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Abstract In this article, the modified extended tanh-function method is employed to solve
fractional partial differential equations in the sense of the modified Riemann—Liouville derivative.
Based on a nonlinear fractional complex transformation, certain fractional partial differential
equations can be turned into nonlinear ordinary differential equations of integer orders. For
illustrating the validity of this method, we apply it to four nonlinear equations namely, the
space-time fractional generalized nonlinear Hirota—Satsuma coupled KdV equations, the space—
time fractional nonlinear Whitham—Broer—Kaup equations, the space-time fractional nonlinear
coupled Burgers equations and the space—time fractional nonlinear coupled mKdV equations.

© 2014 Production and hosting by Elsevier B.V. on behalf of University of Bahrain.

1. Introduction

Fractional differential equations are the generalizations of
classical differential equations with integer orders. In recent
years, nonlinear fractional differential equations in mathemat-
ical physics are playing a major role in various fields, such as
physics, biology, engineering, signal processing, and control
theory, finance and fractal dynamics (Miller and Ross, 1993;
Kilbas et al., 2006; Podlubny, 1999). Finding approximate
and exact solutions to the fractional differential equations is
an important task. A large amount of literatures were devel-
oped concerning the solutions of the fractional differential
equations in nonlinear dynamics (El-sayed et al., 2009). Many
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powerful and efficient methods have been proposed to obtain
the numerical and exact solutions of fractional differential
equations. For example, these methods include the variational
iteration method (Safari et al., 2009); Wu and Lee, 2010; Yang
and Baleanu, 2012; Guo and Mei, 2011), the Lagrange charac-
teristic method (Jumarie, 2006a), the homotopy analysis
method (Song and Zhang, 2009), the Adomian decomposition
method (El-Sayed and Gaber, 2006; El-sayed et al., 2010), the
homotopy perturbation method (He, 1999; He, 2000; Yildirim
and Gulkanat, 2010), the differential transformation method
(Odibat and Momani, 2008), the finite difference method
(Cui, 2009), the finite element method (Huang et al., 2009),
the fractional sub-equation method (Zhang and Zhang, 2011;
Guo et al., 2012; Lu, 2012), the (G'/G)-expansion method
(Zheng, 2012; Gepreel and Omran, 2011; Younis and Zafar,
2013), the modified extended tanh-function method
(El-Wakil et al., 2005; El-Wakil et al., 2002; Soliman, 2006;
Dai and Wang, 2014), the fractional complex transformation

1815-3852 © 2014 Production and hosting by Elsevier B.V. on behalf of University of Bahrain.
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method (Li and He, 2010; Li, 2010; He and Li, Li et al., 2012;
Hristov, 2010), the exp-function method (He, 2013), the simi-
larity transformation method (Dai et al., 2013; Zhu, 2013),
the Hirota method (Liu et al., 2013) and so on.

The objective of this paper is to apply the modified
extended tanh-function method for solving fractional
partial differential equations in the sense of the modified
Riemann-Liouville derivative which has been derived by
(Jumarie, 2006b). These equations can be reduced into nonlin-
ear ordinary differential equations (ODE) with integer orders
using some fractional complex transformations. Jumarie’s
modified Riemann-Liouville derivative of order o is defined
by the following expression:

T & Jo (t=n)*[fn) = f0)]dn,0 < 2 < 1,
[f(")(f)](“_")m <o<ntlnz=l

Difr) = {

We list some important properties for the modified
Riemann-Liouville derivative as follows:

= r(r1(i :F_Qa) rhr=0 M
Dy[f(n)g(n)] = f(1)Djg(1) + g(1)Dif(1) 2)
D:[f(g(1)] = f1,(g(1)) D7g(1) 3)
Di[flg(1))] = Dfig(1))lg/(1)]’ (4)

where I' denotes the Gamma function.

The rest of this paper is organized as follows: In Section 2,
the description of the modified extended tanh-function method
for solving nonlinear fractional partial differential equations is
given. In Section 3, we apply this method to establish the exact
solutions for the space—time fractional generalized nonlinear
Hirota—Satsuma coupled KdV equations, the space-time
fractional nonlinear Whitham—Broer— Kaup equations, the
space-time fractional nonlinear coupled Burgers equations
and the space-time fractional nonlinear coupled mKdV equa-
tions. In Section 4 physical explanations of some obtained
solutions are given. In Section 5, some conclusions are
obtained.

2. Description the modified extended tanh-function method for
solving nonlinear fractional partial differential equations

Suppose we have the following nonlinear fractional partial dif-
ferential equation:

F(u,D¥u, D%u,...) =0,0 <o < 1, (5)

where Dfu and D%u are the modified Riemann-Liouville deriv-
atives and F'is a polynomial in u = u(x,t) and its fractional
derivatives. In the following, we give the main steps of this
method:

Step 1: Using the nonlinear fractional complex transforma-
tion (Li and He, 2010; Li, 2010; He and Li, 2012; Li et al.,
2012; Hristov, 2010).

o e kX et .
u(x7t):u(g)7é_F(1+a)+l—-(l+a)+g07 (6)

where k,c,&o are constants with k,c # 0, to reduce Eq. (5) to the
following ODE of integer order with respect to the variable ¢ :

Pluu' ", ...) =0, (7)
where P is a polynomial in u(¢) and its total derivatives

2
w4, .. such that o' =4 " =<4

& R
Step 2: We suppose that the formal solution of the ODE (7)
can be expressed as follows:

u(&) = ag + Y laid' () + bip™(O)] ®)

where ¢(&) satisfies the Riccati equation

& = b+ P ©)

where b is a constant. Fortunately, Eq. (9) admits several types
of the following solutions:

(1) If b < 0, we have the hyperbolic solutions;
¢(&) = —V=btanh(V=b¢), (&) = —V—=bcoth(V-b¢). (10)

(it) If » > 0, we have the trigonometric solutions;

d(&) = Vbtan(Vbé), p(¢) = —Vbcot(VbE). (11)
(1) If =0, we have the rational solutions;
—1
#O) =7 (12)

where d is a constant.

Step 3: We determine the positive integer N in (8) by
balancing the highest nonlinear terms and the highest order
derivatives of u(¢) in Eq. (7).

Step 4: We substitute (8) along with Eq. (9) into Eq. (7) and
equate all the coefficients of ¢'(i = 0, + 1, + 2,...) to zero to
yield a system of algebraic equations for a;,b;,c.k, b.

Step 5: We solve the algebraic equations obtained in Step 4
using Mathematica or Maple, and use the well- known
solutions (10)—(12) of Eq. (9) to obtain the exact solutions of
Eq. (5).

3. Applications

In this section, we construct the exact solutions of the follow-
ing four nonlinear fractional partial differential equations
using the proposed method of Section 2:

Example 1. The Space-time fractional generalized nonlinear
Hirota—Satsuma coupled KdV equations.

These equations are well-known (Guo et al., 2012; Zheng,
2012) and have the forms:

1 ,
Diu— EDi“u + 3uD%u — 3D%(vw) =0, (13)
D*v + D™y — 3uD v = 0, (14)
D*w + D¥*w — 3uD*w = 0, (15)

where 0 < o < 1. Egs. (13)~(15) can be used to describe the
iteration of two long waves with different dispersion relations
(Abazari and Abazari, 2012). When o« = 1, Egs. (13)—(15) were
first proposed in (Wu and Geng, 1999). When 0 < o < 1, Egs.
(13)(15) have been discussed in (Zheng, 2012) using the (G'/G)-
expansion method and in ( Guo et al, 2012) using the fractional
sub-equation method. Let us now solve Egs. (13)—(15) using the
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proposed method of Section 2. To this end, we suppose that
u(x,t) = U(E),v(x,t) = V(E),w(x,t) = W(E) where & is given by
the fractional complex transformation (6). Then by use of Egs.
(1) and (3), the system (13)—(15) can be turned into the following
system of ODEs with integer orders:

cU—%k3U’/+%kU2—3kVW:0, (16)
CV’+/€3V///—3/€UV’:0, (17)
W +IEW" = 3kUW = 0. (18)

Balancing the order of U” with U?, V" with UV’ and W" with
UW in Egs. (16)—(18), we deduce that the formal solutions of
Egs. (16)—(18) have the forms:

U(é) :a0+a1¢+a2¢_l +d3¢2+(14¢_27 (19)
V(E) = by + by + byp™" + by> + a2, (20)
W(E) =co+cr1p+crp +c3d” + s, (21)

where a.,b,c; (i = 0,1,2,3,4) are constants to be determined
later. We substitute (19)—(21) along with Eq. (9) into

¢ @bk = 3arask 4 3k(bycs + c2bs) = 0
2cbby + 40byb* I — 3k(asbab + 2a4b4 + 2agbsb) = 0
2¢hey + 40e,b°k — 3k(arcab + 2ascq + 2apcsb) =0
o 3ab’k —ka + 3kbycy = 0
6b2b° Kk — 3k(2arb4b + ashyb) = 0
6Czb3k3 — 3k(2a264b -+ a4C2b) =0
¢ 24bbP I} — 6kbyay = 0
24¢,b’ — 6kegbas = 0

Solving the above set of algebraic equations by using Maple or
Mathematica , we get the following results:

b=b,c :% [’T“bc_z +32¢o+4 \/34bzc§ —120bcyc; + 9005} ,
k=k,ay =4k*,
ap :% {%bax +&¢ +‘976\/34bzc§ —120bcycs +9OC(%:| ,

Y P
by =7, co=co,
ay :a2:a4:b1 :b2=b4=C1 26220420,6'3:63

of ¢/ =0, £ 1, + 2, + 3,...). Equating each coefficient to s

Egs. (16)(18) and collect all the terms with the same power
by =14 [%wbq +20) 418\ /3453 — 120bcycy +9ocg}
zero yields a set of the following algebraic equations: !

¢°: 24e3k* — 6kesas =0
24b3k> — 6kbyay =0

¢ =3ask’ +3ka; — 3kbyes =0
6b1k3 — 3k(2[11b} + blag) =0
6C‘1k3 — 3k(2[llC3 -+ b]C3) =0

¢3 : fa|k3+3a|a3k73k(b|c3+clb3) =0
2¢by + 40b3 b — 3k(2aohs + aby + 2asbzb) = 0
2cey + 40e3bk> — 3k(2aycs + ajcy + 2aze3b) =0

¢* cay — dasbk’ + %k(af + 2apas) — 3k(bocs + bicy + bicg) =0
b]C + 8b1bk3 — 3k(ll0b1 + 2tl1b3b + 26[2[)3 + a3b1b — 03/)2) =0
cc+ 861[)](3 — 3[(((1001 + 2(1163[7 + 2(1263 + (l3(31b — 0302) =0

¢ Loocay — (11bk3 + 3k(a001 + [126[3) - 3k(b061 + blCO + b26‘3 + b302) =0
2bchs + 16b3b°k* — 3k(2apbsh + a1byb — byay + azhy — 2azby 4 2asbhs) = 0
2bcey + 16630° K — 3k(2ayc3b + aje b — cray + arep — 2azeq + 2a4c3) =0

¢0 Locay — k3((l3b2 + (14) + %k(aé + 2(11(12 + 612114) - 3k(b0€0 + b](‘z + bZCl + b3C4 + b4C3) =0
c(b1b — by) + I (2by b — 2b,b) — 3k(aghyb — aghy — 2ayby + 2a:b3b — azbyb 4 asby) = 0
C((,‘]b — (,'2) + k3(2(,‘1b2 — 2(,'2[)) — 3k(a0c1b — dpCy — 2611C4 + 2a2c'3b — Clg.(,'zb + a4c1) =0

d)il Loocdy — a2bk3 + 3]((610&12 + 611614) — 3k(b()C2 + b1C4 + sz() + b4(32) =0
2()b4 + ]6[’)4171(3 + 3/6(—20()174 — albzb + azblb — b2a2 — 2613b4b + 2&14b3b) =0
2()(,’4 + ]6(,4ka + 3k(—2a0C4 — al(,'zb + az(,'lb — Cdy — 2613()4[) + 2a4c'3b) =0

7 cas —Aabk’ +3k(ad + 2apas) — 3k(bocs + brcs + bacy) =0
—bybe — 8b2 bk + 3k(aghyb + 2a1bsb 4 2azbs — ashib + asby) =0
—eybe — 86,k + 3k(agerb + 2arc4b + 2ayc4 — age1b + age) =0
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Now, we have the following exact solutions:

(1) If b < 0, we have the hyperbolic solutions

u(x,1) = £ [Shes + Sy + '6\/341)z 2 — 120bccs 4 90c2] — 4k*btanh? (vV—b¢)

— K tanh’ (V=h¢)

v(x, 0) = ‘( [ =S0bey +"L0+'5\/34b2

w(x, 1) = ¢y — csbtanh® (v/=h¢)

— 120bcyes + 90c3]

(22)

U, 1) = £ [ bes + Seq +181/345°63 — 120beoes +90¢3] — 4k beoth®(V5¢)

— %€ coth? (v=h¢)

Vix, 1) = K 8“bc;+52cn+”’\/34b2 — 120bcyes + 9063

w(x, 1) = ¢y — cshcoth? (V—=h¢)
(23)

(i1) If b > 0, we have the trigonometric solutions

u(x, ) = £ [ bes + %o +19/3453 — 120beoes +903] + 4D tan? (VBS)

v(x, 1) = % [+ %o+ \/34})“6% — 120bcyes + 90¢] + % tan?(Vh¢é)

w(x, 1) = co + ¢sb tan® (VbE)
(24)

u(x, ) = £ [8bes + %o + 1 /3453 — 120beoes +9063] + 4k beot? (vEe)

v, 1) = & Fbes + Fog + 18 5.\ /34063 — 120bccs +90a3] + 4 co?(vBS)

w(x, 1) = ¢y + csbcot?(VBE)

(25)
(iti) If »=0, we have the rational solutions
u(x,1) = (8 +2v10)¢o + C‘L"[
v(x, 1) =13 (52 +16V10)c) + 47, (26)

w(x, 1) = ¢co + =2 (Hd)

On comparing our results (22)—(26) with the results in (Younis
and Zafar, 2013) and (EI-Wakil et al., 2005) we conclude that
our results are new.

Example 2. The Space-time fractional nonlinear Whitham—
Broer—Kaup equations

These equations are well-known (Xu et al., 2007; Xu et al.,
2007; Ping, 2010) and have the forms:

D*u+ uD*u+ D*v + BD*u = 0, (27)
D*v+ D*(uv) — fD*v + yD¥u = 0, (28)

where 0 < < 1, and y,f are constants. In these equations
u(x,t) is the field of horizontal velocity , v(x,f) is the height
deviating from the equilibrium position of liquid, while y and
p represent different diffusion powers. When o =1,
Egs. (27) and (28) are the generalization of nonlinear
Whitham—Broer—Kaup equations, which can be used to
describe the dispersive long wave in shallow water ( Xu et al,
2007; Ping, 2010). Egs. (27) and (28) have been discussed in
Guo and Mei (2012) using the improved fractional sub-equa-
tion method. Let us now solve Eqgs. (27), (28) using the pro-
posed method of Section 2. To this end, we suppose that
u(x,t) = U(&),v(x,t) = V(). Then by the use of Egs. (1) and

(3), the system (27), (28) after integrating once can be turned
into the following system of ODEs with integer orders:

1
cU+§kU2 +kV+ pIPU =0, (29)
cV+kUV = BIEV +9°U" =0, (30)

with zero constants of integration. Balancing the highest order
derivatives and highest nonlinear terms in Eqs. (29) and (30),
we have the following formal solutions:

U =ay+adp+ag ', (31)
V(E) = by + b1+ brp™" + byp* + byp™, (32)
where a(i = 0,1,2),b(i = 0,1,2,3,4) are constants to be deter-

mined later. We substitute (31) and (32) along with Eq. (9) into
Egs. (29) and (30) and collect all the terms with the same
power of ¢/,(j = 0, £ 1, + 2, + 3). Equating each coefficient
to zero yields a set of the following algebraic equations:

¢ - aybsk — 2b3 k7 + 2yakd =0

¢ L@k +kby+ aipk =0
b3C + k(aobz + a1 ) b ﬁk2 =0

¢l a1c+a0a1k+kb1 =0

bic + k(aghy + ayby + azbs) — 2pk*bbs 4 2ayyk*b = 0

¢°: ape+ Lk(ad + 2ayay) + kby + B (arb — ay) = 0
boc + k(aopho + aiby + asby) — pi*(bby — bs) =0

¢71 LoWhe+ 610612]( + kbz =0
byc + k(aphy + arbs + asbo) + 2Bk by + 2ya,bk* = 0

¢ byc + k(aghs + arhy) + by > =0
L &3k + kby — axbPI* = 0
& anbsk 4 2bbs K + 2a2b*pk* =0

On solving the above algebraic equations by using Maple or
Mathematica, we have the following results:

Case 1
b=bhc= 4&-/3(#1)@7% _ —4kﬂ(b—1)x/3 bh<0,a = —Z/c/f(bb—l)7
h— 202 2 2 2
4y = Zkﬁ(l ) by = by =0,by = 4k[i(29bb “b=1) _ % ﬁ(gz; bo1)
_2k2/f2(2b2—b—1) o Bsb2p-1)
by =Ty =
In this case we have the hyperbolic solutions
u(x, 1) = M{l — [tanh(v/=b¢) + coth(v=b¢)]}
v(x, 1) = 2A3#{2— tanh’ (vV—b¢&) + coth®(vV/~b¢)]}
(33)
Case 2

- - 2V2K2B(b—1)Vb
b=bf=pc=="7—"a=
FRB(D = 1),a = 2C=,
by =by = by =0,by = 72/(2,0‘(41;- sh=1) . __
AR P—b-1)
by = _

—2V2kp(b—1)Vh
)

(867 +2b—1)
9p? = 17 ’
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In this case we have the trigonometric solutions
(e, 1) =220 (/3 ¢ [tan(VBE) +cot(VBE)] }
v(x, 1) :%{(% —1)tan®(Vb¢) — (2b+ 1)cot*(VbE)] }
(34)
and

u(x,1)

SO {V2 — [tan(VbE) + cot(VBE)]}
v(x, 1) ==2LCD £ (4~ 1)cot? (VBE) — (2b + 1) tan(v/BE)] }
(35)
On comparing our results (33)—(35) with the results obtained in

(Younis and Zafar, 2013; Dai et al., 2013; Zhu, 2013) we
conclude that our results are new.

Example 3. The space—time fractional nonlinear coupled Burgers
equations

These equations are well-known (Zhao et al, 2012) and
have the forms:
D*u — D*u+ 2uD"u + pD*(uv) = 0, (36)
D*v — D*v 4+ 2vD*v + ¢D* (uv) = 0, (37)

u(x,t),k =1b=-lLc,=lLc,=1,a=0.9

where 0 < <1 and p, q are constants. Egs. (36) and (37)
have been discussed in (Zhao et al, 2012) using the extended
fractional sub-equation method. Let us now solve Egs. (36)
and (37) using the proposed method of Section 2. To this
end we suppose that u(x,r) = U(&), v(x,t) = V(&) . Then by
the use of Egs. (1) and (3), the system (36) and (37) can be
turned into the following system of ODEs with integer orders:

cU — IPU" 4+ 2kUU + pk(UV) =0, (38)
eV — PV 4 2kVV + qk(UV) =0, (39)
Integrating Eqgs. (38) and (39) with vanishing the constants of
integration, we get

cU— KU + kU 4 pkUV = 0, (40)
V=V +kV2 + qkUV =0, (41)

Balancing the highest order of derivatives and highest nonlin-
ear terms in Eqgs. (40) and (41), we have the following formal
solutions:

Ue)=ay+ad +ard ', (42)
V(&) =bo+bip+brgp", (43)

where a;,b{(i = 0,1,2) are constants to be determined later. We
substitute (42) and (43) along with Eq. (9) into Egs. (40) and

600

v(x,t),k =1b=-1c,=lc,=La=09

w(x,t),k =1b=-1c,=1lc,=1,a=09

Fig. 1

The plots of solutions (22) of the space time fractional generalized nonlinear Hirota—Statsuma coupled KdV equations.
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9
u(x,t)atk=1,c3=1,Cﬂ=1,b=l,§u=0,0:=ﬁ c0=1,03=1,k=l,b=1,E_0=0,a=%

9
Gp=1,03=1,k=1,b=1,§=0,0=—~

Fig. 2 The plots of solutions (24) of the space time fractional generalized nonlinear Hirota—Statsuma coupled KdV equations.

600

u(x.t).k =Lb=-lc,=lc, =1, f=1,a=09 v(x.t).k =Lb=—-l¢,=Lc, =1, =1,2=09

Fig. 3  The plots of solutions (33) of the space time fractional nonlinear Whitham-Broer—Kaup equations.



The fractional complex transformation for nonlinear fractional partial differential equations 65

(41) and collect all the terms with the same power of
¢',(j =0, £ 1, £ 2). Equating each coefficient to zero yields
a set of the following algebraic equations:

q§2 L —KPa + kaf + abpk =0
—I*by + kb} + arb gk = 0

¢: bie+2bobik+qgk(apb, +aiby) =0
ajc+2apak+pk(aghy +a by) =0
¢0:aoc—k2(a1b—a2 k(a+2a,a,
boc—k*(byb—by) +k(by+2b,by

pk(agby+a by +axb;) =0

)+ )+
)+ )+qk(a0b0+a|b2+a2b1):0
(}571 LoWhe+ 2a0a2k +pk((l0b2 + azbo) =0

sz + Zb()bzk + qk(a0b2 + azbo) =0

¢ Kbab + kb + arbygk =0
Kayb + ka; + aybopk = 0

By solving the above set of algebraic equations by using Maple
or Mathematica, we get the results
Case 1

bh<0,c==2k-b,ay=kvV—b,p=q=a, =b, =0,
by = kvV/—b,a, = —bk,b, =k

In this case, we have the hyperbolic solutions:

{ u(x, 1) = kv/=b + 5 coth(v/=b¢) (44)

v(x, 1) = kv/=b{1 — tanh(v/=b¢)}

and

{ u(x, 1) = kv/—b + \}’fk—b tanh(v/—b¢) (45)
v(x, 1) = k\/—_b{l — Coth(\/—_bé)}

Case 2
b<0,p:07q:2,():—2k2\/—b7a0:k'\/_b7
p=ai=by=0,ay = —kb,by = bk, b, = k

u(x,t).k =Lb=2c,=lc,=1,A=1,a=09

v(x.0).k =Lb=-lc,=1c, =1, f=1a=09

Fig. 4 The plots of solutions (34) of the space time fractional nonlinear Whitham—Broer—Kaup equations.

u(x,t),k =1,b=-1,a=09

vix,t),k =1b=-1,a=09

Fig. 5 The plots of solutions (44) of the space time fractional nonlinear coupled Burgers equations.
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In this case the following solutions

u(x, 1) = ky/—b — L coth(\/rl;é)

v(x, 1) = —kv/=b coth(v'=h¢) — J& tanh(v=b¢) o
and

u(x, 1) = —kv/—b — tanh(\/_é) )

v(x, 1) = —kv/=btanh(v=b¢) — 2 coth(v=b¢)

On comparing our results (44)—(47) with the results obtained in
(Liu et al., 2013) we conclude that our results are new.

Example 4. The space—time fractional nonlinear coupled mKdV
equations

These equations are well-known (Zhao et al.,
have the forms:

2012) and

u(x,t),k =Lb=-1L,a=09

1
D*u = =D*u

5 —3u*Du + %Df}u + 3D%(uv) — 3AD%u, (48)

Dv=—DYv—3vD%v —3D%uD’%y + 31’ Dy + 32D%,  (49)

where 0 < o < 1 and 7 is constant. Eqgs. (48) and (49) have
been discussed in (Zhao et al, 2012) using the extended frac-
tional sub-equation method. Let us now solve Egs. (48) and
(49) using the proposed method of Section 2. To this end we
suppose that u(x,r) = U(E),v(x,t) = V(). Then by the use of
Egs. (1) and (3), the system (48) and (49) can be turned into
the following system of ODEs with integer orders:

(c+ 3/1k)U—%k3U” + kU
CV _ _k3 V/// _

- %kZU —3kUV =0, (50)

3kVV = 3K*U'V + 3kU V' + 32k V, (51)

Balancing the highest order of derivatives and highest nonlin-
ear terms in Egs. (50) and (51), we have the following formal
solutions:

v(x,t),k=1b=-La=09

Fig. 6 The plots of solutions (46) of the space time fractional nonlinear coupled Burgers equations.

Ley,= 1,(/t'=2

u(x,t),k =Lb=-l,c,= T

’0'0’3’0’0’090'0: o’o S,
. ‘Qz 0".‘ 0’ ". '.i
0*0 Q93RS o’o
" ” "

9
v(x,t)k=1Lb=-lc,=lc,= l,azﬁ

Fig. 7 The plots of solutions (54) of the space time fractional nonlinear coupled mKdV equations.
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U(f) :ao+al¢+az(f)7l, (52)
V(E) =by+bip+brp™', (53)
where a;,b,(i = 0,1,2) are constants to be determined later. We
substitute (52) and (53) along with Eq. (9) into Egs. (50) and
(51) and collect all the terms with the same power of

¢, G=0,+ 1, £2, + 3). Equating each coefficient to zero
yields the following set of algebraic equations:

¢* 2 6a1k° + 3a\b i’ — 3&bik =0

¢ —kay+ka} =0
3brk — 6aparbik = 0

¢ (c—32k)by + 8a bk’ + 3bobyk
+3K>(2a1b1b — ayby — azhy) = 0
3[106!%]( — %kzal — 3a1b1k =0

¢ : 3kb%b - 3k(2(10(11b1b - 2[10611])2 -+ 2a0a2b] ) =0
(c+37k)a; — arbk’ +k(3ada) +3aral) — 3k(agh, +ayby) =0

Case 2.

1 1 - 1
b=-ge=5k=Li=ta=5,

a :bl :O,bo :;L,bz :7%

Hence the solutions of the space-time fractional coupled
mKdV Egs. (48), (49) are given by:

u(x, 1) =52+ \/%—b coth(v/—=b¢)],
. (56)
(v, 1) = 24+ 5 coth(VhE)]
and
u(x, 1) =42+ ﬁ tanh(v/—h¢)],
A (57)
W(x,1) = £[4+ - tanh(vV=52).

On comparing our results (54)—(57) with the results obtained in
(Liu et al., 2013) we conclude that our results are new.

@ (c—32k)(bib — by) 4 K (2a,b* — 2ayb) + 3k* (=2a,b:b + aybyb* — 2ayb1b + arb,)
+3k(b0b1b — bobz) — 3k(7(l$b2b + a(z)blb — (l(z)bz + 2a1a2b]b — Za]llzbz + a%b.) =0
(c+ 34k)ag + k(3ay + 6aparar) — %kz(a]b —ay) — 3k(aoby + a1by + axb)) =0

¢ —3b3k+3k(2apa; bby —2aparbb, +2agarby) =0
(c+32k)ay — arbk® +-k(3a3a, +3arad) — 3k (aohy +arby) =0

¢ (¢ — 3k)bab + 8arb’k? + 3bobybk + 3k(aybyb”® — 2aybyb + azh,b?)

+3k(—a(2)b2b — 2a1a2b2b + a%blb - a%bz) =0
3agatk + 3k azbh — 3arbrk = 0

¢ =3kbb; + 6agarbbrk = 0
—Kab’ +kay =0

¢t —6a,b’ I} + 34,207k + 3d2b,bk = 0

By solving the above set of algebraic equations by using Maple
or Mathematica, we get the results

Case 1
1 k 1
bi_w7cf§’k7k,k—),,ao —57

ap :—k,a2:b2 :07b0:)v7b1 = —k.

Hence the solutions of the space-time fractional coupled
(mKdV) Egs. (48), (49) are given by:

u(x, 1) =1+ kv/=btanh(v-b¢),

{ v(x, 1) = £+ kv/—btanh(V—b¢) 54
u(x, 1) = L+ kv/=b coth(v=b¢),

{ v(x, 1) = £+ kv/=bcoth(v/=b¢&) >

4. Physical explanations of some obtained solutions

In this paper, we have obtained three types of solutions
namely, hyperbolic, trigonometric and rational function solu-
tions. In this section, we have presented some graphs of these
types of solutions to visualize the underlying mechanism of the
original equations. Using the mathematical software Maple 15,
we will give some plots for these solutions.

4.1. The Space—time fractional generalized nonlinear Hirota—
Satsuma coupled KdV equations

The obtained solutions of these equations incorporate three
types of explicit solutions namely hyperbolic, trigonometric
and rational function solutions (22)—(26) respectively. From
these explicit results, the solutions (22) are kink solutions,
(23) are singular kink solutions, while (24) and (25) are peri-
odic solutions and (26) are rational solutions. For more conve-
nience the graphical representations of (22) and (24) are shown
in Figs. 1 and 2 respectively.

4.2. The Space—time fractional nonlinear Whitham—Broer—Kaup
equations

The obtained solutions of these equations incorporate two types
of explicit solutions namely hyperbolic and trigonometric
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4
—.c,=lLec,=l,o=—
4°"° ? 10

u(x,t),k =1b =

1|
XOOOK

-1 9
vi(x,t),k =Lb =T,CO =lc, = 1,(Z=E

Fig. 8 The plots of solutions (57) of the space time fractional nonlinear coupled mKdV equations.

function solutions (33)—(35) respectively. From these explicit
results, the solutions (33) represent kink solutions while (34)
and (35) are periodic solutions. For more convenience the
graphical representations of (33) and (34) are shown in Figs. 3
and 4 respectively.

4.3. The space—time fractional nonlinear coupled Burgers
equations

The obtained solutions of these equations incorporate hyper-
bolic function solutions (44)—(46) which represent the kink
and singular kink solutions. For more convenience the graph-
ical representations of (44) and (46) are shown in Figs. 5 and 6
respectively.

4.4. The space—time fractional nonlinear coupled mKdV
equations

The obtained solutions of these equations incorporate hyper-
bolic function solutions (54)—(57) which represent the kink
and singular kink solutions. For more convenience the graph-
ical representations of (54) and (57) are shown in Figs. 7 and 8
respectively.

5. Some conclusions

In this paper, we have extended successfully the modified
extended tanh- function method to solve four nonlinear frac-
tional partial differential equations. As applications, abundant
new exact solutions for the space-time fractional generalized
nonlinear Hirota—Satsuma coupled KdV equations, the
space—time fractional nonlinear Whitham—Broer—Kaup equa-
tions, the space-time fractional nonlinear coupled Burgers
equations and the space-time fractional nonlinear coupled
mKdV equations have been successfully found. As one can
see, the nonlinear fractional complex transformation (6) for
¢ is very important, which ensures that a certain fractional par-
tial differential equation can be turned into another ordinary
differential equation of integer order, whose solutions can be
expressed in the form (8) where ¢(&) satisfies the Riccati

Eq. (9). Besides, as this method is based on the homogeneous
balancing principle, it can also be applied to other nonlinear
fractional partial differential equations, where the homoge-
neous balancing principle is satisfied.

Acknowledgments

The authors wish to thank the referees for their comments.

References

Abazari, R., Abazari, M., 2012. Numerical simulation of generalized
Hirota—Satsuma KdV equation by RDTM and DTM. Commun.
Nonlinear Sci. Numer. Simul. 17, 619-629.

Cui, M., 2009. Compact finite difference method for fractional
diffusion equation. J. Comput. Phys. 228, 7792-7804.

Dai, C.Q., Wang, X.G., Zhou, G.Q., 2013. Stable light-bullet solutions
in the harmonic and parity-time-symmetric potentials. Phys. Rev.
A 89, 013834-013838.

Dai, C.Q., Wang, Y.Y., 2014. Note on the equivalence of different
variable separation approaches for nonlinear evolution equations.
Commun. Nonlinear Sci. Numer. Simul. 19, 19-28.

El-sayed, A.M.A., Behiry, S.H., Raslan, W.E., 2010. The Adomian’s
decomposition method for solving an intermediate fractional
advection-dispersion equation. Comput . Math. Appl 59, 759-1765.

El-Sayed, A.M.A., Gaber, M., 2006. The Adomian decomposition
method for solving partial differential equations of fractal order in
finite domains. Phys. Lett. A 359, 175-182.

El-sayed, A.M.A., Rida, S.Z., Arafa, A.A.M., 2009. Exact solutions of
fractional-order biological population model. Commun. Theor.
Phys. 52, 992-996.

El-Wakil, S.A., El-Labany, S.K., Zahran, M.A., Sabry, R., 2002.
Modified extended tanh-function method for solving nonlinear
partial differential equations. Phys. Lett. A 299, 179-188.

El-Wakil, S.A., El-Labany, S.K., Zahran, M.A., Sabry, R., 2005.
Modified extended tanh-function method and its applications to
nonlinear equations. Appl. Math. Comput. 161, 403-412.

Gepreel, K.A., Omran, S., 2011. Exact solutions for nonlinear partial
fractional differential equations. Chin. Phys. B 21, 110204-110210.

Guo, S., Mei, L., 2011. fractional variational iteration method using
He’s polynomials. Phys. Lett. A 374, 309-331.



The fractional complex transformation for nonlinear fractional partial differential equations 69

Guo, S., Mei, L., Li, Y., Sun, Y., 2012. The improved fractional sub-
equation method and its applications to the space-time fractional
differential equations in fluid mechanics. Phys. Lett. A 376,407-411.

He, J.H., 1999. Homotopy perturbation technique. Comput. Methods
Appl. Mech. Eng. 178, 257-262.

He, J.H., 2000. A coupling method of homotopy technique and
perturbation technique for nonlinear problems. Int. J. Nonlinear
Mech. 35, 37-43.

He, J.H., 2013. Exp-function method for fractional differential
equations. Int. J. Nonlinear Sci. Numer. Simul. 14, 353-366.

He, J.H., Li, Z.B., 2012. Converting fractional differential equation
into partial differential equation. Therm. Sci. 16, 331-334.

Hristov, J., 2010. Heat balance integral to fractional (half-time) heat
diffusion sub-model. Therm. Sci. 14, 291-316.

Huang, Q., Huang, G., Zhan, H., 2009. A finite element solution for
the fractional advection—dispersion equation. Adv. Water Resour.
31, 1578-1589.

Jumarie, G., 2006a. Lagrange characteristic method for solving a class
of nonlinear partial differential equations of fractional order. Appl.
Math. Lett. 19, 873-880.

Jumarie, G., 2006b. Modified Riemann-Liouville derivative and
fractional Taylor series of nondifferentiable functions further
results. Comput. Math. Appl 51, 1367-1376.

Kilbas, A., Srivastava, H.M., Trujillo, J.J., 2006. Theory and
Applications of Fractional Differential Equations. Elsevier, San
Diego.

Li, Z.B., He, J.H., 2010. Fractional complex transform for fractional
differential equations. Math. Comput. Appl. 15, 970-973.

Li, Z.B., 2010. An extended fractional complex transform. J. Nonlin-
ear Sci. Numer. Simul. 11, 335-337.

Li, Z.B., Zhu, W.H., He, J.H., 2012. Exact solutions of time-fractional
heat conduction equation by the fractional complex transform.
Therm. Sci. 16, 335-338.

Liu, W.J., Tian, B., Lei, M., 2013. Elastic and inelastic interactions
between optical spatial solitons in nonlinear optics. Laser Phys. 23,
095401.

Lu, B., 2012. Bicklund transformation of fractional Riccati equation
and its applications to nonlinear fractional partial differential
equations. Phys. Lett. A 376, 2045-2048.

Miller, K.S., Ross, B., 1993. An Introduction to the Fractional
Calculus and Fractional Differential Equations. John Wiley &
Sons, New York, NY,USA.

Odibat, Z., Momani, S., 2008. A generalized differential transform
method for linear partial differential equations of fractional order.
Appl. Math. Lett 21, 194-199.

Ping, Z., 2010. New exact solutions to breaking solution equations and
Whitham-Broer—Kaup equation. Appl. Math. Comput. 217, 1688~
1696.

Podlubny, 1., 1999. Fractional Differential Equations. Academic Press,
San Diego, Calif, USA.

Safari, M., Ganji, D.D., Moslemi, M., 2009. Application of He’s
variational iteration method and Adomian’s decomposition
method to the fractional KdV-Burgers-Kuramoto equation.
Comput. Math. Appl. 58, 2091-2097.

Soliman, A.A., 2006. The modified extended tanh-function method for
solving Burgers-type equation. Physica A 361, 394-404.

Song, L.N., Zhang, H.Q., 2009. Solving the fractional BBM-Burgers
equation using the homotopy analysis method. Chaos Solitons
Fract. 40, 1616-1622.

Wu, Y., Geng, X., 1999. A generalized Hirota—Satsuma coupled
KdV equation and Miura transformations. Phys. Lett. A 255,
259-264.

Wu, G.C., Lee, EEW.M., 2010. Fractional variational iteration method
and its application. Phys. Lett. A 374, 2506-2509.

Xu, T., Li, J., Zhang, H., Zhang, Y., Yao, Z., Tian, B., 2007. New
extension of the tanh-function method and application to the
Whitham-Broer—Kaup shallow water model with symbolic com-
putation. Phys. Lett. A 369, 458-463.

Yang, X.J., Baleanu, D., 2012. Fractal heat conduction problem
solved by local fractional variation iteration method. Thermal
Science.

Younis, M., Zafar, A., 2013. Exact solution to nonlinear Burger’s
equation of fractional order using the fractional complex transfor-
mation and (G'/G) — expansion method. Nonlinear Sci. Lett. A 4,
91-97.

Yildirim, A., Gulkanat, Y., 2010. Analytical approach to fractional
Zakharov—Kuznetsov equations by He’s homotopy perturbation
method. Commun. Theor. Phys. 53, 1005-1010.

Zhang, S., Zhang, H.Q., 2011. Fractional sub-equation method and its
applications to nonlinear fractional PDEs. Phys. Lett. A 375, 1069~
1073.

Zhao, J., Tang, B., Kumar, S., Hou, Y., 2012. The extended fractional
sub-equation method for nonlinear fractional differential equa-
tions. Math. Probl. Eng. 2012, 11. Article ID 924956.

Zheng, B., 2012. (G'/G)-expansion method for solving fractional
partial differential equations in the theory of mathematical physics.
Commun. Theor. Phys. 58, 623-630.

Zhu, H.P., 2013. Nonlinear tunneling for controllable rogue waves in
two dimensional graded-index wave guides. Nonlinear Dyn. 72,
873-882.



