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Abstract In this paper, a simple and efficient numerical method is proposed for computing the
number of complex zeros of a real polynomial lying inside the unit disk. The proposed protocol uses
the Boubaker polynomial expansion scheme (BPES) to build sequence of polynomials based on the
concept of Sturm sequences. The method is used in a direct way without using any restrictions in
reference to other existing methods. The protocol is applied to some example polynomials of differ-

ent orders and utility of the algorithm is noticed.
© 2015 University of Bahrain. Publishing services by Elsevier B.V. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Computation of the number of non-real zeros of real polyno-
mials inside the open unit disk is very important in complex
analysis and system control. For example, for a corrector of
the form:

k—1 k=1

Upy1 = ZAiun—i + hzaiu;_i (1)

=0 =1
Simpson’s stability rule is ensured if the polynomial:

k—1

P(z) =z =) A 2

=0
has all of its zeros in the open unit disk.
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The Newton mapping of non-zero polynomials is also
based on this notion. In fact, for a given polynomial P(z),
the Newton mapping Np(z), which is defined by:

Ni(z) =z = P2)/P(2) (3)

would be defined only if the zeros of P(z) are contained in the
open unit disk.

In this study, we present a new protocol for determining the
exact number of complex zeros of a given real polynomial in
the unit disk using a well-known applied mathematics proto-
col, the Boubaker polynomials. The polynomials were estab-
lished by Boubaker (2007, 2008) and have been worked upon
by many researchers till now for further developments and
its utilities are being investigated to deal various types of
case-studies in applied engineering, medical sciences, etc.

Several properties and modified versions of these polynomi-
als have been investigated; to mention a few studies: Boubaker
et al. (2007), Labiadh (2007), Oyodum et al. (2009), Zhao et al.
(2009, 2010) and Barry and Hennessy (2010). A modified
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version of these polynomials, called 4¢-Boubaker polynomials,
was the basis for the development of the Boubaker polynomi-
als expansion scheme (BPES). The scheme has been used by
Agida and Kumar (2010) and Kumar (2010) to solve particular
integral equations. On the other hand few standard boundary
value problems of ordinary differential equations (Boubaker,
2008; Zhang and Naing, 2010; Kocak et al., 2011a) and many
physical models involving ordinary differential equations sys-
tems (Milgram, 2011; Dubey et al., 2010, Yildirim et al.,
2010) were solved more efficiently by BPES as compared to
other methods. Physical models in terms of partial differential
equations in many fields were reliably addressed through
BPES. For example: the works carried out by Ghrib et al.
(2008), Guezmir et al. (2009) and Zhang and Li (2010) in
general to investigate material and alloy properties and more
particularly the works by Zhang (2010b) and Slama et al.
(2008a,b, 2009, 2010) in the field of resistance spot welding
research to obtain analytical temperature distribution.

The contributions by Ghanouchi and Labiadh (2008),
Tabatabaei et al. (2009), Belhadj et al. (2009) and Kogak
et al. (2011b) further evoked the use of BPES to solve core
studies in the field of Heat and Mass Transfer. Awojoyogbe
and Boubaker (2009) and in many other studies jointly
explained how NMR blood flow equations can be solved in
various heart models to find magnetic phase shift, and in
Bio-medical engineering to find net magnetization under the
MRI exposure in various geometries. The work carried out
by Fridjine and Amlouk (2009) discusses the case of optimiz-
ing functional materials in hybrid solar energy devices.

The main idea in this paper consists of constructing the
Sturm-sequences which are built using the properties of
BPES. The idea of this construction is based on the work of
Schelin (1983) who first used Chebyshev polynomials to con-
struct Sturm-like sequence to count zeros of real polynomials.
A similar construction using Chebyshev polynomials appears
in the works of Locher and Skrzipek (1995) and Gleyse
(1997). The examination of the number of sign changes and
the sign repetitions in the built-off Sturm sequences in this
work using 4¢-Boubaker polynomials finally leads to define
the complete protocol to achieve the goal of computing the
number of complex zeros of real polynomials.

The concept of sign changes and sign repetitions dates back
to Seventeenth century when Rene Descarte proposed a rule of
signs to find upper bound on the count of positive and negative
real zeros of a polynomial. Another concept of examining signs
appears in Routh-Hurwitz test and its extensions
(Gantmacher, 1960) which is used to determine if all zeros of
a real polynomial lie in the open left-half plane and hence to
comment on polynomial stability. However, the criterion of
counting the number of sign changes and the sign repetitions
used to develop method in this paper is based on a similar con-
cept used in Sturm theorem (Collins and Rudiger, 1983) to
count real zeros of polynomials defined in interval [—1,1].
We demonstrate through worked out examples in Section 3
that the proposed protocol — which uses little extension of
the concepts in the Sturm theorem — yields encouraging results
when it comes to count the number of complex zeros of real
polynomials in the open unit disk.

The structure of this paper is as follows:

We begin by introducing, in Section 2, some necessary
definitions and mathematical preliminaries of the Boubaker
Polynomials which are required for establishing our results.

This follows the procedure of constructing the Sturm-like
shaped sequence of the polynomials. In Section 3, we use the
protocol to determine the exact number of complex zeros of
some variable degree polynomials in the open unit disk. We
end with illustrating conclusion and future work.

2. Materials and methods

2.1. The Boubaker polynomials

The first monomial definition of the Boubaker polynomials
(Boubaker, 2007, 2008; Ghanouchi and Labiadh, 2008;
Belhadj et al., 2009) appeared in a physical study that yielded
an analytical solution to the heat equation inside a physical
model.

Definition 1. Boubaker polynomials monomial definition is
given by:

) 1y
=3 [F=Ha |y (@
where:
n| 2n+((-1)"—1)
=g 2

(The symbol: || designates the floor function).

The Boubaker polynomials have also the explicit monic
expression:

é(n)

By(X)=X"—(n—4).X"2+)"

p=2

(i’l ;!4]’) 1:[ (n —j):| . (_l)p XY
(5)

Theorem 1. The characteristic recurrence relation for the
Boubaker polynomials is:

Bu(X)=X-B,_(X) — B,»(X) for: m>?2

Proof. For m >2: B, (X)= Zi(:"f)_l) [((';’;llj’)) Cf;f]fp}
(_l)p : melep’ and: Bn1—2(X) = z;(:n(])iZ) [H CZ1—2—17:| :
(=1) - xm=27%, By calculating the amount:
A=X-B,_(X)— B,2(X), it gives:
CIm—-1-4
d ]7) —2
S e R
[pzo (m—1-p) "7
&E(m=2) (Wl _2_4
p) -
[ A RN
= p)

which gives:

A=X- Bm—I(X) - Bm—Z(X)

&(n)
=X wﬁ (=1 X =
~rSlete ) iy arenm o

The ordinary generating function of the Boubaker polyno-
mials is:



88

M.M. Shaikh, K. Boubaker

1+372

f3(X,1) = -1

(6)

Zhao et al. (2010) investigated some special properties of
the Boubaker polynomials B, for the case n = 4¢ which
include involvement of only even powers of x in the polynomi-
als and removal of the 2¢ rank monomial terms from the expli-
cit form. In particular, these properties lead to explicit
expressions with only 2¢ effective terms and hence to a class
of polynomials which are all even functions. Correspondent
4g-order Boubaker polynomials (Zhao et al., 2010) are pre-
sented in Eq. (7) as a general form and Eq. (8) as first
functions:

By(X) =1;
B4(X) =X -2

Bg(X) = X® —4X° +8X% —

Biy(X) = X" —8X0 + 18X® — 35X +24X* - 2;
Bis(X) = X' — 12X™ + 52X'% — 88X + 168X° — 168X* + 48X* —
By(X) = X — 16X" + 102X — 320X 4 455X'% — 858X + 1056 X°

—495X* 4+ 80X> — 2;

(8)

The proposed protocol in this paper is based on 4g-order
Boubaker polynomials instead of original polynomials B,
due to the benefits that all 4g-order polynomial are even func-
tions and result in less computational cost (to be elaborated in
Section 3). We quote the following important results of 4¢-
Boubaker polynomials (Zhao et al., 2010) which will be useful
in the construction of the Sturm shaped sequences and the final

implementation of the protocol to follow. Readers can refer to
(Zhao et al., 2010) for detailed proofs.

Theorem 2. The following equality holds:

in (X)Bk

B, (X)By(y) — Bu(x)B,11 (»)
X—)

=3+

for all x#y

Proof. As a consequence of recurrence relation (Theorem 1)
and assuming:

Bi(x)B() = 2 o k=23, (8)
X—=y
where: Ay = Biy1 (%) Be(y) — Bi(x)Biy1 (v) (8) summed from 0

to n gives the desired formula. [

If x — y in (8), we obtain the following Corollary.

Corollary 1. The following equality is satisfied

iBi(x) =3+ B, ,(x)B,(x) — B,(x)By1(x),n >0 9)

2.2. Built-off Sturm shaped sequence

Definition 2. A Sturm shaped sequence of polynomials is a set:

{P()()C),P](X),Pz(x),..,,PM()C)} (10)
with Py, P; and P, three initializing nonzero polynomials, M a
given integer and P,|,_, ,, verifying:

P,(x) = (Di(X)Pi,l()C) + f’,‘,z(){f)7 i=2 (11)

where @;(x)|,_, y is a given polynomial sequence.

Let us consider a real polynomial Q(x) = Ziof,-x", along
with the sequence {Py(x), Pi(x), P»(x),..., Py(x)}:

x) = ZéiBM(x)
i=0

x) = ZéiB4i—4(x)
i=1

(12)
Py(x) = Bs(x)P1(x) — Po(x)
Pri1(x) = By(x) Pr(x) — Pr1(x)
Py(x) = By(x)Py-1(x) — Py_2(x)

Here N is order of the real polynomial Q(x) and n is number
of non-zero terms in Q(x).

Theorem 3. The sequence Py(x) = {Py(x), Pi(x), P2(x),...,
Py(x)} with polynomials as in (12) is a Sturm shaped sequence
constructed from Boubaker polynomials.

Proof. We have, for all values of 0 < k < M:

Pro1(x) = Ba(x) Pi(x) = Preii (x) = APr(x) +r

the remainder r of the Euclidian division of P;_;(x) by Pi(x) is
hence: r = —Pyy(x). O

Proposed protocol. For a sequence Py(x) = {Py(x), P,(x),
Py(x),...,Py(x)}, associated to a polynomial Q(x)=
Zﬁoiix", defined in the domain [—1,1], the number Z;, of
complex zeros inside the unit disk is given by:

where  S*(x) = S(x) — S®(x) represents the difference
between the number of sign changes and sign repetitions in

the sequence Py(x).

This protocol is an extension of the Sturm theorem for real
zeros of real-coefficient polynomials. For a proof, refer to
Collins and Rudiger (1983). While the usual Sturm theorem
and related works on Sturm-like sequence using Chebyshev
polynomials in literature (Schelin, 1983; Locher and
Skrzipek, 1995; Gleyse, 1997) target only the number of real
zeros of real coefficient polynomials in open unit disk or other
annulus, we demonstrate through examples in the next section
that the proposed protocol — an extension to the theorem — can
be used to count number of complex zeros of real polynomials
in open unit disk.

Since the built-off Sturm sequence Py(x) is constructed
through 4¢g-Boubaker polynomials, which are all even, as a
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consequence the number of sign changes and also the sign
repetitions at —1 and 1 will be the same, ie. S°(—1)=
S€(1) and S*(—=1) = $*(1) = S*(—=1) = S*(1). Thus, (13) can
equivalently be expressed as:

Zio =28 (—1)=25(1) (14)

It can be noted that the use of 4¢-Boubaker polynomials
minimizes the computational cost of (13) by half as one needs
to count the sign changes and repetitions either only at 1 or —1
as in (14).

3. Results and discussion

The described protocol has been applied on following polyno-
mials (all zeros are shown opposite):
Example 1:
9 281

225
_ 8,76 4 2
0,(x)=x +8x +256X s

625 /1 . 1 1 1. 1 1.
*m(f’*ai”iiz’*iiz’)

Example 2:

15 35
0,(x) = x° + 4x* +7x3 +7x2 + 14x

o1 1
+6(73, j:ZI, 75:‘:51)
Example 3:

1 1 1
X)=x 42 —x -2 +1, i, +—i
05(x) XX —x 2X(O, , i, ﬁl)
Example 4:

1 1 1
N R B L.
Q4(x)—x X +4x 4<l,:|:21>

Implementation details of the proposed protocol on
polynomials in Examples 1—4 are given in Table 1 with specific
values, sign sequence and sign patterns in corresponding
Sturm-shaped sequences. We explicitly describe implementa-
tion on, say, Q,(x). The application of the protocol on

0,(x) gives the following Boubaker polynomial built Sturm-
shaped sequence:

Py(x)= ZfiBzu(X) = Bis(x) +3Bia(x) +35 Bs(x)
=0

— 35 Ba(x) +3556.Bo (%)

Pi(x)= EéiB4i—4(x) =By (x) +%Bs(x) +%B4(X) *%BO(X)
i=1

Py (x)=By(x)Pr(x)— P (x), k=2,3,...,8

and corresponding sign sequence {+, —, —,+,—, —, 4+, —, —} at

x =1 or x = —1. Consequently:

which is true as only four complex zeros of Q,(x):

I+i1—i,—i+iand —1—ilie in the open unit disk. Zeros
loci for Q,(x) are shown in Fig. 1.
1.5
1 .- ®
0.5
®
S ® ®
>
@ 0
C
2
£ ®
-0.5
-1 @ L °
-1.5
-1.5 -1 -0.5 0 0.5 1 1.5
Real Part

Fig. 1  Zeros loci for Q,(x).

Table 1 Implementation details of the proposed protocol on example polynomials 1-4.

0,(x) 0,(x) 0;(x) 04()
Py 341/537 572 0 —11/2
P, —83/512 10 32 17/4
P, —1143/2414 7712 —3/2 5/4
Ps 341/537 57)2 0 —11/2
Py —83/512 10 32 -
Ps —1143/2414 =77/2 -3/2 -
Pg 341/537 = 0 =
P; —83/512 - 3/2 -
Py —1143/2414 - - -
Sign sequence at x = 1 or —1 e ==t == A==} 5k 4 =045 3k =) {8k 30 = Fr A =o 3k 3] H=adk 4=}
SC(—I) or SC(l) 5 3 4 2
SR(—1) or SR(1) 3 2 3 1
S*(=1) or §*(1) 2 1 1 1
Zig 4 2 2 2

Bold values represent main output of the proposed protocol on examples 1-4. These bold values represent the number of complex zeros inside

the unit disk, found by the protocol for polynomials in examples 1-4.



90

M.M. Shaikh, K. Boubaker

Imaginary Part

25 : : ; :
-3 -2 -1 0 1
Real Part
Fig. 2 Zeros loci for Q,(x).
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Fig. 3  Zeros loci for Q5(x).

The results in Table 1 speak for themselves. The proposed
protocol shows that polynomials in Examples 1-4 have 4, 2,
2, and 2 complex zeros inside the open unit disk, respectively,
which is in good agreement with the loci plots of these polyno-
mials in z-plane (Figs. 1-4). It can be noted that the proposed
method counts only those complex zeros inside open unit disk
that are purely non-real, i.e. involve some imaginary term. This
is evident through Example-3 and meanwhile from Fig. 3 that
x = 0 (a purely real zero of Q5(x)) — beside located in the open
unit disk — is not counted by the proposed algorithm.

4. Conclusion and future work

The exact number of complex zeros in the open unit disk of
some polynomials of different orders has been determined

1.5
L . ——..
0.5 )
© /
©
o
§ o 3
)
(0]
E
0.5 ®
-1 D I
15
15 -1 0.5 0 0.5 1 1.5

Real Part

Fig. 4  Zeros loci for Q,(x).

using the Boubaker polynomial generated Sturm sequence.
The protocol is general and efficient since no restriction is
applied to the targeted polynomial. According to the example
investigations, this method is a simple and efficient numerical
method for computing the number of polynomials complex
zeros lying inside the unit disk.

The construction of Boubaker polynomials built-off Sturm
shaped sequences in this work to exactly compute the number
of complex zeros for real polynomials, as a start, through this
work further encourages researchers to revisit the approxima-
tions, work to refine it for other similar problems and devise
extended methods. Investigation of further accuracy and suit-
ability of this protocol along with proposition of its utility to
address case studies in complex analysis and control theory
are the topics of future research. It can be observed that no
conditions are presumed for the polynomial Q(x), as opposed
to the methods (Gleyse, 1997; Gleyse and Larabi, 2011).
Comparison of our method will be made with those of the
Cauchy-indices-related method, used by Gleyse (1997), or
those of methods using Schur-Cohn, Brown and Cohn trans-
forms (Gleyse and Larabi, 2011) from the view-point of anal-
ysis of order of complexity in future.
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