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 :الملخص
لحل معادلات الإنتشار الكسرية عديدة الأبعاد، هو تقديم خوارزمية عددية البحث ان الهدف الاساس لهذا 

طريقة اضطراب هموتوبي باستخدام وذلك  كثافة في مادة تحت تأثير الإنتشارديناميكية ال تصفوالتي 
لا تقتصر على   المعدلةطريقة اضطراب هموتوبي  ان (.Sumudu)سومودا تحويل وبمساعدة المعدلة 

حلا تعطي المستخدمة الطريقة  ان. في طريقة الاضطراب الكلاسيكيةالحال المتغيرات الصغيرة كما هو 
ان . شكل متسلسة تقاربية يسهل حسابها عدديا بدون أي تقريبات أو افتراضات على المتغيرات تحليليا على

النتائج العددية التي تم الحصول عليها باستخدام الطريقة المقترحة تدل على ان النهج هو سهل التطبيق 
 . وجذاب جدا حسابيا

 
 
 
 

 

 
 

 

 

 D. Kumar et al. 



ORIGINAL ARTICLE

Numerical computation of fractional multi-

dimensional diffusion equations by using a modified

homotopy perturbation method

Devendra Kumar
a
, Jagdev Singh

b,*, Sunil Kumar
c

a Department of Mathematics, Jagan Nath Gupta Institute of Engineering and Technology, Jaipur 302022, Rajasthan, India
b Department of Mathematics, Jagan Nath University, Village-Rampura, Tehsil-Chaksu, Jaipur 303901, Rajasthan, India
c Department of Mathematics, National Institute of Technology, Jamshedpur 831014, Jharkhand, India

Received 7 November 2013; revised 17 January 2014; accepted 11 February 2014
Available online 6 March 2014

KEYWORDS

Modified homotopy

perturbation method;

Sumudu transform;

Fractional multi-dimensional

diffusion equations;

He’s polynomials

Abstract The main aim of the present work is to present a numerical algorithm for solving frac-

tional multi-dimensional diffusion equations which describes density dynamics in a material under-

going diffusion by using a modified homotopy perturbation method with the help of the sumudu

transform. The modified homotopy perturbation method is not limited to the small parameter, such

as in the classical perturbation method. The method gives an analytical solution in the form of a

convergent series with easily computable components, requiring no linearization or small perturba-

tion. The numerical results obtained by the proposed method indicate that the approach is easy to

implement and computationally very attractive.
ª 2014 Production and hosting by Elsevier B.V. on behalf of University of Bahrain.

1. Introduction

The diffusion equation is a partial differential equation which
describes density dynamics in a material undergoing diffusion.
It is also used to describe processes exhibiting diffusive-like

behaviour, for instance the ‘diffusion’ of alleles in a population
in population genetics. The equation can be written as,

@Uðr; tÞ
@t

¼ r � ðDðUðr; tÞ; rÞrUðr; tÞÞ; ð1Þ

where U(r, t) is the density of the diffusing material at location

r= (x, y, z) and time t. D(U(r, t), r) denotes the collective dif-
fusion coefficient for density U at location r. Several tech-
niques including the numerical method (Siddique, 2010),
variational iteration method (Akbarzade and Langari, 2011)

and homotopy perturbation method (Akbarzade and Langari,
2011) have been used for solving these type of problems and
references therein.

In recent years, fractional differential equations have
gained importance and popularity, mainly due to their demon-
strated applications in science and engineering. For example,

these equations are increasingly used to model problems in re-
search areas as diverse as dynamical systems, mechanical sys-
tems, control, chaos, chaos synchronization, continuous-time

random walks, anomalous diffusive and subdiffusive systems,
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unification of diffusion and wave propagation phenomenon
and others (Young, 1995; Hilfer, 2000; Podlubny, 1999; Mai-
nardi et al., 2001; Debnath, 2003; Caputo, 1969; Miller and

Ross, 1993; Oldham and Spanier, 1974; Kilbas et al., 2006).
The homotopy perturbation method (HPM) was first intro-

duced by Chinese researcher J.H. He in 1998 and was devel-

oped by him (He, 1999, 2003, 2006). The HPM was also
studied by many authors to handle nonlinear equations arising
in science and engineering (Ganji, 2006; Ganji et al., 2010;

Jafari et al., 2008; Rashidi et al., 2009; Rashidi and Ganji,
2009; Yildirim, 2009; Kumar and Singh, 2010; Atangana and
Secer, 2013). In recent years, many authors have paid attention
to study the solutions of linear and nonlinear partial differen-

tial equations by using various methods combined with the La-
place transform (Khuri, 2001; Khan and Hussain, 2011; Khan
et al., 2012; Gondal and Khan, 2010; Kumar et al., 2012) and

sumudu transform (Singh et al., 2011, 2013; Sushila et al.,
2013; Atangana and Kilicman, 2013; Atangana and Baleanu,
2013).

In this paper, we implement the modified homotopy pertur-
bation method with the help of the sumudu transform for
obtaining analytical and numerical solutions of the fractional

multi-dimensional diffusion equations. The present modifica-
tion is similar to the modified homotopy perturbation method
with help of the Laplace transform (Gondal and Khan, 2010;
Kumar et al., 2012). The advantage of this technique is its

capability of combining two powerful methods for obtaining
exact and approximate analytical solutions for nonlinear equa-
tions. It is worth mentioning that the proposed method is

capable of reducing the volume of the computational work
as compared to the classical methods while still maintaining
the high accuracy of the numerical result; the size reduction

amounts to an improvement of the performance of the
approach.

2. Basic definitions of fractional calculus

In this section, we mention the following basic definitions of
fractional calculus.

Definition 1. The Riemann–Liouville fractional integral oper-

ator of order a > 0, of a function fðtÞ 2 Cl; l P �1 is defined
as (Podlubny, 1999):

JafðtÞ ¼ 1

CðaÞ

Z t

0

ðt� sÞa�1fðsÞds; ða > 0Þ; ð2Þ

J0fðtÞ ¼ fðtÞ: ð3Þ

For the Riemann–Liouville fractional integral we have:

Jatc ¼ Cðcþ 1Þ
Cðcþ aþ 1Þ t

aþc: ð4Þ

Definition 2. The fractional derivative of f(t) in the Caputo
sense is defined as (Caputo, 1969):

Da
�t fðtÞ ¼ Jn�aDnfðtÞ ¼ 1

Cðn� aÞ

Z t

0

ðt� sÞn�a�1
fðnÞðsÞds; ð5Þ

for n� 1 < a 6 n; n 2 N; t > 0:

Definition 3. The sumudu transform (Watugala (1993)) is

defined over the set of functions A ¼ ffðtÞj9M ; s1;
s2 > 0; jfðtÞj < Mejtj=sj ; if t 2 ð�1Þj � ½0;1Þg by the follow-
ing formula

�fðuÞ ¼ S½fðtÞ� ¼
Z 1

0

fðutÞe�t dt;u 2 ð�s1; s2Þ: ð6Þ

For further detail and properties of the sumudu transform, see
(Asiru, 2001; Belgacem et al., 2003; Belgacem and Karaballi,

2006).

Definition 4. The sumudu transform of the Caputo fractional
derivative is defined as follows (Chaurasia and Singh, 2010):

S½Da
t fðtÞ�¼u�a S½fðtÞ��

Xm
k¼0

u�aþk fðkÞð0þÞ; ðm�1<a6mÞ: ð7Þ

3. Basic idea of the modified homotopy perturbation method

(MHPM)

To illustrate the basic idea of this method, we consider a gen-
eral fractional nonlinear non-homogenous partial differential

equation with the initial conditions of the form:

Da
t Uðx; tÞ þ RUðx; tÞ þNUðx; tÞ ¼ gðx; tÞ; 0 < a 6 1; ð8Þ

Uðx; 0Þ ¼ hðxÞ; ð9Þ

where Da
t Uðx; tÞ is the Caputo fractional derivative of the func-

tion U(x, t), R is the linear differential operator, N represents
the general nonlinear differential operator and g(x, t) is the
source term.

Applying the sumudu transform on both sides of Eq. (8),
we get

S½Da
t Uðx; tÞ� þ S½RUðx; tÞ� þ S½NUðx; tÞ� ¼ S½gðx; tÞ�: ð10Þ

Using the differentiation property of the sumudu transform
and above initial conditions, we have

S½Uðx;tÞ�¼hðxÞþuaS½gðx;tÞ��uaS½RUðx;tÞþNUðx;tÞ�: ð11Þ

Now applying the inverse sumudu transform on both sides of
Eq. (11), we get

Uðx; tÞ ¼ Gðx; tÞ � S�1 uaS ½RUðx; tÞ þNUðx; tÞ�½ �; ð12Þ

where G(x, t) represents the term arising from the source term

and the prescribed initial conditions.
Now we construct the following homotopy

Uðx; tÞ ¼ Gðx; tÞ � p S�1 uaS½RUðx; tÞ þNUðx; tÞ�½ �
� �

: ð13Þ

In view of the HPM, we use the homotopy parameter p to
expand solution

Uðx; tÞ ¼
X1
n¼0

pnUnðx; tÞ ð14Þ

and the nonlinear term is expanded using He’s polynomials

(Ghorbani, 2009; Mohyud-Din et al., 2009) as

NUðx; tÞ ¼
X1
n¼0

pnHnðUÞ; ð15Þ
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where the He’s polynomials Hn(U) are given by

HnðU0;U1; :::;UnÞ ¼
1

n!

@n

@pn
N
X1
i¼0

piUi

 !" #

p¼0

;

n ¼ 0; 1; 2; 3; ::: ð16Þ

Substituting Eqs. 14 and 15 in Eq. (13), we get

X1
n¼0

pnUnðx; tÞ

¼ Gðx; tÞ � p S�1 uaS R
X1
n¼0

pnUnðx; tÞ þ
X1
n¼0

pnHnðUÞ
" #" # !

:

ð17Þ

Comparing the coefficient of like powers of p, the following

approximations are obtained.

p0 : U0ðx; tÞ ¼ Gðx; tÞ;
p1 : U1ðx; tÞ ¼ �S�1 uaS½RU0ðx; tÞ þH0ðUÞ�½ �;
p2 : U2ðx; tÞ ¼ �S�1 uaS½RU1ðx; tÞ þH1ðUÞ�½ �;
p3 : U3ðx; tÞ ¼ �S�1 uaS½RU2ðx; tÞ þH2ðUÞ�½ �;

..

.

ð18Þ

Proceeding in this same manner, the rest of the components
Un(x, t) can be completely obtained and the series solution is
thus entirely determined.

Finally, we approximate the analytical solution U(x, t) by
truncated series

Uðx; tÞ ¼ Lim
N!1

XN
n¼0

Unðx; tÞ:

The above series solutions generally converge very rapidly. A

classical approach of convergence of this type of series is
already presented by Abbaoui and Cherruault (1995).

4. Numerical Examples and Error Estimation

In this section, we apply the modified homotopy perturbation
method with the help of the sumudu transform for solving

two- and three-dimensional fractional diffusion equations.

Example 4.1. Consider the following two-dimensional
fractional diffusion equation

@aU

@ta
¼ @

2U

@x2
þ @

2U

@y2
; 0 6 x 6 1; 0 6 y 6 1;

t > 0; 0 < a 6 1; ð19Þ

with the initial condition

Uðx; y; 0Þ ¼ ð1� yÞex: ð20Þ

Applying the sumudu transform on both sides of Eq. (19)
subject to the initial condition, we have

S½Uðx; y; tÞ� ¼ ð1� yÞex þ uaS½Uxx þUyy�: ð21Þ

The inverse of sumudu transform implies that

Uðx; y; tÞ ¼ ð1� yÞex þ S�1 uaS½Uxx þUyy�
� �

: ð22Þ

Now applying the HPM, we get

X1
n¼0

pnUnðx;y; tÞ ¼ ð1� yÞexþ p S�1 uaS
X1
n¼0

pnUnðx;y; tÞ
 !

xx

"" 

þ
X1
n¼0

pnUnðx;y; tÞ
 !

yy

3
5
3
5
1
A: ð23Þ

Comparing the coefficients of like powers of p, we have

p0 : U0ðx; y; tÞ ¼ ð1� yÞex;

p1 : U1ðx; y; tÞ ¼ S�1 uaS½U0xx þU0yy�
� �

¼ ð1� yÞex ta

Cðaþ 1Þ ;

p2 : U2ðx; y; tÞ ¼ S�1 uaS½U1xx þU1yy�
� �

¼ ð1� yÞex t2a

Cð2aþ 1Þ ;

p3 : U3ðx; y; tÞ ¼ S�1 uaS½U2xx þU2yy�
� �

¼ ð1� yÞex t3a

Cð3aþ 1Þ ;

p4 : U4ðx; y; tÞ ¼ S�1 uaS½U3xx þU3yy�
� �

¼ ð1� yÞex t4a

Cð4aþ 1Þ ;

..

.

ð24Þ

Therefore, the MHPM series solution is

Uðx;y;tÞ¼ð1�yÞex

� 1þ ta

Cðaþ1Þþ
t2a

Cð2aþ1Þþ
t3a

Cð3aþ1Þþ
t4a

Cð4aþ1Þþ���
� �

: ð25Þ

Setting a = 1 in (20), we reproduce the solution of the problem
as follows

Uðx; y; tÞ ¼ ð1� yÞex 1þ tþ t2

2!
þ t3

3!
þ t4

4!
þ � � �

� �
: ð26Þ

This solution is equivalent to the exact solution in closed

form

Uðx; y; tÞ ¼ ð1� yÞexþt: ð27Þ

The numerical results for the exact solution (27) and the
approximate solution (25) for a = 1 obtained by MHPM are
shown in Fig. 1. It is observed from Fig. 1(a and b) that

U(x,y,t) decreases with the increase in y when a = 1 and
x= 1. It can be seen from the Fig. 1 that the solution obtained
by the MHPM is nearly identical with the exact solution. It is
to be noted that only the fourth order term of the MHPM was

used in evaluating the approximate solutions for Fig. 1. It is
evident that the efficiency of the present method can be dra-
matically enhanced by computing further terms of U(x,y,t)

when the MHPM is used.
From Table 1, it is observed that the values of the approx-

imate solution at different grid points obtained by the MHPM

are similar to the values of the exact solution at the tenth term
approximation.

Example 4.2. Next, consider the following two-dimensional
fractional diffusion equation

@aU

@ta
¼ @

2U

@x2
þ @

2U

@y2
; 0 6 x 6 1; 0 6 y 6 1; t > 0; 0

< a 6 1; ð28Þ
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with the initial condition

Uðx; y; 0Þ ¼ exþy: ð29Þ

By applying the aforesaid method, we get

X1
n¼0

pnUnðx; y; tÞ ¼ exþyþ p S�1 uaS
X1
n¼0

pnUnðx; y; tÞ
 !

xx

"" 

þ
X1
n¼0

pnUnðx; y; tÞ
 !

yy

3
5
3
5
1
A: ð30Þ

Comparing the coefficients of like powers of p, we have

p0 : U0ðx; y; tÞ ¼ exþy;

p1 : U1ðx; y; tÞ ¼ exþy
ð2taÞ

Cðaþ 1Þ ;

p2 : U2ðx; y; tÞ ¼ exþy
ð2taÞ2

Cð2aþ 1Þ ;

p3 : U3ðx; y; tÞ ¼ exþy
ð2taÞ3

Cð3aþ 1Þ ;

p4 : U4ðx; y; tÞ ¼ exþy
ð2taÞ4

Cð4aþ 1Þ ;

..

.

ð31Þ

Therefore, the MHPM series solution is

Uðx; y; tÞ ¼ exþy 1þ ð2taÞ
Cðaþ 1Þ þ

ð2taÞ2

Cð2aþ 1Þ þ
ð2taÞ3

Cð3aþ 1Þ þ
ð2taÞ4

Cð4aþ 1Þ þ � � �
 !

:

ð32Þ

If we set a = 1 in (28), we reproduce the solution of the prob-

lem as follows

Uðx; y; tÞ ¼ exþy 1þ 2tþ ð2tÞ
2

2!
þ ð2tÞ

3

3!
þ ð2tÞ

4

4!
þ � � �

 !
: ð33Þ

This solution is equivalent to the exact solution in closed form

Uðx; y; tÞ ¼ exþyþ2t: ð34Þ

The numerical results for the exact solution (34) and the

approximate solution (32) for a = 1 obtained by MHPM are
shown in Fig. 2. It is observed from Fig. 2(a and b) that
U(x, y, t) increases with the increase in both y and t when

a = 1 and x = 1. It can be seen from the Fig. 2 that the solu-
tion obtained by the MHPM is nearly identical with the exact
solution. It is to be noted that only the fourth order term of the

MHPM was used in evaluating the approximate solutions for
Fig. 2. It is evident that the efficiency of the present method
can be dramatically enhanced by computing further terms of

U(x, y, t) when the MHPM is used.
From Table 2, it is to be noted that the values of the

approximate solution at different grid points obtained by the
MHPM are close to the values of the exact solution with high

accuracy at the tenth term approximation.

Figure 1 The surface shows the solution U(x, y, t) for Eqs. 19, 20

when a = 1 and x = 1: (a) Exact solution (27); (b) Approximate

solution (25); (c) |Uex � Uapp|.

Table 1 Comparison study between the exact solution and

approximate solution obtained by MHPM, when a = 1,

x = 0.5 and t = 0.5.

y Exact solution Appr. solution E10 (U) = |Uex � Uapp|

0 2.718281828 2.718281828 0

0.2 2.174625462 2.174625462 0

0.4 1.630969097 1.630969097 0

0.6 1.087312731 1.087312731 0

0.8 0.5436563656 0.5436563656 0

1.0 0 0 0
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Example 4.3. Finally, consider the following three-dimen-
sional fractional diffusion equation

@aU

@ta
¼ @

2U

@x2
þ @

2U

@y2
þ @

2U

@z2
; ; 0 6 x 6 1; 0 6 y 6 1; 0

6 z 6 1; t > 0; 0 < a 6 1; ð35Þ

with the initial condition

Uðx; y; z; 0Þ ¼ ð1� yÞexþz: ð36Þ

By applying the aforesaid method, we get

X1
n¼0

pnUnðx;y;z;tÞ¼ð1�yÞexþzþp S�1 uaS
X1
n¼0

pnUnðx;y;z;tÞ
 !

xx

"" 

þ
X1
n¼0

pnUnðx;y;z;tÞ
 !

yy

þ
X1
n¼0

pnUnðx;y;z;tÞ
 !

zz

3
5
3
5
1
A: ð37Þ

Comparing the coefficients of like powers of p, we have

p0 : U0ðx; y; z; tÞ ¼ ð1� yÞexþz;

p1 : U1ðx; y; z; tÞ ¼ ð1� yÞexþz ð2taÞ
Cðaþ 1Þ ;

p2 : U2ðx; y; z; tÞ ¼ ð1� yÞexþz ð2taÞ2

Cð2aþ 1Þ ;

p3 : U3ðx; y; z; tÞ ¼ ð1� yÞexþz ð2taÞ3

Cð3aþ 1Þ ;

p4 : U4ðx; y; z; tÞ ¼ ð1� yÞexþz ð2taÞ4

Cð4aþ 1Þ ;

..

.

ð38Þ

Therefore, the MHPM series solution is

Uðx; y; z; tÞ ¼ ð1� yÞexþzð1þ ð2taÞ
Cðaþ 1Þ þ

ð2taÞ2

Cð2aþ 1Þ

þ ð2taÞ3

Cð3aþ 1Þ þ
ð2taÞ4

Cð4aþ 1Þ þ � � �Þ:

ð39Þ

If we take a = 1 in (35), we reproduce the solution of the prob-
lem as follows

Uðx;y; z; tÞ ¼ ð1� yÞexþz 1þ 2tþ ð2tÞ
2

2!
þ ð2tÞ

3

3!
þ ð2tÞ

4

4!
þ � � �

 !
:

ð40Þ

This solution is equivalent to the exact solution in closed form

Uðx; y; z; tÞ ¼ ð1� yÞexþzþ2t: ð41Þ

Figure 2 The surface shows the solution U(x, y, t) for Eqs. 28, 29

when a = 1 and x = 1: (a) Exact solution (34); (b) Approximate

solution (32); (c) |Uex � Uapp|.

Table 2 Comparison study between exact solution and

approximate solution obtained by MHPM, when a = 1,

x = 0.5 and t = 0.5.

y Exact solution Appr. solution E10 (U) = |Uex � Uapp|

0 4.481689070 4.481689029 4.1 · 10�8

0.2 5.473947392 5.473947339 5.3 · 10�8

0.4 6.685894442 6.685894379 6.3 · 10�8

0.6 8.166169913 8.166169839 7.7 · 10�8

0.8 9.974182455 9.974182362 9.3 · 10�8

1.0 12.18249396 12.18249385 1.1 · 10�7
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The numerical results for the exact solution (41) and the
approximate solution (39) for a = 1 obtained by MHPM are
shown in Fig. 3. It is observed from Fig. 3(a and b) that

U(x, y, z, t) decreases with the increase in y when a = 1,
x = 1 and z = 1. It can be seen from the Fig. 3 that the solu-
tion obtained by the MHPM is nearly identical with the exact
solution. It is to be noted that only the fourth order term of the

MHPM was used in evaluating the approximate solutions for
Fig. 3. It is evident that the efficiency of the present method
can be dramatically enhanced by computing further terms of

U(x, y, z, t) when the MHPM is used.
From Table 3, it is observed that the values of the approx-

imate solution at different grid points obtained by the MHPM

are close to the values of the exact solution with high accuracy
at the tenth term approximation.

5. Concluding remarks

In this work, our main concern has been to study the two- and
three-dimensional fractional diffusion equations. An approxi-

mation to the analytic solution for the range t> 0 was ob-
tained by applying the MHPM with the help of the sumudu
transform and symbolic calculations. The technique provides
the solutions in terms of convergent series with easily comput-

able components in a direct way without using linearization,
perturbation or restrictive assumptions. Thus, it can be con-
cluded that the MHPM is very powerful and efficient in finding

analytical as well as numerical solutions for wide classes of
fractional partial differential equations.
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and t= 0.5.

y Exact Solution Appr. Solution E10 (U) = |Uex � Uapp|

0 7.389056099 7.389056023 7.6 · 10�8

0.2 5.911244879 5.911244818 6.1 · 10�8

0.4 4.433433659 4.433433614 4.5 · 10�8

0.6 2.955622440 2.955622409 3.1 · 10�8

0.8 1.477811220 1.477811205 1.5 · 10�8

1.0 0 0 0
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