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 :الملخص
المضبوطة المسافرة الموجات  لايجاد حلول الشائعةالعامة هي من الطرق ( G'/G)ان طريقة مفكوك 

العامة ( G'/G)في هذا البحث تستخدم طريقة مفكوك . لمعادلات التطور الغير خطية في الفيزياء الرياضية
 المشتركة ذات( KdV-MkdV)معادلات  و المبسطة( MCH)لايجاد حلول مضبوطة عديدة لمعادلات 

حلول  فان ، عندما تاخذ المتغيرات قيم خاصة لقد بينت الدراسة بانه. المتغيراتبادخال ( 1+1)البعد 
العامة توفر ( G'/G)مفكولبان طريقة كما تبين .  مسافرةالموجه الحلول من  تنشأسولوتينية الموجات ال
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Abstract The generalized (G0/G)-expansion method is thriving in finding exact traveling wave solu-

tions of nonlinear evolution equations (NLEEs) in mathematical physics. In this paper, we bring to

bear the generalized (G0/G)-expansion method to look for the exact solutions via the simplified

MCH equation and the (1 + 1)-dimensional combined KdV–mKdV equations involving parame-

ters. When the parameters take special values, solitary wave solutions are originated from the trav-

eling wave solutions. It is established that the generalized (G0/G)-expansion method offers a further

influential mathematical tool for constructing the exact solutions of NLEEs in mathematical phys-

ics.
ª 2013 Production and hosting by Elsevier B.V. on behalf of University of Bahrain.

1. Introduction

The importance of nonlinear evolution equations (NLEEs) is

now well established, since these equations arise in various
areas of science and engineering, especially in fluid mechanics,
biology, plasma physics, solid-state physics, optical fibers, bio-

physics and so on. As a key problem, finding their analytical
solutions is of great importance and is actually executed
through various efficient and powerful methods such as the

Miura transformation (Bock and Kruskal, 1979), the Jacobi
elliptic function expansion method (Chen and Wang, 2005;

Honga and Lub, 2012), the Adomian decomposition method
(Adomain, 1994; Wazwaz, 2002), the method of bifurcation

of planar dynamical systems (Li and Liu, 2000; Liu and Qian,
2001), the ansatz method (Hu, 2001), the Cole–Hopf transfor-
mation (Salas and Gomez, 2010), the (G0/G)-expansion method
(Zayed and Gepreel, 2009a,b; Zayed, 2009; Wang et al., 2008;

Taha and Noorani, 2013a,b; Akbar et al., 2012a,b,c; Song and
Ge, 2010), the (G0/G, 1/G)-expansion method (Zayed et al.,
2012; Zayed and Ibrahim, 2013; Zayed and Abdelaziz, 2012;

Yang, 2013), the improved (G0/G)-expansion method (Zhang
et al., 2010), the modified simple equation method (Jawad
et al., 2010; Khan et al., 2013; Khan and Akbar, 2013), the

novel (G0/G)-expansion method (Alam et al., 2014; Alam and
Akbar, 2014), the new generalized (G0/G)-expansion method
(Naher and Abdullah, 2013) and so on.
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The objective of this article is to search for new study relat-
ing to the generalized (G0/G)-expansion method for solving the
simplified MCH equation and the (1 + 1)-dimensional com-

bined KdV–mKdV equations to demonstrate the suitability
and straightforwardness of the method.

The article is organized as follows: in Section 2, we describe

this method for finding exact traveling wave solutions of non-
linear evolution equations. In Section 3, we will apply this
method to obtain the traveling wave solutions of the simplified

MCH equation and the (1 + 1)-dimensional combined KdV–
mKdV equations. In Section 4, physical explanations are of-
fered. In Section 5 comparison and in Section 6 conclusions
are conferred.

2. Material and method

In this section we describe the generalized (G0/G) expansion
method for finding traveling wave solutions of nonlinear evo-
lution equations. Let us consider a general nonlinear PDE in
the form

Pðu; ut; ux; utt; utx; uxx; � � �Þ ¼ 0; ð1Þ

where u = u(x, t) is an unknown function, P is a polynomial in
u(x, t) and its derivatives in which highest order derivatives
and nonlinear terms are involved and the subscripts stand

for the partial derivatives.
Step 1: We combine the real variables x and t by a complex

variable U

uðx; tÞ ¼ uðUÞ; U ¼ xþ yþ z� Vt; ð2Þ

where V is the speed of the traveling wave. The traveling wave
transformation (2) converts Eq. (1) into an ordinary differen-
tial equation (ODE) for u = u(U):

Qðu; u0; u00; u000; � � �Þ ¼ 0; ð3Þ

where Q is a polynomial of u and its derivatives and the super-
scripts indicate the ordinary derivatives with respect to U.

Step 2: According to possibility Eq. (3) can be integrated
term by term one or more times, yields constant(s) of integra-
tion. The integral constant may be zero, for simplicity.

Step 3: Suppose the traveling wave solution of Eq. (3) can

be expressed as follows:

uðUÞ ¼
XN

i¼0
aiðdþHÞi þ

XN

i¼1
biðdþHÞ�i; ð4Þ

where either aN or bN may be zero, but both aN or bN could be
zero at a time, ai (i= 0, 1, 2, � � �, N) and bi (i = 1, 2, � � �, N)

and d are arbitrary constants to be determined later and
H(U) is

HðUÞ ¼ ðG0=GÞ ð5Þ

where G = G(U) satisfies the following auxiliary ordinary dif-
ferential equation:

AGG00 � BGG0 � EG2 � C ðG0Þ2 ¼ 0 ð6Þ

Eq. (6) has individual five solutions (see Lanlan and Huaitang,

2013)where the prime stands for derivative with respect to U;
A, B,C and E are real parameters.

Step 4: To determine the positive integer N, taking the

homogeneous balance between the highest order nonlinear

terms and the derivatives of the highest order appearing in
Eq. (3).

Step 5: Substitute Eq. (4) and Eq. (6) including Eq. (5)

into Eq. (3) with the value of N obtained in Step 4, we ob-
tain polynomials in (d+ H)N (N= 0,1,2, � � �) and
(d+ H)�N (N= 0,1,2, � � �). Then, we collect each coefficient

of the resulted polynomials to zero, yields a set of algebraic
equations for ai (i= 0,1,2, � � �, N) and bi (i = 1,2, � � �, N), d
and V.

Step 6: Suppose that the value of the constants ai (i= 0,1,2,
� � �, N), bi (i = 1,2, � � �, N), d and V can be found by solving the
algebraic equations obtained in Step 5. Since the general solu-
tion of Eq. (6) is well known to us, inserting the values of ai
(i= 0,1,2, � � �, N), bi (i= 1,2, � � �, N), d and V into Eq. (4),
we obtain more general type and new exact traveling wave
solutions of the nonlinear partial differential equation (1).

Using the general solution of Eq. (6), we have the following
solutions of Eq. (5):

Family 1: When B „ 0, w = A � C and

X = B2 + 4E(A � C) > 0,

HðUÞ¼ G0

G

� �
¼ B

2w
þ

ffiffiffiffi
X
p

2w

C1 sinh
ffiffiffi
X
p

2A
U

� �
þC2 cosh

ffiffiffi
X
p

2A
U

� �

C1 cosh
ffiffiffi
X
p

2A
U

� �
þC2 sinh

ffiffiffi
X
p

2A
U

� � ð7Þ

Family 2: When B „ 0, w = A � C and
X = B2 + 4E(A � C) < 0,

HðUÞ¼ G0

G

� �
¼ B

2w
þ

ffiffiffiffiffiffiffiffi
�X
p

2w

�C1 sin
ffiffiffiffiffi
�X
p

2A
U

� �
þC2 cos

ffiffiffiffiffi
�X
p

2A
U

� �

C1 cos
ffiffiffiffiffi
�X
p

2A
U

� �
þC2 sin

ffiffiffiffiffi
�X
p

2A
U

� � ð8Þ

Family 3: When B „ 0, w = A � C and
X = B2 + 4E(A � C) = 0,

HðUÞ ¼ G0

G

� �
¼ B

2w
þ C2

C1 þ C2U
ð9Þ

Family 4: When B = 0, w = A � C and D = wE > 0,

HðUÞ ¼ G0

G

� �
¼

ffiffiffiffi
D
p

w

C1 sinh
ffiffiffi
D
p

A
U

� �
þ C2 cosh

ffiffiffi
D
p

A
U

� �

C1 cosh
ffiffiffi
D
p

A
U

� �
þ C2 sinh

ffiffiffi
D
p

A
U

� � ð10Þ

Family 5: When B = 0, w = A � C and D = wE < 0,

HðUÞ¼ G0

G

� �
¼

ffiffiffiffiffiffiffi
�D
p

w

�C1 sinð
ffiffiffiffiffi
�D
p

A
UÞþC2 cos

ffiffiffiffiffi
�D
p

A
U

� �

C1 cos
ffiffiffiffiffi
�D
p

A
U

� �
þC2 sin

ffiffiffiffiffi
�D
p

A
U

� � ð11Þ

3. Applications

In this section, we will apply the generalized (G0/G) expansion

method to find the exact solutions and the solitary wave solu-
tions of the following two nonlinear evolution equations.

3.1. The simplified MCH equation

Now we will bring to bear the generalized (G0/G) expansion
method to find exact solutions and then the solitary wave solu-
tions of the simplified MCH equation in the form,

ut þ 2kux � uxxt þ bu2ux ¼ 0: where k 2 R; b > 0: ð12Þ

Some new exact traveling wave solutions to the simplified MCH equation 7



Details of CH and MCH equations can be found in refer-
ences (Liu et al., 2010: Wazwaz, 2005; Camassa and Holm,
1993; Tian and Song, 2004; Boyd, 1997).

Now, we use the traveling wave transformation Eq. (2) into
Eq. (12), which yields

�Vu0 þ 2ku0 þ Vu000 þ bu2u0 ¼ 0: ð13Þ

where the superscripts stand for the derivatives with respect to
U.

Integrating Eq. (13) once with respect to U yields:

ð2k� VÞuþ Vu00 þ b
3
u3 þ P ¼ 0: ð14Þ

where P is an integral constant that could be determined later.
Taking the homogeneous balance between u3 and u00 in Eq.

(14), we obtain N = 1. Therefore, the solution of Eq. (14) is of
the form

uðUÞ ¼ a0 þ a1ðdþHÞ þ b1ðdþHÞ�1; ð15Þ

where a0, a1, b1 and d are constants to be determined.
Substituting Eq. (15) together with Eqs. (5) and (6) into Eq.

(14), the left-hand side is converted into polynomials in
(d + H)N (N= 0,1,2, � � �) and (d + H)�N (N= 0,1,2, � � �).
We collect each coefficient of these resulted polynomials to
zero, yields a set of simultaneous algebraic equations (for sim-

plicity which are not presented here) for a0, a1, b1, d and V.
Solving these algebraic equations with the help of symbolic
computation software, we obtain following:

a0 ¼ m2; a1 ¼ 2wm1; b1 ¼ 0; d ¼ d;

V ¼ � 4kA2

ðB2 þ 4Ewþ 2A2Þ
;P ¼ 0: ð16Þ

where w¼A�C; m1¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�6k
ð2bA2þbB2þ4bEwÞ

q
; m2¼ 6kð2dwþBÞ

bm1ðB2þ4Ewþ2A2Þ

A, B, C and E are free parameters.

Substituting Eq. (16) into Eq. (15), along with Eq. (7) and

simplifying yields following traveling wave solutions (if
C1 = 0 but C2 „ 0 and C2 = 0 but C1 „ 0), respectively:

u1ðUÞ ¼ m2 þm1 2wdþ Bþ
ffiffiffiffi
X
p

coth

ffiffiffiffi
X
p

2A
U

 !( )
;

u2ðUÞ ¼ m2 þm1 2wdþ Bþ
ffiffiffiffi
X
p

tanh

ffiffiffiffi
X
p

2A
U

 !( )
;

where U ¼ x� � 4kA2

ðB2þ4Ewþ2A2Þ

n o
t.

Substituting Eq. (16) into Eq. (15), along with Eq. (8) and

simplifying, the obtained exact solutions become (if C1 = 0
but C2 „ 0; C2 = 0 but C1 „ 0), respectively:

u3ðUÞ ¼ m2 þm1 2wdþ Bþ i
ffiffiffiffi
X
p

cot

ffiffiffiffiffiffiffiffi
�X
p

2A
U

 !( )
;

u4ðUÞ ¼ m2 þm1 2wdþ B� i
ffiffiffiffi
X
p

tan

ffiffiffiffiffiffiffiffi
�X
p

2A
U

 !( )
;

Substituting Eq. (16) into Eq. (15) together with Eq. (9) and

simplifying, we obtain

u5ðUÞ ¼ m2 þm1 2wdþ Bþ 2w
C2

C1 þ C2U

� �� �
;

Substituting Eq. (16) into Eq. (15), along with Eq. (10) and
simplifying, we obtain following traveling wave solutions (if
C1 = 0 but C2 „ 0; C2 = 0 but C1 „ 0), respectively:

u6ðUÞ ¼ m2 þ 2m1 wdþ
ffiffiffiffi
D
p

coth

ffiffiffiffi
D
p

A
U

 !( )
;

u7ðUÞ ¼ m2 þ 2m1 wdþ
ffiffiffiffi
D
p

tanh

ffiffiffiffi
D
p

A
U

 !( )
;

Substituting Eq. (16) into Eq. (15), together with Eq. (11)
and simplifying, our obtained exact solutions become (if
C1 = 0 but C2 „ 0; C2 = 0 but C1 „ 0), respectively:

u8ðUÞ ¼ m2 þ 2m1 wdþ i
ffiffiffiffi
D
p

cot

ffiffiffiffiffiffiffi
�D
p

A
U

 !( )
;

u9ðUÞ ¼ m2 þ 2m1 wd� i
ffiffiffiffi
D
p

tan

ffiffiffiffiffiffiffi
�D
p

A
U

 !( )
:

3.2. The (1 + 1)-dimensional combined KdV–mKdV equation

In this section, we will apply the generalized (G0/G) expansion

method to find exact solutions and then the solitary wave solu-
tions of the (1 + 1)-dimensional combined KdV–mKdV equa-
tion (Zayed, 2011) in the form,

ut þ auux þ bu2ux þ uxxx ¼ 0: ð17Þ

where a and b are nonzero constants. This equation may de-
scribe the wave propagation of the bound particle, sound wave
and thermal pulse. This equation is the most popular soliton

equation and often exists in practical problems such as fluid
physics and quantum field theory.

The wave transformation equation u(U) = u(x,t),

U = x � Vt. Reduces Eq. (17) into the following ODE:

�Vu0 þ auu0 þ bu2u0 þ u000 ¼ 0: ð18Þ

where the superscripts stand for the derivatives with respect to

U.Integrating Eq. (18) once with respect to U yields:

P� Vuþ 1

2
au2 þ 1

3
bu3 þ u00 ¼ 0: ð19Þ

where P is an integral constant that could be determined later.
Taking the homogeneous balance between u3 and u00 in Eq.

(19), we obtain N = 1. Therefore, the solution of Eq. (19) is of
the form

uðUÞ ¼ a0 þ a1ðdþHÞ þ b1ðdþHÞ�1; ð20Þ

where a0, a1, b1 and d are constants to be determined.
Substituting Eq. (20) together with Eqs. (5) and (6) into Eq.

(19), the left-hand side is converted into polynomials in
(d + H)N (N= 0,1,2, � � �) and (d+ H)�N (N = 0,1,2,� � �).
We collect each coefficient of these resulted polynomials to
zero, yields a set of simultaneous algebraic equations (for sim-

plicity which are not presented here) for a0, a1, b1, d and V.
Solving these algebraic equations with the help of symbolic
computation software, we obtain following:

a0 ¼
m2

2Abm1

; a1 ¼
wm1

A
; b1 ¼ 0; d ¼ d;
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V ¼ � 1

4A2b
ðA2a2 þ 8Ebwþ 2B2bÞ;

P ¼ a

24b2A2
ð24Ebwþ 6B2bþ a2A2Þ: ð21Þ

where w = A � C, m1 ¼ �
ffiffiffiffi
�6
b

q
, m2 = �(Aam1 � 12dw � 6B)

A, B, C and E are free parameters.
Substituting Eq. (21) into Eq. (20), along with Eq. (7) and

simplifying yields following traveling wave solutions (if

C1 = 0 but C2 „ 0 and C2 = 0 but C1 „ 0), respectively:

u10ðUÞ ¼
1

2Abm1

m2 þ bm2
12wdþ Bþ

ffiffiffiffi
X
p

coth

ffiffiffiffi
X
p

2A
U

 !( )
;

u11ðUÞ ¼
1

2Abm1

m2 þ bm2
12wdþ Bþ

ffiffiffiffi
X
p

tanh

ffiffiffiffi
X
p

2A
U

 !( )
;

where U ¼ x� � 1
4A2b
ðA2a2 þ 8Ebwþ 2B2bÞ

n o
t.

Substituting Eq. (21) into Eq. (20), along with Eq. (8) and

simplifying, the obtained exact solutions become (if C1 = 0
but C2 „ 0;C2 = 0 but C1 „ 0), respectively:

u12ðUÞ ¼
1

2Abm1

m2 þ bm2
12wdþ Bþ i

ffiffiffiffi
X
p

cot

ffiffiffiffiffiffiffiffi
�X
p

2A
U

 !( )
;

u13ðUÞ ¼
1

2Abm1

m2 þ bm2
12wdþ B� i

ffiffiffiffi
X
p

tan

ffiffiffiffiffiffiffiffi
�X
p

2A
U

 !( )
;

Substituting Eq. (21) into Eq. (20) together with Eq. (9) and

simplifying, we obtain

u14ðUÞ ¼
1

2Abm1

m2 þ bm2
12wdþ Bþ 2w

C2

C1 þ C2U

� �� �
;

Substituting Eq. (21) into Eq. (20), along with Eq. (10) and

simplifying, we obtain following traveling wave solutions (if
C1 = 0 but C2 „ 0;C2 = 0 but C1 „ 0), respectively:

u15ðUÞ ¼
1

2Abm1

m2 þ 2bm2
1wdþ

ffiffiffiffi
D
p

coth

ffiffiffiffi
D
p

A
U

 !( )
;

u16ðUÞ ¼
1

2Abm1

m2 þ 2bm2
1wdþ

ffiffiffiffi
D
p

tanh

ffiffiffiffi
D
p

A
U

 !( )
;

Substituting Eq. (21) into Eq. (20), together with Eq. (11)

and simplifying, our obtained exact solutions become (if
C1 = 0 but C2 „ 0; C2 = 0 but C1 „ 0), respectively:

u17ðUÞ ¼
1

2Abm1

m2 þ 2bm2
1wdþ i

ffiffiffiffi
D
p

cot

ffiffiffiffiffiffiffi
�D
p

A
U

 !( )
;

u18ðUÞ ¼
1

2Abm1

m2 þ 2bm2
1wd� i

ffiffiffiffi
D
p

tan

ffiffiffiffiffiffiffi
�D
p

A
U

 !( )
:

4. Physical explanation

In this section we will put forth the physical significances and
graphical representations of the obtained results of the simpli-

fied MCH equation and the (1 + 1)-dimensional combined
KdV–mKdV equation.

4.1. Results and discussion

i. Solutions u1(U), u2(U), u6(U), u7(U), u10(U), u11(U),
u15(U) and u16(U) are hyperbolic function solutions.
Solutions u1(U), u6(U), u10(U) and u15(U) are the single
soliton solution. Fig. 1 shows the shape of the exact sin-

gle soliton solution (only shows the shape of solution of
u10(U) with A = 4, B = 1, C= 1, E = 1, a = 1, b = 1,
d= 1 with �10 6 x, t 6 10). The shape of figure of solu-

tions u1(U), u6(U) and u15(U) are similar to the figure of
solution u10(U). Solutions u2(U) and u7(U) are the singu-
lar soliton solution. Fig. 2 shows the shape of the exact

singular soliton solution (only shows the shape of solu-
tion of u7(U) with A = 2, B = 0, C= 1, E = 1,
k= 1, b = 1, d= 1 with �10 6 x, t 6 10). The shape

of figure of solutions u2(U) are similar to the figure of
solution u7(U). Solutions u11(U) and u16(U) are the Kink
solutions. Fig. 3 shows the shape of the exact Kink solu-
tion (only shows the shape of solution of u11(U) with

A= 2, B = 0, C = 1, E = 1, a = 1, b = 1, d = 1 with
�10 6 x, t 6 10).

ii. Solutions u3(U), u4(U), u8(U), u9(U), u12(U), u13(U),

u17(U) and u18(U) are trigonometric function solutions.
Solutions u3(U) and u12(U) are the single soliton solu-
tion. The shape of figure of solutions u3(U) and u12(U)

are similar to the figure of solution u10(U). Solutions
u4(U), u13(U), u17(U), u9(U) and u18(U) are the exact peri-
odic traveling wave solutions. Fig. 4 below shows the

periodic solution of u9(U). Graph of periodic solution
of u9(U), for A= 1, B = 0, C = 2, E = 2, k = 1,
d= 1, b = 1 with �5 6 x, t 6 5. For convenience the
figure is omitted. Solution u8(U) is the multiple soliton

solution. Fig. 5 shows the shape of the exact singular sol-
iton solution (only shows the shape of solution of u8(U)
with A= 1, B = 0, C= 2, E = 1, k = 1, b = 1, d = 1

with �1 6 x, t 6 1).
iii. Solutions u5(U) and u14(U) are complex rational travel-

ing wave solutions. Solution u5(U) is the single soliton

solution. The shape of figure of solution u5(U) is similar
to the figure of solution u10(U). Fig. 6 shows the shape of
the exact singular Kink solution (only shows the shape

Figure 1 Single soliton wave, the shape of solution of u10(U)

with A= 4, B = 1, C = 1, E = 1, a = 1, b = 1, d= 1 with

�10 6 x, t 6 10.

Some new exact traveling wave solutions to the simplified MCH equation 9



of solution of u14(U) with A = 1, B= 2, C = 2, E = 1,

a = 1, d= 1, C1 = 2, C2 = 1, b = 1 with �10 6 x,
t 6 10).

4.2. Graphical representation

The graphical demonstrations of obtained solutions for partic-
ular values of the arbitrary constants are shown in Figs. 1–6

with the aid of commercial software Maple.

5. Comparison

5.1. Comparison between Zayed (2011) solutions and our
solutions

Zayed (2011) considered solutions of the (1 + 1)-dimensional
combined KdV–mKdV equation using the basic (G0/G)-expan-

sion method combined with the Riccati equation. The solu-
tions of the (1 + 1)-dimensional combined KdV–mKdV
equation obtained by the generalized (G0/G)-expansion method

are different from those of the basic (G0/G)-expansion method
combined with the Riccati equation. Moreover, in Zayed

Figure 2 Singular soliton, the shape of solution of u7(U) with

A= 2, B = 0, C= 1, E = 1, k= 1, b = 1, d= 1 with �10 6 x,

t 6 10.

Figure 4 Periodic solutions of u9(U), for A = 1, B = 0, C= 2,

E = 2, k = 1, d= 1, b = 1 with �5 6 x, t 6 5.

Figure 5 Multiple soliton solution, the shape of solution of u8(U)

with A= 1, B = 0, C = 2, E = 1, k = 1, b = 1, d= 1 with

�1 6 x, t 6 1.

Figure 6 Singular Kink solution, the shape of solution of u14(U)

with A = 1, B = 2, C = 2, E = 1, a = 1, d= 1, C1 = 2, C2 = 1,

b = 1 with �10 6 x, t 6 10.

Figure 3 Kink solution, the shape of solution of u11(U) with

A= 2, B = 0, C = 1, E = 1, a = 1, b = 1, d= 1 with �10 6 x,

t 6 10.
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(2011) investigated the well-established (1 + 1)-dimensional
combined KdV–mKdV equation to obtain exact solutions

via the basic (G0/G)-expansion method and achieved only seven
solutions (see Appendix). Furthermore, nine solutions of the
well-known (1 + 1)-dimensional combined KdV–mKdV equa-

tion is constructed by applying the generalized (G0/G)-expan-
sion method. On the other hand, the auxiliary equation used
in this paper is different, so obtained solutions is also different.

Similarly for any nonlinear evolution equation it can be shown
that the generalized (G0/G)-expansion method is much easier
than other methods.

5.2. Comparison between Liu et al. (2010) solutions and our
solutions

Liu et al. (2010) investigated solutions of the well-established

simplified MCH equation via the (G0/G)-expansion method
wherein he used the linear ordinary differential equation
G00 þ kG0 þ lG ¼ 0 as auxiliary equation and traveling wave

solution was presented in the form uðnÞ ¼
Pm

i¼0aiðG0=GÞ
i
;

where am „ 0. It is noteworthy to point out that some of our
solutions are coincided with already published results, if
parameters taken particular values which authenticate our

solutions. The comparison of Liu et al. (2010) and the solu-
tions obtained in this article are given in: Table 1

In addition to this table, we obtain further new exact trav-

eling wave solutions u2(U), u4(U), u7(U) and u9(U), which are
not reported in the previous literature (Liu et al., 2010). When
the arbitrary constants assume particular values the obtained

solutions reduce to some special functions. On the other hand,
the auxiliary equation used in this paper is different, so ob-
tained solutions is also different.

6. Conclusion

Some new exact traveling wave solutions of the simplified

MCH equation and the (1 + 1)-dimensional combined KdV–
mKdV equations are constructed in this article by applying
the generalized (G0/G)-expansion method. The obtained solu-
tions are presented in terms of hyperbolic, trigonometric and

rational functions. Also, the solutions show that the applica-
tion of the method is trustworthy, straightforward and gives
many solutions. We have noted that the generalized (G0/G)-

expansion method changes the given difficult problems into
simple problems which can be solved easily. We hope this
method can be more effectively used to solve many nonlinear

partial differential equations in applied mathematics, engineer-
ing and mathematical physics.
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Appendix A

Zayed (2011) studied solutions of the (1 + 1)-dimensional
combined KdV–mKdV equation using the basic (G0/G)-expan-

sion method combined with the Riccati equation and achieved
the following calculations and exact solutions:

G�1½aa0a1Aþ A2Bba3
1 þ a2

0a1Abþ 2a1A
2B� VAa1�

G½�Va1Bþ aa0a1Bþ Bba2
0a1 þ ba3

1AB
2 þ 2a1AB

2�

G�2
1

2
aa2

1A
2 þ A2ba2

1a0

	 

þ G2 1

2
aa2

1B
2 þ B2ba2

1a0

	 

ð6Þ

G�3
1

3
ba3

1A
3 þ 2a1A

3

	 

þ G3 1

3
ba3

1B
3 þ 2a1B

3

	 


þ C� Va0 þ
1

2
aa2

0 þ aa2
1ABþ

1

3
ba3

0 ¼ 0:

Consequently the following algebraic equations

aa0a1Aþ A2Bba3
1 þ a2

0a1Abþ 2a1A
2B� VAa1 ¼ 0;

�Va1Bþ aa0a1Bþ Bba2
0a1 þ ba3

1AB
2 þ 2a1AB

2 ¼ 0;

1

2
aa2

1A
2 þ A2ba2

1a0 ¼ 0;

Table 1 Comparison between Liu et al. (2010) solutions and

our solutions.

Liu et al. (2010) solutions Obtained solutions

i. If C1 = 0, solutions Eq. (3.8)

becomes:

u1;2ðnÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6kðk2�4lÞ
ð4l�k2�2Þa

r

� coth

ffiffiffiffiffiffiffiffiffiffi
k2�4l
p

n
2

� �
.

i. If d = 0, B = 0, A = 1, u1(/)=u1,2(n),

b = a, E = -l, C ¼ k2

4l and

X ¼ k2 � 4l then the solution is

u1;2ðnÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6kðk2�4lÞ
ð4lk22Þa

r

� coth

ffiffiffiffiffiffiffiffiffiffi
k2�4l
p

n
2

� �
.

ii. If C1 = 0, solutions Eq. (3.8)

becomes:

u3;4ðnÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6kð4l�k2Þ
ð4l�k2�2Þa

r
�

cot

ffiffiffiffiffiffiffiffiffiffi
4l�k2
p

n
2

� �
:

ii. If d ¼ 0;B ¼ 0;A ¼ 1; u3ð/Þ ¼ u3;4ðnÞ;
b ¼ a;E ¼ �l;C ¼ k2

4l and

X ¼ k2 � 4l then the solution is

u3;4ðnÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
6kð4lk2Þ
ð4lk22Þa

r

� cot

ffiffiffiffiffiffiffi
4lk2
p

n
2

� �
:

iii. If X ¼ k2 � 4l ¼ 0,

solutions Eq. (3.8) becomes:

u5ðnÞ ¼ �k
ffiffiffiffiffiffiffi
�3k
a

q
� 2

ffiffiffiffiffiffiffi
�3k
a

q

� ð2C2�C1kÞ�C2kn
ðC1þC2nÞ

� �
:

iii. If d ¼ � k
2 ;B ¼ 0;A ¼ 1;

u5ð/Þ ¼ u5ðnÞ; b ¼ a;E ¼ 0 and C = 0

then the solution is

u5ðnÞ ¼ �k
ffiffiffiffi
3k
a

q
� 2

ffiffiffiffi
3k
a

q

� ð2C2C1kÞC2kn
ðC1þC2nÞ

� �
:

iv. If C1 = 0, solutions Eq. (3.10)

becomes: u1;2ðnÞ ¼ �i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6kðk2�4lÞ
ð4l�k2�2Þa

r

� coth

ffiffiffiffiffiffiffiffiffiffi
k2�4l
p

n
2

� �
:

iv. If d ¼ 0;B ¼ 0;A ¼ 1; u6ð/Þ ¼ u1;2ðnÞ;
b ¼ 4a;E ¼ �l;C ¼ k2

4l and

D ¼ k2 � 4l then the solution is

u1; 2ðnÞ ¼ �i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6kðk2�4lÞ
ð4lk22Þa

r

� coth

ffiffiffiffiffiffiffiffiffiffi
k2�4l
p

n
2

� �
:

v. If C1 = 0, solutions Eq. (3.10)

becomes: u3;4ðnÞ ¼ �i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6kð4l�k2Þ
ð4l�k2�2Þa

r

� cotð
ffiffiffiffiffiffiffiffiffiffi
4l�k2
p

n
2 Þ:

v. If d ¼ 0;B ¼ 0;A ¼ 1; u8ð/Þ ¼ u1;2ðnÞ;
b ¼ 4a;E ¼ �l;C ¼ k2

4l and

D ¼ k2 � 4l then the solution is

u3;4ðnÞ ¼ �i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6kð4l�k2 Þ
ð4l�k2�2Þa

r

� cot

ffiffiffiffiffiffiffiffiffiffi
4l�k2
p

n
2

� �
:

vi. If X ¼ k2 � 4l ¼ 0,

solutions Eq. (3.10) becomes:

u5ðnÞ ¼ �ik
ffiffiffiffi
3k
a

q
� 2i

ffiffiffiffi
3k
a

q

� ð2C2�C1kÞ�C2kn
2ðC1þC2nÞ

� �
:

vi. If d ¼ � k
2 ;B ¼ 0;A ¼ 1;

u5ð/Þ ¼ u5ðnÞ; b ¼ a;E ¼ 0 and C = 0

then the solution is

u5ðnÞ ¼ �ik
ffiffiffiffi
3k
a

q
� 2i

ffiffiffiffi
3k
a

q

� ð2C2C1kÞC2kn
2ðC1þC2nÞ

� �
:
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1

2
aa2

1B
2 þ B2ba2

1a0 ¼ 0;

1

3
ba3

1A
3 þ 2a1A

3 ¼ 0;

1

3
ba3

1B
3 þ 2a1B

3 ¼ 0;

C� Va0 þ
1

2
aa2

0 þ aa2
1ABþ

1

3
ba3

0 ¼ 0: ð7Þ

Which can be solved to get

a1 ¼ �

ffiffiffiffiffiffiffi
�6
b

s

; a0 ¼ �
a
2b
; V ¼ � a2

4b
� 4AB;

C ¼ 8aAB
b
þ a3

24b2
ð8Þ

Substituting (3.8) into (3.4) yields

uðnÞ ¼ �
ffiffiffiffiffiffiffi
�6
b

s
G0

G

� �
� a
2b

ð9Þ

Where

n ¼ xþ t
a2

4b
þ 4AB

� �
: ð10Þ

According to general solutions of the Riccati equations,
(Zayed, 2011) got the following families of exact solutions:

Family 1. If A ¼ 1
2
;B ¼ 1

2
, then

uðnÞ ¼ � a
2b
�

ffiffiffiffiffiffiffi
�6
b

s

i sechn; ð11Þ

Or

uðnÞ ¼ � a
2b
�

ffiffiffiffiffiffiffi
�6
b

s

icschn; ð12Þ

Where n ¼ xþ t a2

4b� 1
� �

and i ¼
ffiffiffiffiffiffiffiffi
�1:
p

Family 2. If A ¼ B ¼ � 1
2
; then

uðnÞ ¼ � a
2b
þ

ffiffiffiffiffiffiffi
�6
b

s

i sec n; ð13Þ

Or

uðnÞ ¼ � a
2b
�

ffiffiffiffiffiffiffi
�6
b

s

i csc n; ð14Þ

Where n ¼ xþ t a2

4b� 1
� �

.

Family 3. If A= 1, B = �1, then

uðnÞ ¼ � a
2b
�

ffiffiffiffiffiffiffi
�6
b

s

ðcoth n� tanh nÞ; ð15Þ

Where n ¼ xþ t a2

4b� 4
� �

.

Family 4. If A= B = 1, then

uðnÞ ¼ � a
2b
�

ffiffiffiffiffiffiffi
�6
b

s

ðcot nþ tan nÞ; ð16Þ

Where n ¼ xþ t a2

4bþ 4
� �

.

Family 5. If A= 0, B „ 0, then

uðnÞ ¼ � a
2b
�

ffiffiffiffiffiffiffi
�6
b

s
B

Bnþ c1

� �
ð17Þ

where n ¼ xþ t a2

4b.

The general solutions of the Riccati equations
G0ðnÞ ¼ Aþ BG2 are well known which are listed in the follow-
ing table:

A B The solution G(n)

1
2 � 1

2 tanh n� i sec hn; coth n� i csc hn; tanh n
2 ; coth

n
2 ;

� 1
2 � 1

2 secn� tan n;�ðcsc n� cot nÞ;� tan n
2 ;� cot n

2 ;

1 �1 tanhn, cothn
1 1 tann, �cotn
0 „0 1

Bnþc1, where c1 is an arbitrary constant.
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