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Abstract In this paper we consider the linear Lamé equations in a non homogeneous three-dimen-
sional domain Q composed of two homogeneous bodies O+ and Q_ with the boundary condition:
contact without friction-Dirichlet. We first establish the existence and uniqueness results for weak
solutions. Then using cylindrical coordinates and assuming that the neighborhood of the edge 4 is
sufficiently small, we give the transcendental equations governing the singular behavior in the spa-
tial case. In the end, applying the results of Merouani (1996), we obtain an explicit description of
the singularities for the variational solution of the boundary value problem in the homogeneous

case, i.e. the two bodies have the same elasticity coefficients.
© 2012 University of Bahrain. Production and hosting by Elsevier B.V. All rights reserved.

1. Introduction and notations

In many elasticity problems, the numerical evaluation of the
solutions requires the knowledge of the behavior of the com-
ponents for various boundary conditions in the neighborhood
of the singular points on the surface of the considered body. It
permits the approximation of a solution in an appropriate
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manner and the construction of an approximate process for
its determination ( Aksentian, 1967; Merouani, 1996; Gris-
vard, 1986). In Aksentian (1967) the author solved the Laplace,
Poisson and elliptic equations in the regions known to be as
non regular boundaries. Grisvard (1986) has established in
the homogeneous domain of R”, (n = 2 or 3) the character
of non smooth solution to neighborhoods of a bridge in a
polyhedron for various boundary conditions. The case of a
nonhomogeneous polygon was already considered in Benseridi
and Dilmi (2005). The regularity of the solutions of transmis-
sion problem for the Laplace operator in R* was studied in
Lemrabet (1978). More recently, the authors in Benseridi
and Dilmi (2010) have proved the existence and uniqueness,
as well as the regularity of the solution of a boundary value
problem with mixed conditions in a neighborhood of an edge
in the general framework of weighted Sobolev spaces using the
Fourier complex transform with respect to the first variable in
a dihedral. The Singularities and regularity of weak solutions
for the two-dimensional Lamé equations on domains with
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angular corners have established in Réssle (2000). Costabel et
al. (2001), we have presented a method for the computation of
singularity exponents in linear elasticity, which is especially
useful in the anisotropic case. The method is based on the con-
struction of a matrix of low dimension depending on a com-
plex variable, whose determinant is 0 for a discrete set of
values of this variable. These values are the exponents of
singularities.

The goal of the present paper is to obtain the singularity
and regularity of the solutions of transmission problem re-
lated to the Lamé system with boundary condition contact
without friction-Dirichlet in a three-dimensional domain Q.
More specifically and for the ease of the reader, we give nota-
tions that specify our domain: let Q a bounded sector in R?
divided in two sectors Q2. and Q_. We suppose that the lat-
eral surface I'_ forms an arbitrary angle o, (0 < w; < 2n)
to the surface I'y. Let Q = Q x R a domain of R® consti-
tuted by two bodies Q. = Q. xR and 0_ =Q_ x R by an
interface 4 x R. The generator of this surface is inclined at
an angle o} (0 < w} < 2n) to the surface of the first body.
To express the behavior of the solution of the boundary va-
lue problem far away from the vertex see (Grisvard, 1986),
we fix an interval I of the opened edge A and where the
closing is internal to 4. In addition, we fix a neighborhood
V' of the origin O in the intersection of Q with the plane
(xo0y) such that 7 x I does not contain any vertex of Q (see
Fig. 1).

For any function u defined on Q, we designate by u . (resp.
u_) its restriction on Q. (resp. Q_). L designates the elasticity
system:

MiA“i+(ii+#i)€(v'ui), (1.1)

where 4., p. are the elasticity coefficients with 1. > 0 and
(A+ + u+) = 0. The stress tensor and the displacement vector
are related via Hooke’s law:

Oy = 2peay(us) + Atr(esy(us))dy,  1,j=1,2,3, (1.2)

where &y;(uy) = % (?ui + ?ui) is the symmetric deforma-

tion velocity tensor and ¢, is the symbol of Kroneeker.

Here, the vector y(resp.t) denotes the normal (resp. the tan-
gent) on toward the interior of Q. .

The plan of this paper is as follows: In Section 2, we prove
the existence and uniqueness results for the weak solution of
the Lamé system in a 3D bounded domain Q with boundary
condition: contact without friction-Dirichlet. Using the sepa-
ration variables techniques, we show that the research of sin-
gular solutions to the neighborhood of the edge A in the
spatial case. In Section 3, we give the transcendental equa-
tions governing the singular behavior. The explicit calculus
of the singular functions and the singular development of
the weak solutions for the homogeneous case has been ob-
tained in Section 4. We end this paper by conclusion and
perspectives.

2. Formulation of the problem

For a given (f4, /) € LA0Q +)* x LXQ_)*, we consider the fol-
lowing problem

Figure 1 Example of 3D domain.
Lu, =f, inQ,,
Lu =f in Q_,
(o4(us)-m) =0 on I,
2.1
u_-=0 onI_, 21
(uy —u_)=0 }
on A x R.
(04 (uy) —o-(u-))-n=0

Theorem 2.1. For a given [+ in L’(Q L )°, there exists a unique
solution u = (uy,u_) in H(Q4 P> x H' (Q_)? of the problem
2.1).

Proof. We denote by V' the space
V= {(p cH' (Q+)3 x H' (Q7)3 oy — (p’)/,/lle and ¢_;, = 0}.

Using the Green formula, we get the following variational for-
mulation of problem (2.1)

{ find u € V, such that
a(u,0) =1l(@), Ve eV,

where

a(u, @) = Z/Q At (102)Ex(Po) + 2ptstay(us)esy (o) d;
o) =" /Q fep.ds.

Using the Korn inequality and Lax—Milgram theorem we
establish the existence and the uniqueness of the solution u
to the problem (2.1) in H'(Q )} x H'(Q_)*. O

While using the cylindrical coordinates, putting r = e “ and
to express the behavior of the solution of the boundary value
problem far away from the vertex, noting that the neighbor-
hood of A4 is sufficiently small so that terms containing the fac-
tor e~“ may be neglected, we obtain the following asymptotic
problem

2(1-vs) [ Puy, _ 3—4vy Ouyy 1 Pugg Pu,
2, U T2 v a0 Ty a0 T g = 0
20-vs) Pugg 1 Pusy 3dvy duy, | Puy,

=, o 1o g Mot i ot et =0
Pugz | Puys _

902 + P 0

(2.2)
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The quantities #.,, .9 and u. . are the displacement compo-
nents in the cylindrical coordinates, and v, = W is the
Poisson’s ratio for the material of the body Q..
Remark 2.1. From the equations of the problem (2.2), we can
see that the problem (2.1) can be divided into two parts: The
first is a plane deformation to which correspond the two first
equations, and the second is a normal plane deformation,
expressed by the third equations of (2.2).

We look for the solutions of the two problems under the
form

us, = e X*(0),
Lo =" Y(0), (233)
Us. = e WE(0),

where o is a complex number.

The asymptotic problem (2.2) becomes an ordinary differ-
ential system which depends analytically on the complex
parameter o (the same system of Parton, 1983).

(1= 2v2) ZX 1 2(1 — va) (02 — 1)XF + (dvs — 0 — 3) 2L =0,
2(1—vi) ZL 4 (1= 2v.) (o2 — 1) Y= — (4vs 00— 3) 2 =0,
Pw* _
S 2WE=0
(2.4)
The general solution of the problem (2.4) is given by
For o ¢ {0, £ 1}
X+ cE(4ve +o—3)cos(o—1)0+cF (4vy + o —3)sin(o—1)0
Yt :i ¢ (dve —o—3)sin(a—1)0 — 5 (4vy —a—3)cos(a—1)0
w dy sin(a0) + dy cos(a0)
¢ cos(o+1)0+ ¢ sin(o+1)0
+ | —cFsin(a+1)0+4 cFcos(a+1)0 |. (2.5)
0
Foro =0
¥t (cf0+c5)cos(0) + (c50+ c5)]sin(0)
Yt | = (c§0+cf 7ﬁcf) cos(0) — (cli()Jrczi = G )sm(O)
i a0+ d
(2.6)
Fora =1
X* ¢ + ¢f cos(20) + ¢ sin(20)
YE | = | & — ¢fsin(20) + ¢ cos(20) |. (2.7)
w d; sin(0) + d; cos(0)

Foro = —1

X* ¢f —2(1 — vy)(c5 cos(20) — ¢ sin(20))
v l=|ag+(1- 2vi)(c3 sin(20) + ¢ cos(20))

w= —d; sin(6) + d; cos(6).
(2.8)

To define the constants ¢}, d].i, i=1to4andj =1, 2, we use
the boundary conditions to the limits defined in Section 2.

The expressions of the components of the stress tensor, in
the cylindrical coordinates are given by

ox0 = 5 (1= va) Bt + (1= vaJus — ve %),
Tirg = Uil (835” - % - Mie), (2.9)

— t Oug -
Tiz0 = Hi€ a0

where, 7,9 and g .y, are the tangential stress tensor and the
normal stress tensor respectively.

The corresponding homogeneous boundary conditions
given above, become

Upg =Ty = T4z = 0 on Ty,

onl_,

040 = 0-0,T4r0 = Ty T4z0 = T—20
on A x R.

Upp = U_pyUpg =Ug, Uz = U_;

(2.10)

Remark 2.2. According to the boundary conditions (2.10), we
get the following interpretation: on the surface I' ., we have
contact without friction and the displacements on I'_ are van-
ished, while we have the continuity of the boundary value on
the intersection surface A4 x R.

3. Transcendental equations governing the singular behavior

We determine G, the set of the values o = o(v..), such that the
problem (2.1) has non trivial solutions u = (u,,u4 g, ;). We
use the following result of Grisvard (1986):

Result 3.1. Every variational solutions u € H'(Q)® correspond-
ing to regular data belongs to H'(Vx1)® for all s < p,
where

p=inf{Rea(v.) : a(vy) € G, Rea >0} + 1.
Proposition 3.1. The problem (2.1), determines u which is not

vanished when o. ¢ {0, + 1} is a solution of the system of the tran-
scendental equations Problem of plane deformation.

det(M, +M_) =0, (3.1)

where
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0 (—1) 0 v 0000
0 -C5 0 vy 00 0 0
0 0 0 0 00 0 0
0 0 0 0 00 00
M. = v_C} cos (C, w}) v_C{ sin (C; w}) viv_cos (Cyw})  vpvosin(Cjwf) 0 0 0 0
v_Cj sin(C, o%) —v_Cycos (C;w})  —viv_sin(Ciow}) vivocos(Cjmf) 0 0 0 0
Cy(a+1)cos (Cymf)  Ci(a+1)sin(Cywf)  viCycos(Ciw)) viCisin(Ciw)) 0 0 0 0
—C{(a—1)sin (Cym}) Ci(a—1)cos(Crw}) —viCisin(C{w)) viCicos(Ciwj) 0 0 0 0
00 0 0 0 0 0 0
0 0 00 0 0 0 0
00 00 Cy cos (Cymy) Cy sin (Cy ;) v_cos (Ciwy) v_sin (Cjw})
Mo 0000 C; sin (Cywy) —C, cos (C, wy) —v_sin (Cw}) v_cos (C;my)
00 0 0  —viCicos(Cim)) —v,.Cy sin (Cyw}) —viv_cos (Cyw})  —viv_sin (Cjw))
0000 —v,Gsin(Co)) v, C, cos (Cy ) vevosin (Cymf)  —viv_cos (C*wA)
000 0 —Cy(a+1)cos(Cywf) —Cs(a+1)sin(C,w)) —v_C;cos(Ciw}) —v_Cisin(Cjw})
0000 Cijla—1)sin(Cio)) —Ci(ax—1)cos(Cywf) v_Cysin(Cjw)) —v_Cycos(Clw})

Cli:(4vi+oc—3), Czi:(4vi—a—3)7

Ci=vpu, C,=viu and C;=(azxl).

Problem of normal plane deformation.

— p_cos aw} cosa(w, — wh) = 0.
(32)

: oo - +
p sinow’ sino(w; — w})

Proposition 3.2. The problem (2.1), determines u which is not
vanished when o = 1 is a solution of the system of the tran-
scendental equations Problem of plane deformation.

1 1 1
((— — 2) + ) sin 2w,
Vi nep Vil
1 /2 1 2
+(—(——2+—)— )sin2a);r
B \Hy Vi Vil

1 1
— —1]sin2(w; —2w%) =0. 3.3
(1) sin2(on - 209) (33)

Problem of normal plane deformation.

A= wp) =0
(3.4)

— p_cos ) cos (w

p sin o} sin (0 — o))

Proof. Using the boundary conditions (2.10), we get a homo-
geneous system of equations. The structure of these equations
allows us to define the homogeneous conditions for which the
equations in the previous system admit non trivial solutions as
well as the shape of these solutions. The condition of the van-
ishing of the system’s determinant gives the transcendental
equations for the problem (2.1). O

3.1. Study of the transcendental equations

In the most usual contact case between two bodies, for w} =2
and o = 37“, the investigation of the singularity of the solution
in the neighborhood for a corner gives the transcendental

equations (« ¢ {0, &+ 1})Problem of plane deformation.

. . .
— 64p, pu_sinmo — 16;& — sin 3mo + 64y sin 7o
Vi

1)’ /1)
12,u+< >u 31n7m<f9/1+ (—) sin 3mo
vy \V-

[ 1\ .
+ 64y+v—y_ sin 7o + 1242 (v_) sin 37a

2 2
+ 2812 <i> sin 7o + 3641, <i> J_ sin 37
v_ v_
, 1 1 . , 1. .
+24p, — — sin 3no + 48y, — sinma + 64u, u_ sin 3mo
vy Vo vy

1 1 1
—H sin 3o — 164> —sm37w+60—,u —smmx

1
796,u+

1 . 1 1
— 48 — yi* sin oo — 80 — s1nmx—4 o

i V_

1 1’ 1 I
—6—u+( ) I’ smna—30—u+(v ) U sin 3o

1 1\’ 1 1\’
—21— 2 (—) sinmo — 9— 2 (—) sin 37o
vy v_ Vi v

1 | 1 1 .
+ 12—y — sin3ma + 76—y, — p_ sin 3mot
vyl vyt

- sin 7ot

1 1
—48—p, p_sin3noa+ 16 —p, p sinma
v vy

11\ . 11
+27,uiv—(v—) s1n7'cocf72/12+v—v—smmc=0. (3.5)
+

+ V-

Problem of normal plane deformation.

LT T
#y SINAZ SN AT — §i_ COS U COSam = 0. (3.6)

4. Singularity solutions of the homogeneous elasticity system

We give an explicit description of the singularities of varia-
tional solution of boundary value problems in the homoge-
neous case, that means, the two bodies Q+ and Q_ have the
same elasticity coefficients (u,v).
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For this, we note: w = 0w} =wy;, v=v, =v_ and u =
1+ = u_, where w represents the solid angle of the surface I'.

Proposition 4.1. The transcendental equations of the Proposi-
tion 3.1, take the following forms:

{ sin(20w) — 725 sin(2w) =0, problem of plane deformation;
cos(aw) =0, problem of normal plane deformation.

(4.1)

4.1. Singular solutions of the problem (2.1)

It is well known for the problems of the type (2.1) that the sin-
gular solutions are of the form: r*®,(0) if o is a simple root and
W =r(®,(0)1g r+ 9,9,(0)) if o is a double root of the
transcendental equation (4.1), where @, € (C*)* on 10, w[.

The singular solutions of the problem (2.1) are given in the
following proposition

Proposition 4.2. Let o, denote the zeros of the transcendental
equation (4.1), then the singular solutions of the problem (2.1)
are given by :

a- o €0, #|U]r, 27|

This system can be resolved if its determinant is vanished, it
gives the first characteristic equation of (4.1) corresponding
to the plane problem. Therefore, the solutions of the system
(4.6) give the two first equations of (4.2).

In the same way using the boundary conditions 7.9/, =
uz, =0 for the normal plane problem, we obtain the third
component of the singular solution. This completes the proof. [

We are now able to address the following subsection
concerning:

4.2. Singular development of the weak solutions for (2.1)

In our study, we suppose that the solution u € H'(Q)*. We are
interested in the behavior of the solutions of the problem (2.1)
in an open neighborhood IT = V' x I of the edge A. The solu-
tion u is a linear combination of the regular part ug € H*(Q)*
and of r*®,(0), where
u=ug+ Z r@,(0),

0<Rea<l
the @,(0) € (C>)* are the solutions of the homogeneous prob-
lems associated to the problem (2.1).

Theorem 4.1 (Grisvard, 1986). Letu € W;(Q)z' be a solution to
the problem (2.1), with f € WZ’(Q)3 Then there exist numbers ),
and &; such that

(4v 4+ o — 3)(cos(ot + 1w cos(a — 1)0 — cos(a — 1)wcos(a + 1)0)

@,(0) =c| (4v—a—3)cos(o+ wsin(ox — 1)0 + (4v + o« — 3) cos(x — 1)wsin(o + 1)0 (4.2)
cos(a0)
b- w =2n
" 2 O @,(0))
y((4v+a—3)cos(o¢—l)0) u= > (W ¢a(0))+5/<’ o
re 0<Rea, <m+2—%
P d,(0) = ¢ (4v — o —3)sin(e — 1)0 , (4.3) Y : ! ,
i cos ) ewy(@EnlIl, (4.7
A(r@,(0)) cos(o+ 1)0 provided that Re o, is not equal to: m + 2 — % for every m € N*
8; =a”| —sin(a+1)0 (4.4) and 1 < p < +oo.
0

Proof. To avoid long computations, we have determined the
singular solutions only for the non fissured domain (w€]0,
Ul , 2x)):

Let o, denote the zeros of Eq. (4.1) in the strip:
{0 < Reoy <m+2 —%} By leting 6 = 0 in the condition
(2.10) of the plane problem, we get:

{ vey = —cy(a— 1), (4.5)

veg = ¢r(4v — o — 3).
Finally the boundary conditions for § = w give the following
system:

a(4v+o—3)cos(x— o +vescos(o+ N\ /0
( c1(4v — o — 3)sin(o — 1) — ves sin(o + 1w ) B <0)
(4.6)

Remark 4.1

1- The o, are the solutions of the transcendental equations
(Proposition 4.1).

2- The proof of the Theorem 4.1 is similar to the one in
Grisvard (1986).

3- The wusual regularity result is not true in the
neighborhood of an edge A4 if none of the eigenvalues
corresponding to Re o; does not belong to the interval
10,m+2 1.

It is interesting to consider the case of the crack, for that we
have

Property 4.1. Let o = 2m, then the variational solution u of the
problem (2.1) belongs to W;(Q NI’ for p < 8 In addition, we
have
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pras] O ®,(0
"— Z 7 (kaH((pa(H)) + ‘52k+1 (%)) 2kl

0<k<2m+3-4
3
e W (Qni)

where m <2 —7.
Proof. For v = 2x, Eq. (4.1) becomes

sin(4om) =0 and cos(2um) = 0.

It is immediate to verify that the roots of this system are the
numbers

2k +1
T4

There are no roots in the strip 0 < Rew; < 1, and this ensures
. . 2 3
the regularity of u in W,(Q N I)” for p < 3. o
On the other hand all the roots «; are multiplicity equal to
1, obviously the only root in 10, I[ are the two numbers: § and 3,
where the first singular functions:

Ol s keZ.

1=l o520
r“(Dm(H)/yk:% =t | obgindg |
cos (10)
oraoy, [ 0
g /xk:%:r«‘ —51(;120

In addition the terms y,(r*®,0)) and i&r‘“%f{m) corre-
sponding to the integer o, > 1 are polynomials, so they are
superfluous in the development (4.7), we can simplify and write
the following form:

S ;%(hﬂm¢4m)+éﬁﬂ(ﬁf§§@»)“%I

0<k<2m+3-2

nm+2 3
e wyr(eny’,

provided that j (hence also ) >m +2 -2 (lLe):m < -7 O

Remark 4.2. It is immediate to check that u € WIZ,(Q N II)’ for
p <2 dice: o < 5.

5. Conclusion and perspectives

In this paper we prove the existence, the uniqueness and the
regularity results for the weak solution of Lamé equations in
a non homogeneous three-dimensional domain Q with bound-
ary condition: contact without friction-Dirichlet. In the non
homogeneous case, it is not easy to solve the transcendental
equation (3.1), this does not permit us to find the singular solu-
tions, by in the case where the two bodies Q. and Q_ have the
same elasticity coefficients (u,v), the singular behavior of the
solutions is governed by transcendental equations similar to
those found by Grisvard (1986) and Merouani (1996). In a
forthcoming paper we propose to study the case of a disconti-
nuity in the interface and this can be reduced to the problem
(2.1) by using techniques of localization, change of variables
and trace theorems.
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