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Abstract The nature of nonlinear molecular deformations in a homeotropically aligned nematic
liquid crystal (NLC) is presented. We start from the basic dynamical equation for the director axis
of a NLC with elastic deformation and mapped onto a integro-differential perturbed Nonlinear
Schrodinger equation which includes the nonlocal term. By invoking the modified extended tangent
hyperbolic function method aided with symbolic computation, we obtain a series of solitary wave
solutions. Under the influence of the nonlocality induced by the reorientation nonlinearity due to

fluctuations in the molecular orientation, the solitary wave exhibits shape changing property for dif-
ferent choices of parameters. This intriguing property as a result of the relation between the coher-
ence of the solitary deformation and the nonlocality reveals a strong need for a deeper
understanding in the theory of self-localization in NLC systems.

© 2014 Production and hosting by Elsevier B.V. on behalf of University of Bahrain.

1. Introduction

Nonlinear dynamics of liquid crystals has been a subject of
intensive study for more than two decades (de Gennes and
Prost, 1993; Chandrasekhar, 1992; Rodrigueze and Reyes,
1997; Ilichev and Semenov, 1992; Brotherton-Ratcliffe and
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Smith, 1989; Bassom Andrew and Seddougui Sharon, 1995;
Renardy, 1992; Zakharov Vladimir, 2010). Not surprisingly,
in both basic and applied research solitons have been found
to have important effects in the mechanical, hydrodynamical
and thermal properties of these highly nonlinear liquid crystals
and play an important role in the switching mechanism of
some ferroelectric liquid crystal displays (Lam and Prost,
1992; Conti et al., 2003; Lam et al., 1993) . In a nematic liquid
crystal (NLC), the molecules are considered as elongated rods
which are positionally disordered but reveal a long-range
orientational order. This property is described on a mesocopic
level by a unit vector n(r), which is called as the director axis
pointing in the direction of the average molecular alignment.

1815-3852 © 2014 Production and hosting by Elsevier B.V. on behalf of University of Bahrain.
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Due to the absence of a permanent polarization in the nematic
phase the director just indicates the orientation but it has nei-
ther head nor tail. However, the director reorientation or
molecular excitation in NLC systems takes place due to elastic
deformations such as splay, twist and bend (Lin, 1981).

The nonlinearity due to reorientation effect in a nematic
phase leads to numerous effects not observed in any other
types of nonlinearity. Mostly the nonlinear effects are based
on molecular reorientation, and this behavior leads to soliton
and under suitable conditions solitary waves can exist in NLC
systems which has been investigated extensively both from the-
oretical and experimental points of view (Zhu, 1982; Helfrich,
1968; Leger, 1972; Migler and Meyer, 1991; Lin et al., 1985;
Shu and Lin, 1985; Strinic et al., 2009; Peccianti et al., 2010)
. Propagation of solitons in an uniform shearing nematics
was first studied by Lin et al. (Lin, 1981) and Zhu experimen-
tally confirmed the existence of solitary like director wave ex-
cited by a mechanical method (Zhu, 1982). Magnetically
induced solitary waves were found to evolve in a NLC which
was first discovered by Helfrich (Helfrich, 1968) and later con-
firmed by Legar (Leger, 1972). Further Migler and Meyer re-
ported the novel nonlinear dissipative dynamic patterns and
observed several types of soliton structures in the case of
NLC systems under the influence of a continuously rotating
magnetic field (Migler and Meyer, 1991). In addition, the effect
of external field on multisolitons and the relation between ob-
served optical-interference patterns and the director reorienta-
tion have also been investigated. Using the reorientational
nonlinearity (Khoo and Wu, 1997) it is possible to generate
spatial solitons called nematicons, at relatively low powers
(Assanto et al., 2003; Karpierz, 2001). Mclaughlin et al.
(Mclaughlin et al., 1995) have predicted that, owing to the
nonlocality of their nonlinearity, liquid crystals can sustain sin-
gle component higher order mode solitons. The nonlocality of
the material can have profound effects on the properties of the
optical beams and the soliton formation e.g., leading to col-
lapse arrest of finite size beams (Bang et al., 2002), attraction
and formation of bound states of dark solitons (Nikolov
et al., 2004). Lately, it has been verified (Conti et al., 2003) that
the nematicons are exact accessible solitons for the nematic li-
quid crystal exhibiting strongly nonlocal nonlinear behavior.
Single solitons generated by pressure gradients in long and cir-
cular cells of nematics respectively have also been reported re-
cently (Lin et al., 1985). More recently Daniel et al. studied the
director dynamics in a quasi-one-dimensional NLC under elas-
tic deformations in the absence of an external field without
imposing the one constant approximation (Daniel and Gnan-
asekaran, 2005; Daniel et al., 2008). The molecular deforma-
tion in terms of a rotational director axis field is found to
exhibit localized behavior in the form of pulse, hole and shock
as well as solitons (Daniel and Gnanasekaran, 2008). Assanto
et al. studied, the NLC large optical nonlinearity stems from
light-induced molecular reorientation, which can extend well
beyond the excitation region owing to elastic intermolecular
forces and the nonlocal character of the reorientational nonlin-
earity has a striking effect on the propagation of light, and its
fundamental role has been addressed in terms of both soliton
and modulational instability. The soliton formation in the
form of molecular reorientation can tune the nonlocality with
respect to optical nonlinearity (Peccianti et al., 2005).

In the present chapter, we assume that our liquid crystal
system is contained in an extremely narrow container with

Exfremely narrow confainer

TTTTTTTT .,

TZ
W\ I/ \\ \\ | /f

X

Homoefropic
rangement
of molecules

Figure 1 A sketch of the quasi one-dimensional nematic liquid
crystal system contained in an extremely narrow infinite container.

homoetropic alignment of molecules with a strong surface
anchoring at the boundaries as illustrated in Fig. 1. In this case,
the molecular field due to elastic energy is assumed to be per-
pendicular with the director axis which necessarily involves
splay and bend type deformations in addition to twist. We at-
tempt to demonstrate the shape changing director dynamics
by employing the modified extended tangent hyperbolic
(METF) method to solve the associated dynamical equation
and understand the nonlinear dynamics. The plan of the paper
is as follows. We construct the dynamical torque equation rep-
resenting the director dynamics and recast the same to an
equivalent perturbed nonlocal nonlinear Schrodinger (NLS)
equation using the space—curve mapping procedure. We solve
the perturbed integro-differential NLS by means of a comput-
erized symbolic computation using a modified extended tan-
gent-hyperbolic function method and the Jacobi elliptic
function method is employed to construct a series of solitary
wave solutions. In order to better understand the nonlocality in-
duced by the director reorientations of nematic liquid crystal, we
have constructed the component form of director axis using the
Darboux vector transformation. Finally we conclude our results.

2. Director dynamics

Liquid crystals are anisotropic materials with an anisotropy
axis along the molecular orientation. At a given temperature,
NLC molecules fluctuate around the mean direction defined
by the director n(r). The distortion of the molecular alignment
corresponds to the free energy density of NLC (Daniel and
Gnanasekaran, 2004; Simoes, 1997; Kelley and Palffy-Muho-
ray, 1997; Karpierz, 2002) given by

1

S={Ki(V ) + Kaln- (V<)) + Ksfn x (Vxm)’}, (1)

2

where K; represents elastic constants for the three different ba-
sic cannonical deformations such as splay (i = 1), twist (i = 2)
and bend (i=3). These constants are phenomenological
parameters which can be connected with the intermolecular
interaction giving rise to the nematic phase. Usually
K; > K; > K,, but Eq. (1) is simplified by assuming the one-
elastic constant approximation K3 ~ K; ~ K, = K. We ignore
the spatial variations in the degree of orientational order and
describe the NLC in terms of the director rather than the order
parameter tensor. We also ignore the effects of flow and work
in the one-elastic approximation. Under this approximation,
the free energy density given in Eq. (1) takes the simple form

fzg{(Vm)z—ﬁ—(Vxn)z}. (2)

To obtain the equation of motion, it is necessary to describe
the generalized thermodynamic force acting on the director.
We note that the molecular field h,, corresponding to the pure



Shape changing nonlocal molecular deformations in a nematic liquid crystal system 31

elastic  deformations using the Lagrange equation
hi = — % + 0, %', i,j=x,y,z and  g,=0m;  satisfies
h=h— (h-n)n introduced by de Gennes (de Gennes and

Prost, 1993). The quantity (h - n) may be interpreted as the La-
grange multiplier associated with the constraint n?> = 1 and the
condition for equilibrium is that h = 0 or h = (h - n)n. Nematic
liquid crystals are charge carrying fluids with long range, uni-
axial orientation and molecular alignment giving rise to aniso-
tropic, macroscopic properties. By virtue of the anisotropic
properties of nematic liquid crystals, it is advantageous to
study the dynamics of director axis n(r) instead of studying
the dynamics of all the molecules. In the absence of flow, the
director axis n(r) do not remain in the same position but fluc-
tuates about the mean position which is mainly due to the ther-
modynamical force caused by the elastic deformation in
nematics in the form of splay, twist and bend. Away from
the equilibrium in the absence of flow, the thermodynamic
force is balanced by a viscous force and the dynamics of the
director is expressed by
on -

T b, (3)
where v is a viscosity coefficient. In our model, NLC is con-
tained in an extremely narrow container with the two ends
along x-axis open and infinite. Under the assumption the equa-
tion of motion takes the form
on_K [(V’n+ (n- V’n)n]. 4)
oty

The second term in the right hand side of Eq. (4) determines
the Lagrange multipler term (h - n)n which has been introduced
to take care of the director to point parallel to the molecular
field at equilibrium. When the molecular and viscous fields
of the equations of motion do not lie parallel with the director
axis they develop a torque given by

on K
nxa—?:;nxvzn. (5)
It may be noted in Eq. (5) is invariant, when n = —n, and so

that the rod like molecules in NLC do not have head or tail.
Having derived the equation of motion to represent the dynam-
ics now the task ahead is to solve Eq. (5) and to understand the
underlying director oscillations. However, Eq. (5) is a highly
nontrivial vector nonlinear partial differential equation and it
is very difficult to solve it in its natural form. This difficulty
can be overcome by rewriting Eq. (5) in a suitable equivalent
representation before solving. Experience shows that this can
be done by mapping the NLC onto a moving helical space curve
(Lakshmanan, 1977; Lamb, 1976; Lamb, 1977; Pereira Nino,
1978) in E* using a procedure in differential geometry in which
Eq. (5) can be mapped to one of the nonlinear Schrédinger fam-
ily of equations or to its perturbed version. We map the NLC at
a given instant of time onto a moving helical space curve in E*
and a local coordinate system e;, (i = 1,2, 3) is formed on the
space curve by identifying the unit director axis n(x,7) with
the tangent vector e;(x, ) of the space curve and by defining
the unit principal and binormal vector e;(x,¢) and e3(x,7?)
respectively in the usual way. The change in the orientation
of the orthogonal trihedral e;(x, ), (i = 1,2,3) which defines
the space curve uniquely within rigid motions is determined
by Serret—Frenet (S-F) equations (Kavitha and Daniel, 2003;
Kavitha et al., 2010; Lakshmanan, 1978; Lakshmanan, 1979)

élx 0 K 0 él
62,»( = —K 0 T 62 5 (6)
63)( 0 -1t 0 63

where k = (ey, - e.x)% and 1 = K%el - (e1x X eyyy) are the curva-
ture and torsion of the space curve. In view of the above
identification and upon using the S-F Eq. (6), e; can be found
and the trihedral evolves as

e, =Qxe, Q=we + wmer+ wses, (7)

where

w, = m7 w, = —kt and w3 = k,. Here the suffices ¢
and x represent partial derivatives with respect to ¢ and x.
The following conditions for the compatibility of S-F Egs.

(6) of the trihedron

(ei,\‘)[ - (eit)xa i= 17273a (8)
lead to the following evolution equations for the curvature and
torsion of the space curve

7 2

%K, = Kyx — KT7, (9)

v 2 1 2
oo = KT + (E (kT )V\A)x. (10)

In order to identify the set of coupled Eqgs. (9) and (10) with
a more standard nonlinear partial differential equation, we
make the following complex transformation

W(x,1) =%K(x7 1) exp {1/ ‘c(x',l)dx'}, (11)

—o0

RY

with appropriate rescaling of time and spatial variable as
t— — 4K v ux and Yy— i, and we obtain the following
integro-differential nonlinear Schrédinger equation

i 200 [ e -3 =0 (12)

Eq. (12) is a perturbed nonlinear nonlocal Schrédinger
equation that represents the director dynamics of our NLC
system. When p = 0, Eq. (12) reduces to the well-known com-
pletely integrable cubic nonlinear Schrodinger equation which
possesses N-soliton solutions (Ablowitz and Clarkson, 1991;
Matveev and Salle, 1991). Nematic liquid crystals have a
highly nonlocal nonlinearity (Conti et al., 2003) associated
with the orientation of the dipole induced on each individual
liquid crystal molecule (Peccianti et al., 2005). The nonlinear
response of liquid crystals can be highly nonlocal, a phenome-
non that dramatically affects the excitation dynamics. The
high anisotropy of physical properties as well as the collective
behavior of nematic molecules lead to nonlinear oscillations of
the director axis n(r) governed by solitons. It might be men-
tioned that Eq. (12) resembles the damped NLS discussed by
Pereira and Stenflo (Pereira and Stenflo, 1977) except for the
nonlocal term. In Eq. (12), u represents the strength of non-
local nonlinearity arises especially due to the molecular defor-
mations and director oscillations. In Eq. (11), u represents the
degree of nonlocal nonlinearity and the nonlocality can dra-
matically modify the soliton property. This nonlocal nature of-
ten results from transport processes such as atom diffusion,
heat transfer, drift of electric charges (Suter and Blasberg,
1993; Gordon et al., 1965) and in this case it is induced by a
long range molecular interactions in a NLC, which exhibit ori-
entational nonlinearity (Peccianti et al., 2000; Pecseli and
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Rasmussen, 1980; Perez-Garcia et al., 2000). Spatial nonlocal-
ity of the nonlinear response is a generic property of a wide
range of physical systems, which manifests itself in new and
exciting properties of nonlinear waves. This nonlocality im-
plies that the response of the NLC medium at a given point de-
pends not only on the wave function at that point (as in local
media), but also on the wave function in its vicinity. In various
areas of applied nonlinear science, nonlocality plays a relevant
role and radically affects the underlying physics. Some striking
evidences are found in plasma physics (Pecseli and Rasmussen,
1980), in Bose-Einstein condensates (BEC) (Perez-Garcia
et al., 2000). The nonlocality comes into play when underlying
transport processes such as diffusion of atoms in a gas (Suter
and Blasberg, 1993), heat conduction in thermal media (Litvak
et al., 1975; Dreischuh et al., 1999), charge carrier transfer in
photorefractive crystals (Segev et al., 1992; Duree et al.,
1993) or long range interactions such as long range electro-
static interaction in nematic liquid crystals (Conti et al.,
2003; Assanto and Peccianti, 2003) and many body interaction
in Bose—Einstein condensates (Perez-Garcia et al., 2000; Cue-
vas et al., 2009), where contrary to the prediction of purely lo-
cal nonlinear models, nonlocality may give rise to or prevent,
the collapse of a wave. In nonlinear optics, particularly when
dealing with the self-localization and solitary waves, nonlocal-
ity is often associated to time-domain phenomena through a
retarded response and the spatially nonlocal effects have been
associated to photorefractive and thermal or diffusive pro-
cesses (Abe and Ogura, 1998). In this context, we would like
to investigate the effect of nonlocal term on the solitary direc-
tor oscillations by constructing an exact solution to Eq. (12)
using computational algebraic methods. It is a standard fea-
ture of nonlinear systems that exact analytic solutions are pos-
sible only in exceptional cases. In order to analyze the nature
of nonlinear excitations of the system under consideration,
we are often forced to attempt approximation methods. More
recently, searching for exact solutions of nonlinear problems
has attracted a considerable amount of research work and a
series of solutions can be found using symbolic computation.

3. Shape changing solitary oscillations

Nonlinear evolution equations are often used as models to de-
scribe complex phenomena in various fields of sciences, espe-
cially in physics and engineering. One of the basic physical
problems for those models is to find their traveling wave solu-
tions. During the past decades, quite a few methods for dealing
with traveling wave solutions of those nonlinear equations
have been proposed (Mohajer, 2009; Camacho et al., 2011;
Matioc, 2012; Matioc and Matioc, 2012; Deconinck, 2012;
Raju and Panigrahi, 2011; Andriopoulos et al., 2009; Zhang,
2009; Zhang, 2008; Conde et al., 2012; Sinelshchikov, 2010;
Kavitha et al., 2011a, 2013; Darvishi et al., 2012). The various
powerful methods for obtaining solitary wave solutions have
been proposed such as Hirota’s bilinear method, Painlevé
expansions, the Inverse Scattering Transform, homogeneous
balance method, F-expansion method, Jacobi-elliptic function
method and the first integral method (Wang, 1996; Fan, 2000;
Malfliet, 1992; Fan, 2003; El-wakil et al., 2003; Taghizadeh
et al., 2011). Recently tanh method (Malfliet, 1992) has been
proposed to find the exact solutions to nonlinear evolution

equations. Later, Fan (2003) has proposed an extended
tanh-function method and obtained new traveling wave solu-
tions that cannot be obtained by the tanh-function method.
Most recently, El-Wakil (El-wakil et al., 2003) modified the ex-
tended tanh-function method and obtained some new exact
solutions. Most recently Soliman (Soliman, 2006) and El-Wa-
kil (El-Wakil et al., 2005) modified the extended tanh-function
method and obtained some new exact traveling wave solutions.
We employ the modified extended tanh-function (METF)
method (Soliman, 2006; ElI-Wakil et al., 2005; Kavitha et al.,
2011b, 2012) to solve the Eq. (12) which governs the dynamics
of director oscillations with elastic deformations such as splay,
twist and bend. For convenience we substitute y = u + iv, and
assume (&) with &(x, 1) = x — ¢z in Eq. (12) and c is the veloc-
ity of the traveling wave. Upon separating the real and imag-
inary parts of the resultant equation, we obtain the following
set of ordinary differential equations

eve + uge + 2(ud +vu) + puR = 0, (13)
R+ 2(vve —uug) =0, (14)
— cttg + vee + 2V + ) + R = 0, (15)
A(uzy —uve) =0, (16)
where, R: = —2(vv; — uus)+4i(usv — uve). Substituting Eq.

(16) in Rq, it is verified that Eq. (14) is automatically satisfied.
Further, Eq. (16) is directly integrated to obtain u = Cv, where
C is the constant of integration. Thus, the solution i can be
evaluated using Eq. (13) or Eq. (15) with the relation
u = Cv. We have considered Eq. (13) and employed the tanh
function method as given below. Let us introduce the follow-
ing ansatz

/
V(&) = ag Z ¢ +bip”") (17)
and
o
e s+ ¢, (18)

where s is the constant to be determined later. The value of i
can be found by inserting Eqs. (17) and (18) in Eq. (13) and
balancing the higher-order linear term with the nonlinear
terms yielding i = 1. Upon substituting Eqgs. (17) and (18) in
the ordinary differential Eqs. (13), will yield a system of alge-
braic equations with respect to a;, b; and s. The system of equa-
tions is further solved using Matlab and we obtain
Case: 1

1 c

PR , 19
: 3 (Crag(2CT + uCi — p+2)) (19)
~cayCy (uCy + 6ay — 3uag + 643C7 +3uCia?) (20)
 (~6a3Chu+ 6uCia; — 1283 CH — 12a3CF + ¢2)
and

33 C — 612Cia + 12 C,Cr — 12 Cy + 3
+12a2CHu 4+ 2C3puCy — 12042 + 2uCy + 1242 C
+24a3CT + 12a3) @} C;

(=62 Clu+ 6uCiat — 12a2Ct — 12a2C% + ¢2)

2n

Upon substituting Egs. (19)—(21) in Eq. (17), the solution
takes the following form
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33palCl — 612 Cra} + 12 CoCr — 12Ch + 312 a)
+122CH i+ 2C2uCy — 12ud + 2uCs + 1282C
1 ¢ +24a2C} + 12a2)a} C;
3 (Ciag(2CT + uCi — n+2)) (=643 Ciu+ 6uC3a} — 12a2CH — 123 C3 + ¢2)

Y(x,t) =D< ap+ —

3312aC — 612Cla + 1P CrCl — 12Cs + 31l
+12a2Clp+ 2CTuCs — 12ua 4 2uCy + 1242C}
+24a3CT + 12a3) a3 C;

X tan X (x —ct
(—6a3Clp+ 6uCia} — 123 Cy — 12a3C + ¢2) ( )
3B31PaC — 612C3a + 12 C,Ch — 12 Cy + 31
+12a2Clu 4 2CTuCy — 12ua 4 2uCy + 124%C}
cayC, (uCy + 6a% — 3ua + 6aC* + 3uC3a?) +24a2CT + 12a2)a2 C}

(—6a2Clu+ 6uCoa2 — 1282CT — 122C + )\ (—=6a2Ciu+ 6uCoaz — 1222C — 12a2C: + )

3312aC — 612Cla + 1P CyCh — 12Cs + 3Pl
+122CHu + 2C3uCy — 12ud + 2uCs + 128C

+24a@} C + 12a) a3 C*

al AR 2
—6a}Clu+ 6pCla; — 2aCH — 128C + & (r =) (22)
0 0 ¢ o0&

X arctan

where D = (1 + Ci).
Case: 2

(—24uClal + 4842 Cl — 612 CIal Cy + 12a} CuCs
+612CraCl + 12uCra@2 Cr + 3uClaie® + 612 Cral
712/12C‘]1a8 + 24agC‘f,u + 1Cy® — 3paic® + 651(2)Cfc2
1 +612Coaf + 2442 CO + 24a}CT + 6ac?) (23)
6 c(2CT 4+ uCt — p+2)(uCs + 8a} — duai + 8a3CT + 4uCiad)ayCy)’
—2C,ape(uCy + 843 — 4uak + 8aXCl + 4uClal) (24)
(—18uCia} + 36a3C + 18a3Ciu + 3643 C + )’
—6(4P@C + 12C,Ch = 812 Clal — 12 Cy + 4P}
+16a2Clu + 2C3uCy + 2uCs — 162 + 1642 C
+32a3CT + 16a3)a; C; . 25)
(—18uCla} + 3643 C} + 18a3Clit + 36a3C + ¢2)

a, =

ay =
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Also upon using Egs. (23)-(25) in Eq. (17), we found

(—24uClal + 4843 Cl — 642 Cia Cr + 123 CLuCs
+612Cra} CF +12uCr a2 C2 +3uCr a2 + 642 Clal —6(41PA2C} + 12 CCh =812 Clak — 12 Cy + 4122
—1242Clad 42443 CO 4 uCrc? = 3udd® + 643 C2 +16a3Cp+2CTuCs +2uC — 16pa3 + 16a3CY
Y(x,0)=D a0+1>< 642 Cld + 244 C + 2445C] + 645?) _ +3245C1 + 1643)a; C
’ 6" c(2C 4+ puC? — pu+2)(uCy + 8a3 — duat +8a3 C* +4uC3a})ay Cy) (—18uC3a} +36a2Ct + 182 Chu+3642C3 +¢2)
—6(412aCl + 12 CrCr = 812 Clak — 12 Cr +412a3
F16@2CH u+2C uCy +2uCy — 16pa2 + 1642 C
3282 C +1643)ai Ch
x tanh ¢ )G, x (x—ct)

(—18uC3 a3 +36a2CH + 18a2 Ct u+36a2C3 + ¢2)

—6(42aCH+ 12 CLCh =812 CRa} — 12 Cy + 4123

+1642C e+ 2C puCs +2uCs — 16pa + 1642 C}

—2C apc(UCy 4843 — 4udl 483 C 4-4uCia?) 3 +32a3C} + 16a3)a; Cf
(—18uC3 a2 + 3642 Ct + 18@2Clu+ 362 C2 + ) (—18uC3a2 + 3622 Ct + 1802 Clu+ 3622 C + ¢2)
—6(412a2Cl + 12 CLCr = 812 Cral — 12 Cr + 442
+16a2Cip+2CiuCy +2uC — 162 + 1643 C)
+3245C} +1643)a; C
x arctanh | | — > i )% Cy > x(x—ct) | p. (26)
(—18uC2a% +3643C + 183 Clpu+ 3643 C2 + ¢2)
We have plotted the solution Eq. (22) and obtained the ef- @ — bt (29)
fect of nonlocality on the director deformation on the NLC dy ’

system. It is interesting to note that, when the nonlocality
parameter p increases from g = 1 to u = 8, the highly localized
cusp-like soliton significantly disintegrates to a multiple
humped localized soliton pulses as displayed in Fig. 2. We also
have plotted the other case of solution Eq. (26) in Fig. 3, which
displays the singular soliton solutions with decreasing ampli-
tude when u increases from pu = 0.1 to u = 2.

Set: B

In order to analyze the other possible solutions, we assume

m

/
w@=ar+Yy_ (ad' +bip™), (&) =bo+>_ (;¢/ +di$p”), (27)
i=1 J=1

R(é) ZCO+Z (ek(/)k +f)((/)7k)7 (28)

k=1

and

where b is the parameter to be determined later. The parameters
/,m and n can be found by inserting Eqs. (27)—-(29) in Egs. (13)—
(16) and balancing the higher-order linear term with the nonlin-
ear terms yielding / = m = 1 and n = 2. Upon substituting Eqs.
(27)—(29) in the ordinary differential Egs. (13)—(16), will yield a
system of algebraic equations with respect to a;, b, b;, ¢;, d;, ex
and f, since all the coefficients of ¢, ¢’ and ¢* have to vanish.
We are interested to solve the system of equations for many
choices of parameters in the following two different cases.

3.1. Case — A

In this case we choose the set of parameters a;,c;,e; and e,
vanish in order to satisfy Eqgs. (13)-(16) and with the aid of
MAPLE, we get a system of algebraic equations for
ag, by, b, by, o, dy, f, and f, as follows
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Figure 2 Snapshots of NLC deformation for various values of nonlocal parameters = 1,1.5 and u = 8.

—cdbp? — cd, 4+ 2b,b* ¢ + 2b1bd " + 2a + 261 —fibd 2 — 11 = 2f,bd ™ = 2fs57" — 2abib T — 2a0b,
+6apb’p > + 6a2bip " + 2a0h] + 261 + 2apd i —2b3bp™ —2bT T — 2bodibdp T — 2body — 2
+2bi1di > + daghodi ' + 4bobidi T + pagco + paof; ! -2 =0, (31)

+ a7+ peobi ¢!+ pbifi 7+ pbifa7 =0, (30)
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Figure 3  Snapshots of singular deformation in NLC molecules for various values of u=0.1,0.8 and p = 2.

chibp ™ + chy +2d,b7 ¢ + 2dibd" + 2b) + 2d 7
+ 6bodrp > + 6bdy "+ 2aby + 2a2dip! + 2bobid
+ 20Ty + dagboby ' + dagh dy T + ubgcy + pbofi
+ ubofod 7 + peodi ™! + pdifi 7+ pdi o =0, (32)

4(—bobibdp™ — boby + apdib™* + apd;) = 0. (33)

Further solving the system of equations using symbolic
computation, we can distinguish two types of solutions for this
case as follows

3.1.1. Solution — (i)

We collect the coefficients at different powers of ¢ and again
solving the same we obtain
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Figure 4 Snapshots of soliton changing shape from kink-anti-soliton and its contour plots (a—d) for Eq. (35) and anti-kink to anti-
soliton and its contour plots (e-h) for Eq. (36).

1 2d% + 2b; 2a%+2b;
b = pay + uby — 3ay — 3by — 5 Heo, by = —bow» Y(x, ) =ao+ (-%M)
2a% + 2b% + pco (2a% + 2b5 + pco)(al + by)
_ _22% 0 _ 0 0 0T % 1
dy by e , J1=2bo e ) x {\/uag + ubg —3a; —3by — K<
B (243 + 25 + l‘co)z(a% +by) (34) 5 5, 1 -
fr=-by 2 . x tan | |/ pag + pby — 3a3 — 3b; —Euco(x— ct)

Also upon using Eq. (34) in Egs. (27)-(29), we elucidate 224 + 2B + pco
W(x, 1) = u(&)+iv(€) and R(x,1) +i{bo+ (—bo%)

aopc
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and its contour plots (e-h) for Eq. (39).

1
X \/,uaé + ubg —3a — 3b; —5Hco

1
X tan \/uaﬁ + ubg —3a3 — 3by — E,uco(x —ct) ,

=]
=)

(e)

L/

TT T T T T T T T T T T T T T T T T 11T
x 10 £ 10 5 0 5 -10

(f)

&n

FT T3 T FET T T T 0T EL O

10 5 0 5 -10

(2)

B e

-10 5 0 5 10

(h)

TT T T T T T T T T T T T T T T T T TT7

-10 5 0 5 10

Snapshots of soliton changing shape from anti-kink to anti-soliton and its contour plots (a—d) for Eq. (38) and cusplike-soliton

and

(2a3 +2b7 + picy) (a3 +b7)
apgc

-1
X tan <\/ua%+,ubé —3a3—3b; %uco(xct)) }

1
R(x,1)=co+2by {\/ua§+ub§—3a§—3b§—§uco
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2 2 2
2 (21203 + jico) (a3 + ;)
(] B2c?
0

: I
{\/yag + ub} —3a2 - 3b} —5Hco

-2
X tan <\/,ua(2]+,ubé—3aé—3b§—;;¢co(x—ct)>} . (36)

Egs. (35) and (36) represent the exact solitary wave solu-
tions in the form of kink excitations for the dynamical
equation governing the director fluctuations due to molecu-
lar reorientation in NLC systems. In Fig. 4, we have plot-
ted the solutions Y (x, ) and R(x,r) represented in Egs. (35)
and (36) by choosing ay = 0.001,hy =0.01 and ¢y =c=1
for various values of the parameter p which physically sig-
nifies the role of nonlinear nonlocal term. From the figures,
it is evident that any increment in the degree of nonlocality
(1 > 0) enables the kink-like excitation to gradually change
its shape from kink to anti-soliton as depicted in Fig. 4(a—
d) and (e-h) depicts the change from anti-kink to anti-sol-
iton, a more localized coherent soliton exhibiting shape
changing property. It should be noted from the correspond-
ing contour plots that the excitations are trapped due to
reorientation nonlinearity so that it is highly localized and
intact. In the contour plots the brighter regions with red,
yellow and green colors represent the maximum amplitude
regions and the darker regions with blue and pink colors
represent the minimum or zero amplitude of the soliton.
A noteworthy characteristic of these solitons is that the de-
gree of coherence varies with the nonlocality parameter u.
The properties of nonlocal spatial incoherent soliton solu-
tions have been investigated in NLC cells and the effect
of nonlocality on the coherence properties of this self-
trapped states have been studied in detail. In the case of
coherent nematicons, the optically induced index profile
tends to be broader than the soliton intensity profile
depending on the degree of nonlocality thus leading to long
range interactions in NLC systems (Peccianti et al., 2002;
Conti et al., 2003). The effects of nonlocality on coherent
solitons, modulational instability and soliton interactions
have also been investigated for several types of nonlocal re-
sponse functions (Peccianti et al., 2004).

3.1.2. Solution — (ii)

In a similar way, we compute another set of solutions for
b,by,dy.f,.f> as follows

1
b= — 5 HCo + ua + ubl — 3a; — 3b;,

a(z)c(fuco +2ua + 2/4/7(2, — 6a} — 6b(2))

b= 6bo(—2by — 2a3 + pai + pby)
i = age(peo + 2ual + 2uby — 6a; — 6by)
6(—2by — 243 + pay + pby)
. lage(—peo + 2ua + 2uby — 643 — 6b;)
fr=- 3 bo(n—2) 7
e a3 (—pco + 2puak + 2uby — 643 — 6b(2))2) . (37)

36(i — 2)(—2b; — 243 + pag + pby)by

Upon substituting Eq. (37) in Egs. (27)—(29), the solution
takes the following form

V) —aot ade(—peo +2ual +2puby — 6a; — 6by)
U 6bo (=252 — 283+ + by

1
X{\/zuco+ya5+ubg3a%3bg

-1
1
X tan (\/2,Ltco + pag + uby — 3 Sb(z)(.xct)) }

+i{bo N <aoc(,uco +2ua +2uby — 643 — 6b(2))>

6(—2b; —2a} + pag + pby)

1
X [\/—2,uc0+,ua§ + pby —3a3 —3b;

-1
1
X tan <\/—§,uco+,ua(2,+ubé—3a§—3b§(x—ct)>} ,

(38)
and
—age(—peo +2ual + 2piby — 6% — 6by)
R(x,t)=co+
) =c ( 3bo(n—2)
1
X {\/_E’MO + pag + pby — 3a3 —3b;
; -1
X tan <\/—§yco + pa + b —3a2 — 3b%(x — ct)> }
(@i (—peo+ 2pag + 2uby — 6ag — 6h2)’
32(p—2)(=2b5 — 2a§ + pay + by )b
1 b)
X \/7§uco + pa} + pby —3a; —3b;
(39)

2
1
X tan (\/2/160 + pa} + pby — 3 Sb(z)(.xct)) } :

The above solitary solution Eq. (38) also exhibits shape
changing property. We have plotted Eq. (38) in Fig. 5(a—d)
by choosing the parametric values ay, = by =0.01 and
¢o = c=1 and the corresponding contour plots are also de-
picted. The parameter u can be considered as a measure of
the nonlocality of this nonlinear medium which is also evident
from Fig. 5. As portrayed in Fig. 5(a—d), for p = 0.03, the
director fluctuations represented in Eq. (38) are governed by
anti-kink soliton and when p is increased further the localized
excitations continuously changes its shape and when p = 0.2, it
takes the form of a coherent profile of anti-soliton. The shape
changing property is also evident from the contour plots and
when p = 0.2 the diagonal blue region with pink periodic strips
represents the peak of the coherent profile. Similarly, from
Fig. 5S(e-h) for Eq. (39), one can observe how the molecular re-
orientational nonlinearity balances with the nonlocal parame-
ter and settles up in the cusp-soliton (Kavitha et al., 2009a)
singular profile when u = 2.

3.2. Case — B

In this case, the parameters by, d,, f, and f, vanishes, on insert-
ing Egs. (27)-(29) in Egs. (13)—(16) we get an algebraic set of
equations as follows
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Figure 6 Snapshots of soliton changing shape from periodic line solitons to anti-soliton and its contour plots (a—d) for Eq. (45) and anti-
soliton to anti-soliton via anti-kink soliton and its contour plots (e-h) for Eq. (46).

cerb + cerd® + 2a1bp" + 2a,¢° + 261?(,‘[)3 + 2a3 + 6a0af¢>2
+ 6a§a1¢1 + 2a0b(2) + 2a0c%qb2 + 2apboci ' + Zalb(z)(f’l
+2a1c1¢” + 4aei by’ + pagco + pager ' + pager

+ pareod' + pare ¢’ + parerdy’ =0, (40)

erh +e1¢” + 2e,bd" + 229 + daparb' + daga, p® + 4a3bd’

+ 4afq54 + 4b0c1b¢>1 + 4bocl¢3 + 4cqu$2 + 4cf¢)4 =0, (41)

—carh — cai* + 2¢1bp" + 2¢1¢° + 2b3 + 2cf¢3
+ 6b0C%¢2 + 3b501¢1 +2a2ho + 261%170(1’2 + daghoa '
+2dci¢" + 2dici ¢’ + dagarcip” + pubgerdy” + pcoci '

+ pere ¢’ + pesci ¢’ =0, (42)

4((l|b0b =+ bo(ll ¢2 — aoClb — 30C1¢2) =0. (43)

Solving the system of equations with the aid of MAPLE, we
find the two types of solutions for b, ay, c;,e; and e;.
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Figure 7 Snapshots of breathing soliton and its contour plots (a)-(c) for Eq. (48) and shape changing anti-kink to anti-soliton (d)—(f)
solutions for Eq. (49).
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3.2.1. Solution-(i)

We collect the coefficients for different powers of ¢ and solv-
ing the same we obtain

by (—6b3 — 12a§bg — ,ucobé +4uaicy+ ,uzcé)
—2by+2cual + 2cbéaou + 4b3 +8boal + 2bycopt’

— by + 2epal + 2chy ag + 4by -+ 8byad 4-2byco

“=- c(=3bg + pcy) '
= —by —by+2cpd +2cb§ﬂa02+ 4b} 4 8byd? +2hgco,u7
cay(—3by+ ucy)
24by +72b3a3 + 12bycop+ 12a3bocop + 18b5cad i — 6ai¢*by
+6bgagen+12aSep+ 2ehi il agey + 48akby — by ey
o +2cpPadeo — 3czb3
e peag(—3b5 + ueo) '
o (—c2bo + 2cpay + 2eby pag + 4by + 8boal + 2bocop) (at + by)

cao(—3b3 4 uco)
(44)
Also upon using Eq. (44) in Egs. (27)—(29), we elucidate

) =a (7(?2b0 +2cpal +2ebi pay + 4by +8by +2b000,u)
X, 1) =day—

0(73bf,+;4c0)

o bo(—6bg — 12a2b} — pcobl +4udicy + 2 c2)
— by +2cpay + 2ebyagu+4by +8boag + 2boco

bo(—6bp — 12a3 b2 — pcob’ 4 4ud? 22
« tanh 0 (—6b; aoboﬁ ey o': yaocu;l—u t) (x—et)
—2by+2cpag + 2chyag pu+4by +8boal + 2bycopt

bo(—c2by +2cpad +2cby pag +4by + 8byal +2byco )

+i
cay(—3by+ pey)

by —

" bo(—6by — 12a3by — pcoby +4padco + 12 cl)
— by + 2cpad + 2chyagp+4by + 8boai +2bycopt

«tanh bo(—6by — ‘120317(2): ueoby t4,ua(2)co +p2cd) <e—ct) ||,
—2bg + 2cpay + 2cbyag p+4by + 8byad 4 2bycop

(45)
and
243 +72b30 + 12B} cop+ 12abycot— 3¢2by + 18b2cai
—6a}c*by +6bgaoc;4+ 1245+ 4848 by — by pcy
2, 2.3 2 bZ 2
R(x,1)=co+ +2cpayeo + 2ebypagcy

picay(—3b; 4 pico)

by (76bg —12a2b% — pcob} +duaico + 12 )
«d—
— by +2epad +2chyag p+4by + 8boa3 +2bycopt

< tanh by (—6bj — jzaﬁbgz— peoby t dpaiey + ) (e
—c2by + 2cpay +2ebyag p+4by +8bgag + 2boco

N 2(=c?by +2cpa + 2cby pag +4by +8boag + 2boco ) (a3 + by)
cag(—3b% + uey)

by (—6by — 12a3by — pcoby +4pageo + 12c3)
X - 2
—2bg + 2cpay + 2chyagu +4h3 +8bya3 +2bycou

ry 22 B P > ’
« tanth by (—6by — 12(15/7027 ucoby +34,uaacg +12c3) X (x—cf) ‘
—2by + 2cpay + 2cbyag p+ 4by + 8bya} + 2bycou

(46)

More interestingly again the solution Eq. (45) exhibits
shape changing property for the choices of parameters
ay=by=cy=1.1 and ¢=0.0004. From the plots in
Fig. 6(a—d), one can infer that when p = 0.5, the solution suf-
fers with multiple-periodic line solitonic oscillations. When the
strength of the nonlocal term increases more and more, leading
further to the shape of anti-soliton at u = 3.4. A close inspec-
tion on the contour plots as presented in Fig. 6(a—d) reveals
that the green stripes represent the peaks of the soliton and
ultimately leading to a anti-soliton with single pink peak with
the higher amplitude red tails. In a similar manner, the solu-
tion for R(x,?) from Eq. (46) is also portrayed in Fig. 6(e-h)
for the choices of ¢y = by = ¢ = 0.1 and ¢y = 0.2 and it is evi-
dent that in this case the shape changing occurs from anti-sol-
iton to anti-soliton via anti-kink like director oscillations.
From the contours depicted in Fig. 6(e-h), it is clear that the
gradient amplitude distribution at Fig. 6(e) leads gradually
to the exact anti-kink with two distinguished maximum red
and minimum amplitude pink regions as depicted in
Fig. 6(f). From this study, one can conclude that the nonlocal-
ity arising from the long-range molecular interaction charac-
teristic of NLC media could favor shape changing molecular
deformations. This shape changing molecular deformations
have also been reported by Srivasta et al. with a different mod-
el of study (Srivasta and Ranganath, 2001). Recently, Conti et
al. (Conti et al., 2003) have presented the theory of spatial sol-
itary waves in nonlocal NLC media and reported self-trapping
of light. The same has been predicted in nematic media, where
the reorientation nonlinearity is saturable and nonlocal, it gen-
erally stabilizes self focusing and supports the creation of ro-
bust spatial solitons (Synder et al., 1995). In a different
context, it has been demonstrated that the spin soliton repre-
senting the dynamics of ferromagnetic spin chain admits shape
changing during its evolution. This shape changing property
can be exploited to reverse the magnetization without loss of
energy which may have potential applications in magnetic
memory and recording devices (Kavitha et al., 2009b; Daniel
and Kavitha, 2002)

3.2.2. Solution — (ii)
In a similar way, we compute another set of solutions for
b,ay,c, e, er as follows
_ —bo(—2b§+co,u) (2b§+4a§+yco)
—2by+2cpal + 2cb:')pa0 + 4b3 +8boa3 +2bgcou ’

— by +2cual + 2eb} pag 4 4b3 + 8boad 4 2ucy
¢(—2bg + pcy)

ay=— )
by (fczbo +2cpay + 2cb§,uao + 4b(3) + 8boa§ + 2b0,uco)

a=- c(f2b§+,uco)ag

)

24by +72by a3 + 12ucobo @l — 6a3 by + 12a5cq

+20bgcad u+48aihy — by
ao,uc(—Zb(z) + pco)

e =

2(—cbo +2calp+2chyaopu+4by +8boa +2bopicy ) (a2 + by )
c(—Zbg +,uco)ao '

(47)

€)=

Upon substituting Eq. (47) in Egs. (27)—-(29), the solution
takes the following form
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—2by + 2eudy + 2eby pag +4by + 8boag + 2picy
(=27 + pey)

\/ —by(—2B% + copt) (257 +4a3 + picy)

w(x,0)=ao+

— by + 2cpay + 2cbg pay + 4by + 8boag + 2byco

—bo (—2b; + cor) (2b; + 4a}
x tanh o 0+‘2°“)( OJ: a + o) (x—ct)
—2by + 2cpai + 2chbypay +4by + 8hoaz +2bycout
Lo (—=?bo + 2cpay + 2eby pag +4b; + 8boal + 2bo picy )
e(—2b3 4 uco)ay

§ —bo(=2b5 + cop) (26 +4ad + pcy)
— 2Dy + 2cpal + 2chy pag + 4by + 8boad + 2byco

+1 bo

—bo(=2b3 2b; +4ad
x tanh o 0+020'“)( Ot ”0+'“f°) (x—ct) ||,
—2bg + 2cpag + 2¢by pag +4by + 8boal + 2bycopt
(48)

and
{24173 +72bya3 +12pcoboal — 6a3c> by + 12agcﬂ}

+20bycayp+48agby — 4c*b;

R(x,t)=co+ 3
rn=a agpc(—2by + pcy)

o —by (72/7:‘] + Cg,u) (2bﬁ +4al+ ,uco)
—2by+ 2epa +2cby pag +4by + 8byag + 2bycopt

—bo(—2bg + cop) (2b5 +4a} +
x tanh 0t O-H;)'u)( Ot G+ 1o (x—ct)
—2bo+ 2cpay + 2chy pay +4by + 8boag + 2boco

| 2(=¢by +2cajpt 2cbyag pt 4by + 8boad + 2boucy) (af +by)
I (2B + ueo)ay

o —by (72173 +cop) (2b§ +4a3 + ey
— by + 2cpad +2cby pag +4by + 8byag +2bycopt

—by (—2b3 + copt) (267 +4a} + e
x tanh at ”+C7UH)( OJ: @+ pco) x (x—ct) .
— by + 2cpay + 2cby pay +4by +8boad +2bgco

(49)

In this case, the solution ¥(x,7) as represented in Eq.
(48), exhibits unusual breather like director oscillations
which are both temporally and spatially periodic modes as
depicted in Fig. 7(a—c). As the value of u increases the prei-
odicity becomes large leading to the reduction in the
number of breathing modes which can be seen more clearly
in the corresponding contour plots. Eventually, the solution
R(x,t) in Eq. (49) is demonstrating the shape changing
from antikink to antisoliton excitations as depicted in
Fig. 7(d-f).

4. Conclusions

The exact solitary wave solutions for the nonlocal nonlinear
Schrédinger equations governing the molecular deformations
in NLC have been constructed using symbolic computation.
As a physical relevance, the effect of nonlocal term on the sol-
itary deformation profile leading to the shape changing prop-
erty has been studied for different cases. The presented
intriguing unifying shape changing character of the molecular
deformations in NLC systems shines new light on self-localiza-
tion in liquid crystals and may be exploited for NLC display
devices. We believe that this will stimulate new experiments

towards a deeper understanding of self-trapping and
self-localization in highly nonlocal nonlinear NLC media and
development of novel all-optical and switching devices.
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