to elements in the
Picard group. In otherwords, this defines a group morphism from the group of Cartier divisors
modulo linear equivalence to the Picard group. This morphism is injective but is not always
surjective. =~ We are interested in the case where X is a  B-variety.

Definition 2.8 Let V< X be a T-equivariant open subset of a B-variety X such that
Vr=ETxr V | Let [y ] denote a class in Vr . We define the ring
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Ox,(Dr)(Vr) = {H{x)&y) : Kx) is a meromorphic function on V, and &) is a continuous
function on ET such that (A)+D>0 and Ax)g0?) = KX)&Y)} . The sheaf Ox,(Dr) is a
sheaf of rings. For simplicity, we use (D7) to denote Ox,(Dr) .

Definition 2.9 Let V< X be a T-equivariant open subset of a B-variety X. Let £: V— P!
be a rational function such that %= p()i  Let £(0) , £(©0) be the divisor of zeros and the
divisor of poles of f respectively. Then the equivariant divisor (7 = (£(0)) 7 — (#(0)) 7 . We
define O((H7)(Vr) tobe the ring O(7r)(Vr) = <{a: (V- £f(x)r — C .

a(lyxl) = 2gLx) where &: ET— C is a continuous function associated to a section £ of

the line bundle 7*Lp . We use O((fiT) to denote the line bundle associated to the sheaf of
rings.

Lemma 2.10 Let 7 X = P! be a rational function on a B-variety X. Then there exists a
character © suchthat £1= p(di.

Proof. Let £€ 7 then i and ! have the same zeros and poles since D— D s T-equivariant.
r.r Lf

So 7 has no zeros or poles in X where X isa compact set. Therefore 7 where Cr
is a constant. To check that ¢/ is a character, write £? 'X) = (fot')(x) where t' defines
the bijection on X given by X+ ¢'x Now ¢, /Ax) = (¢££).£x) = (fo (¢! /7)) . It follows
c M0 = (For' ) 'x) = (el 'x) = et ' %) = crepf(x)

:ct

Proposition 2.11 Let 7 X > P! be a rational function on a B-variety X. Then the sheaf
O((fr) is isomorphic to the sheaf 7Ly where £4x) = p(HLx) .

Proposition 2.12 Let Y < X be a T-equivariant subvariety of X. Let D < Y be a T-
equivariant subvariety of Y such that D1 — Dy = (§J where f: Y~ P' js a rational function

on Y. Then the restriction of O(Di7) to Yr is isomorphic to the restriction of

(D, )" Ly to Yr

Proof. By Lemma 2.10 there exists a character P such that £/= p(di . Let V be a T-

equivariant open subset of Y. Then V7 = ETxr V Let [44] denote aclassin V7 . Define
the morphism

o(Vr) : ODy r)(Vr) | v, m* Ly (V1) | vy — OWDy7)(Vr) | vy
by

(V)AL Dk(0L2) = kK (x)La)F (a).

Now (khf)+ Dy = (k)+ () +Dr >0 since (K) >0 and (H+D> >0
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On the other hand, AL at') = KxLa) , k()P (at) = p'(Dk(x)F(a) and F(1x) = p()f(X) .
Thus,

Kol ) f(x)Lat )P (at') = kKO ()La)F (a).

Therefore, k(XA x)f(x)Za)ka) € O(Di7)(Vr) . The other details is a routine check.

Let X be a projective variety. So X is a noetherian integral separated scheme which is regular in
codimension one. We recall that two divisors £ and D are said to be linearly equivalent,
writen D~ D if D-D jsa principal divisor((Hartshorne, 1977) ). If X is equivariantly

embedded in P via the embedding ¢ , ¢(D) and o(D) are T-equivariant subsets of ¢(X)
then the linear  equivalence is called  T-equivariant linear  equivalence.

On the other hand, two cycles [D] and [D]  are said to be linearly equivalent, written
[Dl ~ [D],if [D-D] isa cycle of a principal divisor. If X is equivariantly embedded in P”
via the embedding ¢ , ®(D) and (D) are T-equivariant subsets of ¢(X) then the linear

equivalence is called T-equivariant linear equivalence. Furthermore, the cycles are called T-
equivariant cycles.

Recall the map Iyt H(X) — H'(X) which is defined by 0(Zr]) =[2] where Z is a T-
equivariant subvariety of a B-variety X. Then I(2;) = 0 _On the other hand, X has a cellular
decomposition and the k-dimensional vector space H(XC) over C s generated by the set
{{D1],....[Dil} of classes of the closure of the one-dimensional cells of X (see (Ellingsrud and
Strgmme, 1987) ,(Fulton, 1984) ). Furthermore, D © X is a T-equivariant subvariety of X.

Let F=R?7.C  be the sheaf associated to the presheaf F on BI  where

F(U) = B (n'(U),C) | U openin BT . The following key lemma paves the way to prove the
main result of this section.

Lemma 2.13. Let X be a B-variety, and let C be the constant sheaf on X7 . Then R*7.C
is isomorphic to a direct sum C* ofk copies of C where k is the dimension of H(XC) .

Proof. Fix a 7 -equivariant divisor D < X . Then Dr © Xr is an equivariant divisor . Let
Lp; denote the line bundle O(Dr) on Xr associated to the divisor Dr . Then
a(Lp, lww ) € B (@' (D),C) = F(U) where U is an open subset of BZ . Let su =
cllpr lrwy) . Let V  be an open subset of U , consider the restriction map
gy F(U) — F(V) which is defined by €9(50) = 0*su where 0 :7'(V) = 7'(U) is the
inclusion map. Then € W(sv) = $v . Therefore we get a global section De F (BT) = H*(X1,C)
. Consider the exact sequence
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0 - F#(BT,C) ™ H(X;,C) -V H(BT,R*7,C) - 0

Define ¢ : #(XC) — H(BLR*n.C) by ¢([D]) = L where D= w(D) . We show that
¢ 1s an isomorphism.

First, we check that ¢ is well-defined. Suppose [2] and (D] are T-equivariant linear
equivalent cycles. Then L is T-equivariant linear equivalent to D' So there exists a rational
function £: X — P' suchthat D—-D = () . By Lemma 2.10, there exists a character £ such

that tf=p(Hi . Now we show that D-D = *Zﬁo am* A where ajeC

Let Ui be an open cover for BT. For simplicity, we let 7 denote the pullback map
Loy A H (X7,C) > H'(7'(U).C)  of the inclusion map 4wy : 7'(Us) = X7 . Then
gg/T(U D)= #a (Lp)—allp)) Thus, by Proposition 2.12 we have
/(D - D)= rei(0Wy— Dp) =re(0(Br) . But A1) = n* L, and
"Ly B 0(727‘—50 ai%i)  where Zo aiki s the weight of the character 0 . It follows
gg,'T(DA - D)= *Zn,io aiki since 1 isa C[/Io,---,flm] — module homomorphism. Therefore,
gg/T(U *b+~27‘—jo ai2i) =0 for all implies DD+ Zm,:o ai%; =0 (sheaf axiom). It
follows that £~ D=vw (X7 am*2) = =37 alw o m)(%) = 0 gince the sequence above

18 exact. Therefore ) 18 well-defined.

Second, we show that ¢ is injective. Suppose that #([D]) =0 . But the sequence is exact, so
D- DL aiki where a eC and gg/T(b* 2paik) =0 g4
cillpy lww ) =20 aiki =0 [f  jin'(U) = 7'(BT) s the inclusion map then
jle(Lpy) =D 0 aik)) =0 gy f(a(OXDr =2 7 aild)) =0 ppus [POr]— D0 aiki g
linearly equivalent to zero. Applying the map Iy we get [D] =0 _So ¢ isinjective. Third, ¢

. . . L . . .
is surjective  because poly=y and 14 is surjective.

Finally, ¢ is a ring homomorphism follows immediately from the definition of ¢ .
Theorem 2.14. Let X be a B-variety with a fixpoint set X' =Ap}h | n<m+1 | Let

D; © X bea T- equivariam subvariety of codimension one, 7= 1,2  Then

D ~D & [Dir— Dol € Spari).; - i=0,1,...,m; , where
Span{2.; : i=0,1,....mp = D7 ciri:cie C}

o Let 4" :H(X)— Hy(p) be the pullback induced by the equivariant inclusion
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Gp i Pip > X1 qf [Dr] is any cycle class of an equivariant divisor such that
Ij'([DT]) = ZZO ajli , for all j, then [Dr] = ZZO aiki

Proof.

We prove one direction. The other direction is straight forward. Suppose that Di ~ D,
then [(D1 —Dy)r] € kerly . We show that kersy = Span {4, :7=0,1,....1 _ Recall

from Lemma 2.13 the isomorphism of k-dimensional spaces
¢ (XC) > H(BLR*n.C)  Let ¢=¢ ' then ¢°¥ =1 and ¢ is an
isomorphism of k-dimensional spaces. Furthermore, H(BT,C) = Span
{%;:i=0,1,...,m . Also note that Zx°7" = Omsp | where Omap is the zero map since
() =0

Now we show that ¢ is injective < kerzy = H(BT.C) .
( < ): Suppose 5() =0 where $€ H(BL,R*7.C)  Since ¥ is surjective there exists
we H (X7,C) such that w(W) = s . It follows s(w(w) =¢(s) =0 But sov =iy

implies (W) =0 which implies W= ZZO bii  beC . It follows
s=y(w) =wQ 7 bir* (1) =27 by(n*(A)) =27, 6:0=0 Hence ¢ s
injective.

(=) : Let @ €kerdy then 0= Z4la)=c(y(@)) But ¢ is injective implies w(a) =0
which implies @ € kery = imz*  Thus @ € H(BT,C) . Hence keriy © H(BT.C)  On

the other hand kerry  contains H* (BTC) since Zx°7* =O0umsp . Therefore
ker#y = Spam{L; 1 i=0,...,n3

Let C(2) = C(%o,-.-,2m) be the field of fractions of C[A0,...,2m] . Consider the map
¢+ H7(X) ®c C(A) — 7 Hr(pj) ®cu1 C(A) where (@ ® L)) = (). L)L,
Let [Dr]e H(X) € H(X) ® C(A) such that for each ; we have Z(DPr]) =4%)

where &%) =227, aiki  Then ¢({1)®1) =¢(Dr1®1) and ¢ is injective implies
L) ® 1 =[Dr]® 1 which implies [Dr] = {2) .

T-EQUIVARIANT RATIONAL EQUIVALENCE IN A B-VARIETY

In this section we investigate more generally T-equivariant rational equivalence in a B-variety X.
The field of rational functions on X is denoted R(X) ; the non-zero elements of this field form
the

multiplicative group R(X)*

Definition 3.1 Suppose that V and V' are subvarieties of X of dimension k. We say that V and

V' are rationally equivalent if there are a finite number of (k+ 1) — dimensional subvarieties

91



Al-Sabbagh M., J. of the Association of Arab Univ. for Basic and Applied Science, Vol. 7, 2009, 83-94

Vi of X, and £ € R(Vi)* suchthat V-V =2(f) . If X is equivariantly embedded in P”

via the embedding ¢ , ®(V) and ¢( V') are T- -equivariant subsets of ®(X) | then the rational
equivalence 18 called T-equivariant rational equivalence.

Definition 3.2 Suppose that V and V' are subvarieties of X of dimension k. We say that two k-
cycles [V] and [V] are rationally equivalent if there are a finite number of (K+1)—
dimensional subvarieties Vi of X, and £ € R(V:)* such that [VI-[V]1=Z2[(£)] . 1f X is
equivariantly embedded in P” via the embedding ¢ , ®(V) and o( V) are T-equivariant

subsets of @(X) , then the rational equivalence is called T-equivariant rational equivalence. The
cycles are called T-equivariant cycles.

X . . . . . X7 = {g;}¢
Theorem 3.3. Let be an n-dimensional B-variety with a fixpoint set dir 1 . Let
Z< X bea T- equivariant subvariety of dimension &+1 <1z andlet DiCZ bea T-
equivariant subvariety of dimension & , 7= 1,2  Then

e If Z isirreducible then
~ D2 nz < [D]T*DQT] € Sp&l]{l,’.[ZT] WS O,l,...,m}

where Spam{2i.[Zr) 1 i=0,1,...,m = {37 ciri[Zr] i ci e C}

o Let 4" :H(X)— Hr(q) be the pullback induced by the equivariant inclusion
Gip 9 > Xt If Dy ~D; in Z and Z is an irreducible subvariety of X , then there
exists an &%) = ZZO ai’i  suchthat 5*([Dir—Dorl) = AN)i*(Z7]) | j=1,.

o lLet DiC Ui Z , 1= 1,2 bea T-equivariant subvariety of dimension 7/ , and let
Zx © X be an irreducible T-equivariant subvariety of dimension 7+1 <z [ If D and

s
D; are T-equivariant rational equivalent, and £ = 2 it it such that Dix ~ Dox in Z
m
. Then there exists % = 20 4% such that

*([Dir = Dor]) = ka (IZer])
k-1

e where /=1,...,a

Proof.

e Suppose that Dy ~ D> in 2 where Di, Z are T-equivariant subvarieties of X. Then
Dy =D, = (f) where f: Z— P' s a rational function on Z . By Lemma 2.10 there
exists a character P such that &= p(9)i . Now let 211'2:70 ai%i be the weight of the
character P . Then [D:7—Di7]=[(J7] follows from Proposition 2.11 and Proposition
2.12 above. But (7] = ex(@™Lylzy) = (L) [Zr] = (- 2007 ai2i)-[Zr] which lives
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in Span {4:[Zr] :7=0,1,...,m; _ The other parts of the theorem follows easily.
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