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Influence of anisotropy on the constraints field
of a bicrystal (layer/substrate) under the effect
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Abstract The purpose of this work is to model the monoscale predictive behavior and to repro-
duce certain experimental observations by using numerical simulation based on the theory of aniso-
tropic elasticity. The latter allows us to express all the necessary expressions describing the strain
field. The Fourier series expansion of the strain field leads to a system of linear algebraic equations
which are solved numerically to obtain the complex Fourier coefficients which are used to calculate

the elastic fields of displacements and stresses. In this work we focused our effort towards the devel-
opment of a mathematical code that calculates the anisotropic elastic constraints field. As an appli-
cation, we have treated the case of a bicrystal Cu/(001) Fe.

© 2012 University of Bahrain. Production and hosting by Elsevier B.V. All rights reserved.

1. Introduction

Any default informs us about the potential presence of buried
dislocations. These dislocations can be interfacial. They are
grouped into different networks whose associated dislocation
is measurable by microscopic observations (Jesser and Mat-
thews, 1967); while theoretically obtaining the calculation of
elastic fields by Eshelby et al. (1953).

The structural understanding of networks of dislocations
by diffraction experiments or microscopy can be supplemented
by calculations of elasticity. Studies carried out on thin films
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deposited on monocrystalline substrates reveal the existence
of networks of interfacial well organized dislocations, and
whose density, stability and character depend on the differ-
ences between parametric and angular crystals along the inter-
face as well as the temperature factor. It is when the networks
of interfacial dislocations become more regular that the inter-
faces become more stable (WP Wu et al., 2011).

These same elastic fields (constraints) are calculated using
another approach which is the finite elements method (FEM)
by Peralta et al. (1993) whose results were in accordance with
the predicted values for a predictive model.

From a mechanical point of view, one of most exciting is-
sues, both in its fundamental and applied aspects, is the
comprehension of the deformation mechanisms of these
nanomaterials by Fabien (2003). The miniaturization of prod-
ucts in the semiconductor industry poses in fact mechanical
constraint problems which engender problems of failure and
reliability. We take into account these constraint fields when
designing has become a critical element in the development
of new bilayer, trilayer (Brioua et al., 2005) or multilayer

1815-3852 © 2012 University of Bahrain. Production and hosting by Elsevier B.V. All rights reserved.
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(Wang et al., 2007) products. Based on a double Fourier series
formulation of Bonnet (1981), we present in this work solu-
tions in anisotropic elasticity for an intrinsic unidirectional dis-
location network situated at the interface of a thin bicrystal.
We encounter in our calculations a sixth degree polynomial
equation that is solved numerically. The determination of
Fourier coefficients (Bonnet, 2003) leading to the calculation
of required elastic fields consists of the numerical resolution
of a linear system having 24 matrix of equations in 24 complex
unknowns.

And for a good exploitation of these fields we must take
into account the effect of elastic anisotropy, which significantly
affects the material behavior, this analysis is presented by
Peralta et al. (2001) for the treated case Cu/sapphire.

2. Presentation of the problem and boundary conditions

Fig. 1 shows the geometry of the problem for two spaces (+)
and (—) of thickness h™ and h™, anisotropy characterized by
the elastic constants Cjjq and separated by a plan interface
comprising an intrinsic unidirectional dislocation network with
a network period 1/g.

Modeling our case means giving explicit solution to the
elastic field of a unidirectional dislocation network. For that
we must take into consideration conditions at the limits
situated at the interface of this bicrystal in anisotropic elastic-
ity using an approach based on a double Fourier series
analysis.

2.1. Boundary conditions imposed in the displacement field

Fig. 2 shows the linearity of the displacement on the interface
and the schematic representation of the displacement associated
with a network of intrinsic dislocations described for each com-
ponent u;, which can be expressed by the following expression:
The linearity of the displacement on the interface can be ex-
pressed by:
b &

(1/n).sin(n.w.xy) (1)

[“Z - u/::IXg:O =
n=1

2.2. Boundary conditions imposed in the stress field

Fig. 3 shows the boundary condition:

X2
C+ijk] -
1 1 1 11
1/g X
Crm <> =

Figure 1  Schematic drawing of a tow layer material +/—, with a
network of unidirectional dislocations at the interface; 1/g is the
period. The crystal stiffnesses are Cjy, and Cyy, with thickness h *
and h™, respectively.

Cristal *
; 3 /g
g
Cristal - E
: -
Figure 2 Schematic representation of the interfacial plane misfit

after cut along the interface. As a result, the relative displacement
to apply along the interface from the free stress state should be a
saw tooth curve.

Interface in equilibrium and
continuity of stresses

6'lx2=01=0 2 [x2=0]

Equilibrium with free surfaces
and void stresses

6 ulo-n1=0 |0 ule=n1=0

cristal (+)

T~ cristal (-)

Figure 3 Boundary conditions in stresses.

3. Mathematical formulation and solution in anisotropic
elasticity

Considering two spaces (+) and (—), Fig. 1, assumed to obey
Hooke’s law, both spaces (+) and (—) are separated by a plane
interface with a network of intrinsic dislocations.

As the strain is assumed to be periodic along the axis Oxy, it
can be expanded in Fourier series at every point of the two
spaces outside the areas of discontinuity:

&i(x1,X2) = Zsffj) (x2).exp (2.imn.x;/L) 2)

For|x,| tending to infinity, all the coefficients tend towards
zero (preservation of structural units).Using the Einstein sum-
mation convention on dumb indices, integration of Eq. (2)
gives the following displacement field:

we = UL+ VX1 + Vhx + ZU,E,”) (x2).exp (2.im.g.n.xy)
no

k=1,2,3 (3)

With 1/g = A(A is the period)

In the case of intrinsic dislocations V%, and 79, must be
equal to zero to avoid the stresses at long distance. So the
expression of the displacement field is written as follows:

w, = ZU,({”) (x2).exp2.in.gn.x;) k=1,2,3 (4)
n'0

This displacement field u, must satisfy the generalized Hooke’s
law, connecting constraints and strains:

0jj = Cijns-€u (5)
where

1
Okl = E (uk.l + ul,k) (17 j7 k7 [ = ]727 3) (6)
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Substituting (5) in to (4), we get:
o5 = 1/2(Cypastrey) + 1/2(Ca-uric) (7)

As the 3rd and 4th index of elastic constants can be inter-
changed, so that we have:

o = 1/2(Cia-rg) + 1/2(Cipe-ay ) (8)

Since that the dumb indices k& and take the same values, so
both terms on the right are equal.

gjj = Cf/klﬂkj (9)
Steady-state constraints in the distortion region are written:

9oy
0x;

-0 (10)

2
0 Uy

= Ciu
" 0x;0x

=0 (11)

By substituting (4) into (11), we obtain three differential equa-
tions which can be written as follows:

Cin (—4n*g*n )U")+(leszrC,zkl)(Zi?mg) U%JFC/?M I(’,’%Z:O
(12)

The general solution of these equations is given by:

U (xy) = X og.exp(2.im.g.np,.xs) (13)

where 7/, and p, are complex constants.
Eq. (12) can be put in the following matrix form:

Ci + (Cis+ Ce1)p, + Csspi Cis+ (Ci2 + Ces)p, + C62pi
Ceo1 + (Ce6 + Ca1)p, + Czspi Ces + (Cer + Cos)p, + szpi
Csi 4 (Css + Ca)p, + Caspy  Css + (Cs2 + Cas)p, + Carpy,

This system is similar to that obtained by Eshelby et al. (1953)
in the case of a straight dislocation placed in homogeneous
spaces in anisotropic elasticity. It has for each p,, 4, nontrivial
solutions if the determinant of Ajy is zero:

det(Ay) = |Ciixr + (Ciika + Cort)-py + Coia-Pa| =0 (14)

These yielda sixth degree equation in p, (= 1...,
follows,

6) as

Ko —+ Kl P —+ Kz.pz =+ K3.p3 + K4.p4 + Ks.ps + K6.p6 = 0 (15)

where: K, K;, K», K3, K4, K5 and K¢ are functions of elastic
constants Cj;.

So to solve the problem, it is necessary to calculate the six
roots of the polynomial Eq. (15). These roots are complex
(Eshelby et al., 1953) since the energy density must always be
positive. Since the coefficients of the polynomial are real, the
roots occur in complex conjugate pairs: p, (« = 1, 3), only
the roots with positive imaginary part are chosen. These roots
are written as:

Py = pu(n) £ ipl(n)
With:
«=1,2,3 and pi(n) >0 (16)

For each of the six roots p, given in (16), we solve the follow-
ing system to determine the complex solutions 2.

Fu Fo Fs\ [/,
Fy Fn Fxn X, | =0 (17)
F Fyn Fy i

where:

Fi1 = Cy +2Cip + Ceep?

Fy = Cgs + 2Cop + Cyyp?

Fy3 = Css 4 2Cysp + Cyap?

Fiy = F = Cs + (Cgs + Cra)p + Cogp”

Fi3 = F3; = Cs; + (Ciy + Cs)p + Cagp?

Fyy = Fyy = Csg + (Cas + Ca6)p + Carp?

The 2, thus obtained depend on the Cjj and are complex.
They are of the form:

Bl = 2y (n) iz (n) (18)
The theory states that the displacements and constraints de-
pend only on the relative values of 2/ with(k = 1,3).
Therefore, the general solution of each of Eq. (12) is given
by:
6
= ZC&"),/IM,exp(Z.i.n.g.n.px.xz) (19)

a=1

U (x2)

Cis+ (C14 + C65)pa + C64p§ /1(;1
Css + (Coa + Cas)p, + Caup? Jyp | =0
Css + (C54 + C45)pa + C44P§ j'(;3

where C!") are complex constants that can be determined using
the boundary conditions.Substituting the expression of
U (x,) thus obtained in Eq. (19), we get:

U(ﬂ)( ) i:chn)'ixk (2.i )
v (x2) = ———.exp(2.in.g.np,x;

— 2.i.m.n
.2,

2.i.m.n

Combining (2) with (20) we can rewrite the displacement field
as follows:

= ZZ21

nlo a=1

.exp(2.0.m.g.np,.x1) (20)

~expl(2.im.gn.(x) + p,x2)]

Y(n) ;mk

o

Sinn exp|(2.img.n.(x1 + Py.x2)] (21)

where the complex constants X(;’)et Y}"’) are determined using
boundary conditions relative to the problem. To get better
numerical performances only positive integer values of n are
used in the summation in (21).

3
w = ZZC;’,’().exp[Z.i.n.g.n(m +1,.0)] = Ci;") = Z‘i’;() (22)

n'0 a=1
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So the double sum (22) becomes:

2ZiRe(CZ,(). cos[2.m.g.n(x| + 1,.X3)]

n-0 o=1

+ Re(i.Chy ). sin[2.m.g.n(x; + 1,.X5)] (23)
Setting w = 2.1m.g, we obtained the final expression of u:

Ue=>_ (%) az}]:[{cos[n.w{xl +r,.x2)]

n=0
X [(—i. X" Jop).exp(—n.@.5,.x7)
+ (fi. Yi”) T )-xp(1.00.5,.52) ]} 4 {sin[n.siy +r,.x,)]
X Re[(X™ J).exp(—n.c.5,.%2) + ( Yy’).Z,k).exp(n,w.sa.xz)] }

(k=1,2,3) (24)
From Eq. (24) and the Hooke’s:
Okl = Ck[i/"gif (25)

We get the constraint field

011 = Criyj-ttiy = Crann-tti) + Crapp-ttin + Crgiz Ui 3 (26)
Since u;, in our case does not depend on x3, Eq. (26) can be re-
duced to:

o = Crin iy + Crgp 12 (27)
where:
o = Crni-urg + Crpnr iy + Crnaotty o + Crgmo iy (28)

We finally obtain the following expression:

o5 = 2,g22[{cos[n.w(xl +7,%)]

w0 =1
+ Re[X\". Lyj.exp(—n.o.s,.x7) + Y™ L.exp(n.a.s,.x:)}
+ {sin[n.o(x; + r,%,)] + x Re[i. X" . L;.exp(—n.w.5,.x7)
+ 0. Y Ly exp(n.0.5,.2) } avec Ly

= Juj[Crjt + p,Crip) ,j=1,2,3, 1=1,2 (29)

Table 1 Data of thin bicrystal Cu/(001) Fe.

Designation Cu Fe
Lattice parameters a (nm) 0.361 0.355
Burgers vector b (nm) of network 0.253

Period of dislocation network 1/g (nm) 15.10

Cip = 1684 Cy; =232
CIZ = 1214 C12 136
C44 =754 C44 117

Anisotropic elastic constants (Gpa)

o11 [Gpa]

0.75

0.25 ot .

-0.25 . T !

-0.5

-0.75

-15 -10 -5 0 5 X, (nm)

4. Application

The matrix Cu/Fe, Table 1, was recently the subject of intense re-
search in the field of physics by Hyeok Shim and Whan Cho
(2007) to fully exploit the electronic and magnetic properties as
well as the structural and chemical characterization of the inter-
face between layers of copper and iron (Myagkov et al., 2009).

The Burgers vector b = (acy + ape)/2.2'* and the period
of the network 1/g = (aCu.aFe)/(aCufaFe)Zl'/2 are respectively
calculated according to Bonnet (2000). The anisotropic elastic
constants and lattice parameters are given by Myagkov et al.
(2009) and Charles (2005).

Firstly we present in Fig. 4 the evolution of stresses o, and
G5, with respect to x, within the material Cu/(001) Fe under
the effect of a corners interfacial dislocation network whose
Burgers vector is parallel to the Ox,axis, for a value of
x; = 1/2 g and an overall thickness of the bicrystal equal to
24nm (h* = 8§nm and h™ = 16 nm) and the number of har-
monics equal to 1000.

Regarding the constraints field, Fig. 4 shows that:

1. For the chosen value of x;, we obtain a discontinuity of
constraints o across the interface.

2. Constraints o are continuous across the interface and null
at the free surfaces in accordance with the boundary
conditions.

3. The distortion is much greater near the center of the dislo-
cation than far from it. To better see the effect of the het-
erogeneity of the material on the evolution of the
constraints, we present on the same Fig. 5 curves of con-
straints o and o(. Different applications are presented
for the thin homogeneous crystals Cu/(001) Cu and Fe/
(001) Fe, where the total thickness of the bicrystal is kept
constant (h" = 8nm and h™ = 16 nm) for a value of
x1=12g.

It is noteworthy that the stress values 6;; and o, are more
important for material Fe/(001) Fe than for the heterogeneous
system Cu/(001) Fe.

To highlight the effect of anisotropy, we plot, on the same
Fig. 6 the results of our present study and those of early studies
based on the assumption of isotropy for the core of Cu (001) Fe.

Fig. 6 shows that for the chosen value of x 1 we obtain a
discontinuity of stresses o, through the interface. These con-
straints ¢, evolve in the same crystal from positive values to

02 [Gpa]
0.6
VAR
0.4 " .
0. /
YA

N

N

-15 -10 -5 0 5 X, (nm)

Figure 4 Diagram illustrating the evolution of stresses 6,; and ©,, of the composite materials Cu/(001) Fe, Cj; anisotropic, period 1/
g = 15.10 nm, n = 1000, x; = 1/2.g, b//Ox,, h* =8nmand h™ = 16 nm.
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o1 [Gpa]
1.5

1 \
"\

%0,

0 RS ..9?,
X .
03 cu/Fe \
11| CuCu”]
Fe/Fe \
-15 -10 -5 0 5 X, (nm)

Figure 5
nm and x; = 1/2 gnm, b//Ox;, h" = 8 and16 nm.

o1 [Gpa]
6

------ Anisotropic
Isotropic

-15 -10 -5 0 5 X, (nm)

62 [Gpa]
1

/j
_o.sH Cu/Fe
| Cu/Cu e U4
-0.75H Fe/Fe__+
-15 -10 -5 0 5 X, (nm)

Superposition of constraints fields 6y, and G,,, of the composite materials Cu/(001) Cu, Fe/(001) Fe and Cu/(001) Fe, x; = b

02, [Gpa]

0.6

N

0.2 ..\..\
0 4 ..-.‘
-0.2 ‘\

------ Anisotropic
Isotropic

-15 -10 -5 0 5 X, (nm)

Figure 6  Superimposing of constraints fields o, and o1, Cj; anisotropic and isotropic Cj; of the composite materials Cu/(001) Fe,

x; = 1/2 g, and b//Ox;, h™ = 8nm and h~ = 16 nm.

negative values and vice versa depending on whether there is a
tension or compression of the crystal. This explains that in the
case of dislocation network, the state of stress changes its sign
whether it is near the center of the dislocation or along the per-
iod away from it. Note also that the stresses G5, are continuous
across the interface and null at the layer’s boundary in accor-
dance with the boundary conditions.

The invalidity constraints o1, and oy, very far from the dis-
location (x; = 1/2 g) for a period of that can catch the misfit
explain the limitation of the deformation field at the free
surfaces.

Our Mathematical code based on the Fourier series in the
case of isotropic elasticity gives results that show the difference
between the anisotropic and isotropic. It is clear that the dis-
persions of constraints 6y, and o5, in the bicrystal Cu/(001)
Fe go through maxima whose values indicate.

The values of the Zener anisotropy factor are (Zener, 1984):

e 2.C44

=—— =320 for Cuand 243 for Fe
Cn—Cn

5. Conclusion

By studying the effect of anisotropy on the constraints field
created by an intrinsic unidirectional dislocation network with
a network period, and knowing that the monocrystals of cop-
per and iron are very anisotropic and whose values of Zener
anisotropy factor are high, the results obtained concerning

these constraints fields depend on several essential factors
which are the orientation of the Burgers vector b (oriented
according to Ox; in our case), the period of the network, the
elastic constants Cj; and the thickness of the selected layer.

For the constraints distribution ¢, and o5, note that the
constraint o7 changes its sign in layers and that it is important
when calculated near the heart of the dislocation (b = x;). We
also noted that the o, constraints discontinuity and the ©,,
constraints continuity along the interface as well as the values
of 6,5, become null at the level of the free surfaces at a distance
equal to some nanometers away from the heart leaving room
to a perfect relaxation in accordance with boundary limits
which are verified. It is worth noting that the deformation is
much bigger near the heart of the dislocation than far from
it and the amplitude of the o, constraints is greater when
the thickness is small.

Aiming to compare the elastic behavior, a comparison of
the results obtained in isotropic elasticity for the same bicrystal
under the same conditions is done. A clear difference is visible
between the anisotropic and isotropic cases for the thin bicrys-
tal Cu/(001)Fe leading to conclude that the anisotropy effect is
essential for the chosen bicrystal.
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