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 الملخص:

في هذا البحث تم اعتبار مسألة مرونة حرارية لجسم لانهائي يحتوى على فجوة كروية وذلك في سياق نظرية 
للفجوة  يالسطح الداخل المرونة الحرارية ذات الرتب الكسرية. وبالأخذ في الاعتبار الشروط الحدية بتعرض

لومضة حرارية في حالة انعدام الاجهاد، وبتحويل النموذج الرياضي في الصورة اللابعدية وتطبيق تحويلات 
لابلاس تم وضع المعادلات في صورة المعادلات التفاضلية المصفوفية والمتجهة. تم تطبيق طريقة القيم الذاتية 
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Abstract In this article, we consider the problem of a thermoelastic infinite body with a spherical

cavity in the context of the theory of fractional order thermoelasticity. The inner surface of the cav-

ity is taken traction free and subjected to a thermal shock. The form of a vector–matrix differential

equation has been considered for the governing equations in the Laplace transform domain. The

analytical solutions are given by the eigenvalue approach. The graphical results indicate that the

fractional parameter effect plays a significant role on all the physical quantities.
ª 2014 The Author. Production and hosting by Elsevier B.V. on behalf of University of Bahrain. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Biot (1956) modified the classical uncoupled theory of ther-
moelasticity by eliminating the paradox that elastic changes
have no effect on the temperature. The heat equations for both

theories predict infinite speeds of propagation for heat waves.
So, various generalized theories of thermoelasticity were devel-
oped. Lord and Shulman, 1967 established the first model gen-

eralized thermoelasticity theory (LS). Green and Lindsay
(1972) proposed the temperature rate dependent thermoelas-
ticity (GL) theory. During the second half of twentieth centu-

ry, a large amount of work has been devoted to solving
thermoelastic problems. This is due to their many applications

in widely diverse fields. In the contexts of the thermoelasticity

theories, the counterparts of our problem have been consid-
ered by using analytical and numerical methods (Abbas,
2008, 2012, 2014; Abbas and Abo-Dahab, 2014; Abbas and

Kumar, 2014; Abbas and Othman, 2012; Abbas and
Zenkour, 2013; Abd-alla and Abbas, 2002; Dhaliwal and
Sherief, 1980; Sherief and Anwar, 1988, 1989; Sherief et al.,
2004; Zenkour and Abbas, 2014a,b).

Fractional calculus has been used successfully to modify
many existing models of physical processes e.g., viscoelasticity,
chemistry, electronics, wave propagation and biology. One can

state that the whole theory of fractional derivatives and inte-
grals was established in the second half of the nineteenth cen-
tury. Various definitions and approaches of fractional

derivatives have become the main purpose of many studies.
Youssef (2010) and Youssef and Al-Lehaibi (2010) established
the fractional order generalized thermoelasticity of both weak

and strong heat conductivity in the context of generalized
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thermoelasticity were considered, and the corresponding
variational theorem for fractional order generalized thermoe-
lasticity was developed. A new model of fractional heat equa-

tion established by Ezzat (2011b) and Ezzat and El-Karamany
(2011a,b). In addition, Sherief et al. (2010) established a new
model by using the form of the heat conduction law. Kumar

et al. (2013) studied the plane deformation due to thermal
source in fractional order thermoelastic media.

In this work, we consider fractional order generalized ther-

moelasticity of an infinite body with spherical cavity under
thermal shock. The inversion of Laplace transform has been
carried out numerically by applying a method of numerical
inversion of Laplace transform based on Stehfest technique

(Stehfest, 1970). Numerical results for physical quantities are
represented graphically.

2. The Governing equation

The heat conduction equation takes the form, (El-Karamany
and Ezzat, 2011; Ezzat, 2011a),

KijT;j

� �
;i
¼ @

@t
þ sa

o

C aþ 1ð Þ
@1þa

@t1þa

� �
qceTþ cT0eð Þ; 0 < a � 1:

ð1Þ

The equations of motion without body force take the form

rij;j ¼ q
@2ui
@t2

ð2Þ

.
The constitutive equations are given by

rij ¼ 2leij þ ½ke� c T� T0ð Þ�dij; ð3Þ

where T is the temperature; k; l are Lame’s constants; T0 is the
reference temperature; a is the fractional parameter; ce is the

specific heat at constant strain; Kij is the thermal conductivity;

q is the density of the medium; so is the thermal relaxation
time; rij are the components of stress tensor; t is the time; dij

is the Kronecker delta symbol; at is the coefficient of linear
thermal expansion; ui are the displacement vector components
and eij are the components of strain tensor.

Now, we suppose elastic and homogenous infinite body
with spherical cavity occupying the region a � r <1. Because

of the symmetry, all the state functions can be expressed in
terms of the space variable r and the time variable t. In a
spherical co-ordinate system ðr;/;wÞ, the displacement

components have the form

ur ¼ uðr; tÞ; u/ ¼ uw ¼ 0: ð4Þ

The strain–displacement relations are

err ¼
@u

@r
; e// ¼

u

r
; eww ¼

u

r
; er/ ¼ erw ¼ e/w ¼ 0; ð5Þ

e ¼ @u
@r
þ 2

u

r
: ð6Þ

Thus, the stress–strain relations are

rrr ¼ 2l
@u

@r
þ k

@u

@r
þ 2

u

r

� �
� c T� T0ð Þ; ð7Þ

r// ¼ 2l
u

r
þ k

@u

@r
þ 2

u

r

� �
� cðT� T0Þ; ð8Þ

rww ¼ 2l
u

r
þ k

@u

@r
þ 2

u

r

� �
� cðT� T0Þ: ð9Þ

The equation of motion and energy equation have the form:

@rrr

@r
þ 1

r
2rrr � r// � rww

� �
¼ q

@2u

@t2
; ð10Þ

K
1

r2

@

@r
r2
@T

@r

� �
¼ @

@t
þ sa

o

Cðaþ1Þ
@1þa

@t1þa

� �
qceTþ cT0

@u

@r
þ2u

r

� �� �

ð11Þ

For simplicity, we will use the following non-dimensional
variables (Othman and Abbas, 2012).

ðr0; u0Þ ¼ r; uð Þ
cv

; ðt0; s0oÞ ¼
t; soð Þ
v

; ðr0rr; r0//; r
0
wwÞ

¼ 1

kþ 2l
ðrrr; r//; rwwÞ; T0 ¼

c T� T0ð Þ
kþ 2l

; ð12Þ

where, c2 ¼ kþ2l
q ; v ¼ K

qcec2
:

From Eq. (12) into Eqs. (7)–(11) one may obtain (after
dropping the superscript 0 for convenience)

@2u

@r2
þ 2

r

@u

@r
� 2u

r2
� @T
@r
¼ @

2u

@t2
; ð13Þ

@2T

@r2
þ 2

r

@T

@r
¼ @

@t
þ sa

o

Cðaþ 1Þ
@1þa

@t1þa

� �
Tþ e

@u

@r
þ 2u

r

� �� �
;

ð14Þ

rrr ¼
@u

@r
þ 2b

u

r
� T; ð15Þ

r// ¼ rww ¼ b
@u

@r
þ 1þ bð Þ u

r
� T; ð16Þ

where b ¼ k
kþ2l ; e ¼ cT0

q2c2ce
:

From preceding description, we assume that the medium is

initially at rest. The undisturbed state is maintained at refer-
ence temperature. Then we have

uðr; 0Þ ¼ @uðr; 0Þ
@t

¼ 0; Tðr; 0Þ ¼ @Tðr; 0Þ
@t

¼ 0: ð17Þ

The boundary conditions may be expressed as

rrrða; tÞ ¼ 0; Tða; tÞ ¼ HðtÞ;
rrrðr; tÞjr!1 ¼ 0; Tðr; tÞjr!1 ¼ 0; ð18Þ

where HðtÞ is the Heaviside unit step function.

3. Laplace Transform domain

Applying the Laplace transform define by the formula

�fðsÞ ¼ L½fðtÞ� ¼
Z 1

0

fðtÞe�stdt: ð19Þ

Hence, the Eqs. (13)–(18) take the form

d2�u

dr2
þ 2

r

d�u

dr
� 2�u

r2
� d �T

dr
¼ s2�u; ð20Þ

d2 �T

dr2
þ 2

r

d �T

dr
¼ sþ s1þa sa

o

Cðaþ 1Þ

� �
�Tþ e

d�u

dr
þ 2�u

r

� �� �
; ð21Þ
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�rrr ¼
d�u

@r
þ 2b

�u

r
� �T; ð22Þ

�r// ¼ �rww ¼ b
d�u

dr
þ ð1þ bÞ �u

r
� �T; ð23Þ

�rrrða; sÞ ¼ 0; �Tða; sÞ ¼ 1

s
;~rrrðr; sÞjr!1 ¼ 0; �Tðr; sÞjr!1 ¼ 0:

ð24Þ

Using Eq. (20) with the differentiating Eq. (21) with respect
to r we get

d2

dr2
d �T

dr

� �
þ 2

r

d

dr

d �T

dr

� �
� 2

r2
d �T

dr

� �

¼ sþ s1þa sa
o

Cðaþ 1Þ

� �
s2�uþ 1þ eð Þ d

�T

dr

� �
: ð25Þ

Eqs. (20) and (25) can be written in a vector–matrix differ-
ential equation as follows

L~V ¼ A~V; ð26Þ

where L � d2

dr2
þ 2

r
d
dr
� 2

r2
, ~V ¼ ½�u d �T

dr
�T and A ¼ M11 M12

M21 M22

� �
;

and M11 ¼ s2; M12 ¼ 1; M21 ¼ s2 sþ s1þa sa
o

C aþ1ð Þ

� 	
; M22 ¼

1þ beð Þ sþ s1þa sa
o

a!

� 	
:

3.1. Solution of the vector–matrix differential equation

The using of eigenvalue approach (Das et al., 1997) to solve
the Eq. (26), the form of characteristic equation of the matrix
A as follows

M11M22 �M12M21 � M22 þM11ð Þkþ k2 ¼ 0 ð27Þ

where k ¼ k1; k ¼ k2; are the roots of the characteristic

Eq. (27). The eigenvector ~X ¼ ½x1; x2�T, corresponding to
eigenvalue k can be calculated as:

x1 ¼M12; ; x2 ¼ k�M11: ð28Þ

For further reference, we shall use the following notations:

~X1 ¼ ½~X�k¼k1
; ~X2 ¼ ½~X�k¼k2

: ð29Þ

Thus, the solution of Eq. (26) takes the form:

~V ¼ r�1=2~X1 A1I3=2 m1rð Þ þ A2K3=2 m1rð Þ
� �

þ r�1=2~X2 A3I3=2 m2rð Þ þ A4K3=2 m2rð Þ
� �

; ð30Þ

where A1;A2;A3;A4 are constants to be determined from the

boundary condition of the problem, m1 ¼
ffiffiffiffiffi
k1

p
;m2 ¼

ffiffiffiffiffi
k2

p
,

and I3=2;K3=2 are the modified of Bessel’s functions with order

3=2.
Thus, the field variables can be written for r and s as:

�uðr; sÞ ¼ r�1=2x1
1 A1I3=2 m1rð Þ þ A2K3=2 m1rð Þ
� �

þ r�1=2x2
1 A3I3=2 m2rð Þ þ A4K3=2 m2rð Þ
� �

; ð31Þ

�Tðr; sÞ ¼ r�1=2x1
2

m1

A1I1=2 m1rð Þ � A2K1=2 m1rð Þ
� �

þ r�1=2x2
2

m2

A3I1=2 m2rð Þ � A4K1=2 m2rð Þ
� �

; ð32Þ

where xj
i is the component number i of the eigenvector number

j. To complete the solution we have to know the constants
A1;A2;A3; and A4, by using the boundary conditions Eq. (24).

3.2. Numerical inversion of the Laplace transforms

The Stehfest method (Stehfest, 1970) is used in time domain

for the final solution of displacement, temperature and stress
distributions. In this method, the inverse fðtÞ of the Laplace
transform fðsÞ is approximated by the relation

fðtÞ ¼ ln 2

t

XN

j¼1
VjF

ln 2

t
j

� �
; ð33Þ

where Vj is given by the following equation:

Vi ¼ �1ð Þ
N
2þ1ð Þ X

min i;N2ð Þ

k¼iþ1
2

k
N
2
þ1ð Þ 2kð Þ!

N
2
� k

� �
!k! i� kð Þ! 2k� 1ð Þ!

: ð34Þ

The parameter N is the number of terms used in the
summation in Eq. (33). Thus, the solutions of all variables in
physical space–time domain are given by

uðr; tÞ ¼ ln 2

t

XN

i¼1
Vi�u r;

ln 2

t
i

� �
; ð35Þ

Tðr; tÞ ¼ ln 2

t

XN

i¼1
Vi

�T r;
ln 2

t
i

� �
ð36Þ

4. Numerical results and discussion

The copper material was chosen for purposes of numerical

evaluations and the constants of the problem were taken as fol-
lows (Othman and Abbas, 2012)

k ¼ 7:76� 1010ðkgÞðmÞ�1ðsÞ�2; l ¼ 3:86� 1010ðkgÞðmÞ�1ðsÞ�2;
T0 ¼ 293ðKÞ;

K ¼ 3:68� 102ðkgÞðmÞðKÞ�1ðsÞ�3;
ce ¼ 3:831� 102ðmÞ2ðKÞ�1ðsÞ�2; so ¼ 0:02;

qo ¼ 8:954� 103ðkgÞðmÞ�3; at ¼ 17:8� 10�6ðKÞ�1; a ¼ 1:

Numerical calculations are carried out for the temperature,

the displacement, the radial and hoop stress distributions
along the r-direction in the context of fractional order ther-
moelasticity theory ða ¼ 0:1; a ¼ 0:3Þ and Lord-Shulman the-

ory (LS ata ¼ 1). The computation was performed for one
value of time, namely for t ¼ 0:2. From Figs. 1–4, it is seen
that the temperature starts with its maximum value at the orig-
in and decreases until attaining zero beyond a wave front for

the generalized theory, which agree with the boundary condi-
tions. It is noticed that the temperature T decreases with
increasing the distance and decreasing the value of fractional

parameter a. Fig. 2 shows the displacement distribution u with
redial distance r for different values of a, and it is seen that the
magnitude of displacement component u increases with the

decrease in the value of fractional parameter a. In all cases,
ði:e:; a ¼ 0:1; a ¼ 0:3 and LSÞ the displacement component
attains maximum negative values and gradually increases until

86 I.A. Abbas



it attains a peak value at a particular location in close prox-
imity to the inner surface of cavity and then continuously

decreases to zero. Fig. 3 displays the variation of redial stress
with redial distance r for different theories and it is noticed

that the stress, always starts from the zero value and termi-
nates at the zero value to obey the boundary conditions.

Fig. 4 shows the variation of hoop stress with respect to radial
distance r and it is noticed that the hoop stress has a maximum
magnitude at the boundary. It is noticed that the absolute val-
ue of stresses decreases with the decrease in the value of frac-

tional parameter a.
Finally, we have noticed that the fractional order has a

small effect in the displacement while it has a great effect on

the distribution of the other field quantities.

5. Conclusions

The problem of investigating the temperature, displacement,
and stresses in an infinitely body containing spherical cavity
under generalized thermoelasticity theory with fractional order

derivative. The inner surface of the cavity is subjected to a
thermal shock with the traction free. According to this work,
the fractional parameter effect plays a significant role on all

distributions. Thus, we can consider the generalized thermoe-
lasticity with fractional order derivative as an improvement
on studying elastic materials.
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