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Abstract In this paper, a class of non-linear vector differential equations of third order with delay
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technique of proofs involves defining an appropriate Lyapunov functional. The obtained results

include and improve the results in the literature.
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1. Introduction

During the last years, many good results have been obtained on
the qualitative behaviors in ordinary and functional differential

equations of third order without and with delay. In particular,
for some works on the stability and boundedness in scalar ordi-
nary and functional differential equations of third order with-

out and with delay, we referee the interested reader to the
papers of Ademola et al. (2015), Ademola and Arawomo
(2011), Afuwape and Castellanos (2010), Graef et al. (2015),

Graef and Tunc (2015), Mehri and Shadman (1999), Meng
(1993), Omeike (2014), Omeike and Afuwape (2010), Qian
(2000), Remili and Oudjedi (2014), Tunc (2004, 2005a,b,c,
2007, 2009a,b, 2010a,b, 2013a,b, 2014, 2015), Tunc and

Mohammed (2014), Tunc and Ates� (2006), Zhang and Yu
(2013) and their references. However, to the best of our knowl-
edge from the literature, by this time, little attention was given

to the investigation into the stability/boundedness/ultimately
boundedness in vector functional differential equations of third
order with delay (see Tunc and Mohammed (2014)).
It should be noted any investigation into the stability and
boundedness in vector functional differential equations of
third order, using the Lyapunov functional method, first

requires the definition or construction of a suitable Lyapunov
functional, which gives meaningful results. In reality, this case
can be an arduous task. The situation becomes more difficult

when we replace an ordinary differential equation with a func-
tional vector differential equation. However, once a viable
Lyapunov functional has been defined or constructed,
researchers may end up with working with it for a long time,

deriving more information about stability. To arrive at the
objective of this paper, we define a new suitable Lyapunov
functional.

Recently, the authors in Tunc and Mohammed (2014) dis-
cussed the stability and boundedness in non-linear vector dif-
ferential equation of third order with constant delay s1 > 0:

X000 þWðX0ÞX00 þ BX0ðt� s1Þ þ cXðt� s1Þ ¼ PðtÞ ð1Þ
In this paper, we consider vector differential equation of third

order of the form

X000 þHðX0ÞX00 þ GðX0ðt� sÞÞ þ cXðt� sÞ ¼ Fðt;X;X0;X00Þ
ð2Þ

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jaubas.2016.01.004&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:cemtunc@yahoo.com
http://dx.doi.org/10.1016/j.jaubas.2016.01.004
http://www.sciencedirect.com/science/journal/18153852
http://dx.doi.org/10.1016/j.jaubas.2016.01.004
http://creativecommons.org/licenses/by-nc-nd/4.0/
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where s > 0 is the fixed constant delay, c is a positive constant;

G : Rn ! Rn is a continuous differentiable function with
Gð0Þ ¼ 0 and H is an n� n� continuous differentiable sym-
metric matrix function such that the Jacobian matrices

JHðX0Þ and JGðX0Þ exist and are symmetric and continuous,
that is,

JHðX0Þ ¼ @hik
@x0

j

 !
; JGðX0Þ ¼ @gi

@x0
j

 !
; ði; j; k ¼ 1; 2; . . . ; nÞ

exist and are symmetric and continuous, where ðx0
1; x

0
2; . . . ; x

0
nÞ,

ðhikÞ and ðgiÞ are components of X0, H and G, respectively;

F : Rþ �Rn �Rn �Rn ! Rn is a continuous function,

Rþ ¼ ½0;1Þ, and the primes in Eq. (2) indicate differentiation
with respect to t, t P t0 P 0.

It should be stated that the continuity of the functions H, G

and F is a sufficient condition for existence of the solution of
Eq. (2). In addition, we assume that the functions H, G and
F satisfy a Lipschitz condition with respect to their respective

arguments, like X, X0 and X00. In this case, the uniqueness of
solutions of Eq. (2) is guaranteed.

It will be convenient here to consider not Eq. (2) itself, but
rather the system

X0
1 ¼ X2; X0

2 ¼ X3

X0
3 ¼ �HðX2ÞX3 � GðX2Þ þ

Z t

t�s
JGðX2ðsÞÞX3ðsÞds� cX1

þ c

Z t

t�s
X2ðsÞdsþ Fðt;X1;X2;X3Þ ð3Þ

derived from it by setting X ¼ X1, X
0 ¼ X2, X

00 ¼ X3.

Along this paper, we assume that the existence and the
uniqueness of the solutions of Eq. (2) hold.

The motivation of this paper comes from the results estab-

lished in Datko (1994), De la Sen (1988a,b), De la Sen and Luo
(2004), Omeike and Afuwape (2010), Qian (2000), Tunc and
Mohammed (2014), Zhang and Yu (2013), the mentioned

papers and their references. The main purpose of this paper
is to get some new stability/boundedness/ultimately bounded-
ness results in Eq. (1) using the Lyapunov-functional
approach. By this paper, we will extend and improve the

results of Omeike (2014), Tunc (2009b), Tunc and
Mohammed (2014), Zhang and Yu (2013).

This is the novelty of this work. Besides, the results to be

established here may be useful for researchers working on
the qualitative behaviors of solutions.

One basic tool to be used here is LaSalle’s invariance prin-

ciple. Let us consider delay differential system

_x ¼ fðxtÞ; xt ¼ xðtþ hÞ; �r 6 h 6 0; t P 0

We take C ¼ Cð½�r; 0�; RnÞ to be the space of continuous
function from ½�r; 0� into Rn and ask that f : C ! Rn be con-

tinuous. We say that V : C ! R is a Lyapunov function on a

set G � C relative to f if V is continuous on �G, the closure of G,
_V is defined on G, and _V 6 0 on G.

The following form of the LaSalle’s invariance principle can

be found in Tunc and Mohammed (2014).

Theorem A. If V is a Lyapunov function on G and xtð/Þ is a
bounded solution such that xtð/Þ 2 G for t P 0; then xð/Þ–0 is
contained in the largest invariant subset of E � fw 2 �G :
_VðwÞ ¼ 0g, x denotes the omega limit set of a solution.

We need the following lemmas in the proofs of main results.

Lemma A. Hale (1965) suppose fð0Þ ¼ 0. Let V be a continuous
functional defined on CH ¼ C with Vð0Þ ¼ 0, and let uðsÞ be a
function, non-negative and continuous for 0 6 s < 1, uðsÞ ! 1
as u ! 1 with uð0Þ ¼ 0. If for all u 2 C, uðjuð0ÞjÞ 6 VðuÞ,
VðuÞ P 0, _VðuÞ 6 0, then the zero solution of _x ¼ fðxtÞ is
stable.

If we define Z ¼ fu 2 CH : _VðuÞ ¼ 0g, then the zero solution
of _x ¼ fðxtÞ is asymptotically stable, provided that the largest
invariant set in Z is Q ¼ f0g.

Lemma B. Let A be a real symmetric n� n-matrix. Then for

any X1 2 Rn

dakX1k2 6 hAX1;X1i 6 DakX1k2

where da and Da are, respectively, the least and greatest eigenval-
ues of the matrix A.
2. Stability

Let Fð�Þ � 0. The stability result of this paper is the following
theorem.

Theorem 1. In addition to the basic assumptions imposed on H

G and c with Fð�Þ � 0, we assume that there exist positive
constants a, e, a0, a1, b0, b1 and c such that the following
conditions hold:

Gð0Þ ¼ 0, JG exists, n� n-symmetric matrices JG and H
commute with each other,

a0b0 � c > 0; 1� aa0 > 0; b0 6 kiðJGðX2ÞÞ 6 b1

and

a0 þ e 6 kiðHðX2ÞÞ 6 a1 for all X2 2 Rn

If

s<min
aa0b0c

aa0b0b1þaa0b0c
;

k5
ð2a0þaa0b0þ1Þcþa0b1

;
k6

cþð2þa0þaa0b0Þb1

� �

with

k5 ¼ 2ða0b0 � cÞ � aa0b0 a0 þ c�1ðb1 � b0Þ2
h i

> 0

and

k6 ¼ 2e 1� aa0b0c
�1ða1 � a0Þ2

h i
> 0

then all solutions of Eq. (2) are bounded and the zero solution of
Eq. (2) is asymptotically stable.

Proof. We define a functional WðtÞ ¼ WðX1ðtÞ; X2ðtÞ; X3ðtÞÞ
given by
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2W ¼ a0chX1;X1i þ 2a0

Z 1

0

hrHðrX2ÞX2;X2idr

þ aa0b
2
0hX1;X1i þ 2

Z 1

0

hGðrX2Þ;X2idrþ hX3;X3i
þ 2aa20b0hX1;X2i þ 2aa0b0hX1;X3i þ 2a0hX2;X3i

þ 2chX1;X2i � aa0b0hX2;X2i þ 2k
Z 0

�s

Z t

tþs

kX2ðhÞk2dhds

þ 2g
Z 0

�s

Z t

tþs

kX3ðhÞk2dhds; ð4Þ

where

0< a<min
1

a0
;
a0
b0
;

a0b0� c

a0b0 a0þ c�1ðb1�b0Þ2
h i ; c

a0b0ða1�a0Þ

8<
:

9=
; ð5Þ

a1 > a0, b1–b0, and k and g are positive constants which will

be determined in the proof.
Since

Gð0Þ ¼ 0;
@

@r
GðrX2Þ ¼ JGðrX2ÞX2

it follows thatZ 1

0

hGðrX2Þ;X2idr ¼
Z 1

0

Z 1

0

r1hJGðr1r2X2ÞX2;X2idr1dr2

Then, from (4), we have clearly

2W ¼ a0b0 a
�1
2

0 X2 þ a
�1
2

0 b�1
0 cX1

��� ���2 þ X3 þ a0X2 þ aa0b0X1k k2

þ 2a0

Z 1

0

rHðrX2ÞX2;X2h idr� 2a20kX2k2

þ 2

Z 1

0

Z 1

0

r1 JG r1r2X2ð ÞX2;X2h idr1dr2 � b0kX2k2

þ aa0b
2
0 1� aa0ð ÞkX1k2 þ c a0 � cb�1

0

� �kX1k2

þ a0ða0 � ab0ÞkX2k2 þ 2k
Z 0

�s

Z t

tþs

kX2ðhÞk2dhds

þ 2g
Z 0

�s

Z t

tþs

kX3ðhÞk2dhds: ð6Þ

Under the hypotheses of Theorem 1, we have

Wð0; 0; 0Þ ¼ 0

2a0

Z 1

0

rHðrX2ÞX2;X2h idr� 2a20kX2k2 P ea0kX2k2

2

Z 1

0

Z 1

0

r1 JG r1r2X2ð ÞX2;X2h idr1dr2 � b0kX2k2 P 0

aa0b
2
0ð1� aa0ÞkX1k2 ¼ l1kX1k2

l1 ¼ aa0b
2
0ð1� aa0Þ > 0

c a0 � cb�1
0

� �kX1k2 ¼ l2kX1k2

l2 ¼ c a0 � cb�1
0

� �
> 0

a0ða0 � ab0ÞkX2k2 ¼ l3kX2k2

l3 ¼ a0ða0 � ab0Þ > 0
In summary, in view of (6), the above estimates imply that

W P
1

2
a0b0 a

�1
2

0 X2 þ a
�1

2
0 b�1

0 cX1

��� ���2 þ 1

2
X3 þ a0X2 þ aa0b0X1k k2

þ 1

2
ðl1 þ l2ÞkX1k2 þ 1

2
ða0eþ l3ÞkX2k2

þ 2k
Z 0

�s

Z t

tþs

kX2ðhÞk2dhdsþ 2g
Z 0

�s

Z t

tþs

kX3ðhÞk2dhds:

It is clear from the first four terms that there exist suffi-
ciently small positive constants ki, ði ¼ 1; 2; 3Þ, such that

W P k1kX1k2 þ k2kX2k2 þ k3kX3k2

Let

k4 ¼ minfk1; k2; k3g
so that

W P k4 kX1k2 þ kX2k2 þ kX3k2
� �

A straightforward calculation from (3) and (4) gives that

_WðtÞ¼�aa0b0ckX1k2�a0 X2;GðX2Þh iþ ckX2k2

þaa20b0kX2k2�aa0b0 X1;HðX2ÞX3h i
þaa20b0hX1;X3i� HðX2ÞX3;X3h i
þa0kX3k2�aa0b0hX1;GðX2Þi

þaa0b
2
0hX1;X2iþ X3;

Z t

t�s

JGðX2ðsÞÞX3ðsÞds
	 


þ X3;c

Z t

t�s
X2ðsÞds

	 

þaa0b0 X1;

Z t

t�s
JGðX2ðsÞX3ðsÞds

	 


þaa0b0c X1;

Z t

t�s
X2ðsÞds

	 

þa0 X2;

Z t

t�s
JGðX2ðsÞÞX3ðsÞds

	 


þa0c X2;

Z t

t�s
X2ðsÞds

	 

þkskX2k2þgskX3k2

�k
Z t

t�s
kX2ðhÞk2dh�g

Z t

t�s
kX3ðhÞk2dh

¼�1

2
aa0b0ckX1k2� ða0GðX2Þ;X2h i

þ cIþaa20b0I
� �

X2;X2

� �� ðHðX2Þ�a0IÞX3;X3h i

�1

4
aa0b0 c

1
2X1þ2c�

1
2ðHðX2Þ�a0IÞX3

��� ���2
þ1

4
aa0b0 2c�

1
2ðHðX2Þ�a0IÞX3

��� ���2
�1

4
aa0b0 c

1
2X1þ2c�

1
2ðGðX2ÞX2�b0X2Þ

��� ���2
þ1

4
aa0b0 2c�

1
2ðGðX2ÞX2�b0X2Þ

��� ���2
þ X3;

Z t

t�s
JGðX2ðsÞÞX3ðsÞds

	 

þ X3;c

Z t

t�s
X2ðsÞds

	 


þaa0b0 X1;

Z t

t�s
JGðX2ðsÞÞX3ðsÞds

	 


þaa0b0c X1;

Z t

t�s
X2ðsÞds

	 

þa0 X2;

Z t

t�s
JGðX2ðsÞX3ðsÞds

	 


þa0c X2;

Z t

t�s
X2ðsÞds

	 

þkskX2k2þgskX3k2

�k
Z t

t�s
kX2ðhÞk2dh�g

Z t

t�s
kX3ðhÞk2dh
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The assumptions of Theorem 1 lead to

a0GðX2Þ;X2h i ¼
Z 1

0

ha0JGðrX2ÞX2;X2idr P
Z 1

0

a0b0X2;X2h idr

¼ a0b0kX2k2

a0hX2;GðX2Þi � chX2;X2i � aa20b0hX2;X2i
P a0b0 � c� aa20b0
� �kX2k2

X3;

Z t

t�s
JGðX2ðsÞÞX3ðsÞds

	 

6 kX3k

Z t

t�s
kJGðX2ðsÞÞkkX3ðsÞkds

6 b1kX3k
Z t

t�s
kX3ðsÞkds

6 1

2
b1

Z t

t�s
kX3ðtÞk2þkX3ðsÞk2
n o

ds

¼ 1

2
b1skX3k2þ1

2
b1

Z t

t�s
kX3ðsÞk2ds

X3; c

Z t

t�s
X2ðsÞds

	 

6 ckX3k

Z t

t�s
kX2ðsÞkds

6 1

2
cskX3k2 þ 1

2
c

Z t

t�s
kX2ðsÞk2ds

aa0b0 X1;

Z t

t�s
JGðX2ðsÞÞX3ðsÞds

	 


6 aa0b0kX1k
Z t

t�s
kJGðX2ðsÞÞkkX3ðsÞkds

6 1

2
aa0b0b1

Z t

t�s
kX1ðtÞk2 þ kX3ðsÞk2
n o

ds

¼ 1

2
aa0b0b1skX1k2 þ 1

2
aa0b0b1

Z t

t�s
kX3ðsÞk2ds

aa0b0c X1;

Z t

t�s
X2ðsÞds

	 

6 aa0b0ckX1k

Z t

t�s
kX2ðsÞkds

6 1

2
aa0b0cskX1k2 þ 1

2
aa0b0c

�
Z t

t�s
kX2ðsÞk2ds

a0 X2;

Z t

t�s
JGðX2ðsÞÞX3ðsÞds

	 

6 a0b1kX2k

Z t

t�s
kJGðX2ðsÞÞkkX3ðsÞkds

6 1

2
a0b1skX2k2þ1

2
a0b1

Z t

t�s
kX3ðsÞk2ds

a0c X2;

Z t

t�s
X2ðsÞds

	 

6 a0ckX2k

Z t

t�s
kX2ðsÞkds

6 1

2
a0c

Z t

t�s
kX2ðtÞk2 þ kX2ðsÞk2
n o

ds

¼ 1

2
a0cskX2k2 þ 1

2
a0c

Z t

t�s
kX2ðsÞk2ds

On combining the above obtained inequalities into _WðtÞ,
we have that
_WðtÞ 6 � 1

2
aa0b0ckX1k2 � a0b0 � c� aa20b0

� �kX2k2

� ðHðX2Þ � a0IÞX3;X3h i

� 1

4
aa0b0 c

1
2X1 þ 2c�

1
2ðHðX2Þ � a0IÞX3

��� ���2

þ 1

4
aa0b0 2c�

1
2ðHðX2Þ � a0IÞX3

��� ���2

� 1

4
aa0b0 c

1
2X1 þ 2c�

1
2ðB� b0IÞX2

��� ���2

þ 1

4
aa0b0 2c�

1
2ðB� b0IÞX2

��� ���2

þ 1

2
aa0b0b1skX1k2 þ 1

2
aa0b0cskX1k2

þ 1

2
a0b1skX2k2 þ 1

2
a0cskX2k2

þ 1

2
b1skX3k2 þ 1

2
cskX3k2 þ kskX2k2 þ gskX3k2

� k� 1

2
ða0 þ aa0b0 þ 1Þc

� �Z t

t�s
kX2ðsÞk2ds

� g1 � ð1þ a0 þ 1

2
aa0b0Þb1

� �Z t

t�s
kX3ðsÞk2ds

Let

k ¼ 1

2
ða0 þ aa0b0 þ 1Þcandg ¼ 1þ a0 þ 1

2
aa0b0

 �
b1

Hence

_WðtÞ 6 � 1

2
aa0b0ckX1k2 � a0b0 � c� aa20b0

� �kX2k2

� ðHðX2Þ � a0IÞX3;X3h i

þ 1

4
aa0b0 2c�

1
2ðHðX2Þ � a0IÞX3

��� ���2

þ 1

4
aa0b0 2c�

1
2ðB� b0IÞX2

��� ���2

þ 1

2
aa0b0b1 þ aa0b0cð ÞskX1k2 þ 1

2
ða0b1 þ a0cÞskX2k2

þ 1

2
a0 þ aa0b0 þ 1ð Þcs1kX2k2 þ 1

2
ðb1 þ cÞskX3k2

þ 1

2
1þ a0 þ aa0b0ð Þb1skX3k2

Since

1

4
aa0b0 2c�

1
2ðB�b0IÞX2

��� ���2 ¼ aa0b0 c�1ðB�b0IÞX2;ðB�b0IÞX2

� �
and

1

4
aa0b0 2c�

1
2ðHðX2Þ � a0IÞX3

��� ���2 ¼ aa0b0 c�1ðHðX2Þ � a0IÞX3;
�

HðX2Þ � a0IÞX3ð i
it is clear that
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_WðtÞ 6 � 1

2
aa0b0ckX1k2 � a0b0 � c� aa20b0

� �kX2k2

þ aa0b0 c�1ðB� b0IÞX2; ðB� b0IÞX2

� �
� ðHðX2Þ � a0IÞX3;X3h i
þ aa0b0 c�1ðHðX2Þ � a0IÞX3; ðHðX2Þ � a0IÞX3

� �
þ 1

2
aa0b0b1 þ aa0b0cð ÞskX1k2 þ 1

2
ða0b1 þ a0cÞskX2k2

þ 1

2
a0 þ aa0b0 þ 1ð ÞcskX2k2 þ 1

2
ðb1 þ cÞskX3k2

þ 1

2
1þ a0 þ aa0b0ð Þb1skX3k2

By Lemma B and the assumptions of Theorem 1, we get

_WðtÞ 6 � 1

2
aa0b0c� aa0b0b1 þ aa0b0cð Þsf gkX1k2

� ða0B� cIÞ � aa0b0 a0Iþ c�1ðB� b0IÞ2
h in o

X2;X2

D E
þ 1

2
ða0b1 þ a0cÞs1kX2k2

þ 1

2
ða0 þ aa0b0 þ 1Þcs1kX2k2

� ðHðX2Þ � a0IÞ½I� aa0b0c
�1ðHðX2Þ � a0IÞ�

� �
X3;X3

� �
þ 1

2
ðb1 þ cÞskX3k2

þ 1

2
1þ a0 þ aa0b0ð Þb1skX3k2

6 � 1

2
aa0b0c� aa0b0b1 þ aa0b0cð Þsf gkX1k2

� ða0b0 � cÞ � aa0b0½a0 þ c�1ðb1 � b0Þ2�
n o

kX2k2

þ 1

2
ð2a0 þ aa0b0 þ 1Þcþ a0b1f gskX2k2

� e 1� aa0b0c
�1ða1 � a0Þ2

h io
kX3k2

þ 1

2
2b1 þ cþ a0b1 þ aa0b0b1ð ÞskX3k2:

Let

k5 ¼ 2ða0b0 � cÞ � aa0b0 a0 þ c�1ðb1 � b0Þ2
h i

> 0

and

k6 ¼ 2e 1� aa0b0c
�1ða1 � a0Þ2

h i
> 0

so that

_WðtÞ 6 � 1

2
aa0b0c� aa0b0b1 þ aa0b0cð Þsf gkX1k2

� 1

2
k5 � 2a0 þ aa0b0 þ 1ð Þcþ a0b1½ �sf gkX2k2

� 1

2
k6 � 2b1 þ cþ a0b1 þ aa0b0b1ð Þsf gkX3k2

If

s<min
aa0b0c

aa0b0b1þaa0b0c
;

k5
ð2a0þaa0b0þ1Þcþa0b1

;
k6

cþð2þa0þaa0b0Þb1

� �

then, for some positive constants k7, k8 and k9, it follows that

_WðtÞ 6 �k7kX1k2 � k8kX2k2 � k9kX3k2 6 0

In addition, we can easily see that

WðX1;X2;X3Þ ! 1 as kX1k2 þ kX2k2 þ kX3k2 ! 1
Consider the set defined by

E � ðX1;X2;X3Þ : _WðX1;X2;X3Þ ¼ 0
� �

When we apply LaSalle’s invariance principle, we observe
that ðX1;X2;X3Þ 2 E implies that X1 ¼ X2 ¼ X3 ¼ 0. Clearly,

this fact leads that the largest invariant set contained in E is
ð0; 0; 0Þ 2 E. By Lemma B, we conclude that the zero solution
of system (3) is asymptotically stable. Hence, the zero solution

of Eq. (2) is asymptotically stable. This completes the proof of
Theorem 1.

3. Boundedness

Let Fð�Þ–0. The boundedness result of this paper is the follow-
ing theorem.

Theorem 2. We assume that all the assumptions of Theorem 1

hold, except Fð�Þ � 0. Further, we suppose that there exists a
non-negative and continuous function h ¼ hðtÞ such that

kFðt;X1;X2;X3Þk 6 hðtÞ for all t P 0; maxhðtÞ < 1 and

h 2 L1ð0;1Þ
where L1ð0;1Þ denotes the space of Lebesgue integrable
functions.

If

s<min
aa0b0c

aa0b0b1þaa0b0c
;

k5
ð2a0þaa0b0þ1Þcþa0b1

;
k6

cþð2þa0þaa0b0Þb1

� �

with

k5 ¼ 2ða0b0 � cÞ � aa0b0 a0 þ c�1ðb1 � b0Þ2
h i

> 0

and

k6 ¼ 2e 1� aa0b0c
�1ða1 � a0Þ2

h i
> 0

then there exists a constant D > 0 such that any solution
ðX1ðtÞ;X2ðtÞ;X3ðtÞÞ of system (3) determined by

X1ð0Þ ¼ X10; X2ð0Þ ¼ X20; X3ð0Þ ¼ X30

Satisfies

kX1ðtÞk 6 D; kX2ðtÞk 6 D; kX3ðtÞk 6 D

for all t 2 Rþ.

Proof. Let Fð�Þ ¼ Fðt;X1;X2;X3Þ. In the case of Fð�Þ–0, under
the assumptions of Theorem 2, we can easily arrive at

_WðtÞ 6 � 1

2
aa0b0c� aa0b0b1 þ aa0b0cð Þsf gkX1k2

� 1

2
k5 � 2a0 þ aa0b0 þ 1ð Þcþ a0b1½ �sf gkX2k2

� 1

2
k6 � 2b1 þ cþ a0b1 þ aa0b0b1ð Þsf gkX3k2

þ hX3;Fð�Þi þ aa0b0hX1;Fð�Þi þ a0hX2;Fð�Þi
6 aa0b0kX1k þ a0kX2k þ kX3kð ÞkFð�Þk
6 r kX1k þ kX2k þ kX3kð ÞkFð�Þk
6 rð3þ kX1k2 þ kX2k2 þ kX3k2ÞhðtÞ
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where

r ¼ maxfaa0b0; a0; 1g
Besides, in view of the discussion made, it is clear that

kX1k2 þ kX2k2 þ kX3k2 6 k�1
4 W

so that

_WðtÞ 6 3rhðtÞ þ k�1
4 WðtÞhðtÞ

Integrating both sides of the last estimate from 0 to t

ðt P 0Þ, we have

WðtÞ 6 Wð0Þ þ 3r
Z t

0

hðsÞdsþ k�1
4

Z t

0

WðsÞhðsÞds

Let

M ¼ Wð0Þ þ 3r
Z 1

0

hðsÞds

Then

WðtÞ 6 Mþ k�1
4

Z 1

0

WðsÞhðsÞds

By noting the Gronwall–Bellman inequality, we can get

WðtÞ 6 M exp k�1
4

Z 1

0

hðsÞds
 �

By the estimate kX1k2 þ kX2k2 þ kX3k2 6 k�1
4 W and the

assumption h 2 L1ð0;1Þ, we can conclude that all solutions

of system (2) are bounded. This completes the proof of
Theorem 2.

4. Ultimately boundedness

For the case Fð�Þ–0, the ultimately boundedness result of this
paper is the following theorem.

Theorem 3. We assume that all assumptions of Theorem 1 hold,
except Fð�Þ � 0. In addition, we assume that there exists a
positive constant d0 such that the condition

kFð�Þk 6 d0; ðt P 0Þ
holds.

If

s<min
aa0b0c

aa0b0b1þaa0b0c
;

k5

ð2a0þaa0b0þ1Þcþa0b1
;

k6

cþð2þa0þaa0b0Þb1

� �
;

With

k5 ¼ 2ða0b0 � cÞ � aa0b0 a0 þ c�1ðb1 � b0Þ2
h i

> 0

and

k6 ¼ 2e 1� aa0b0c
�1ða1 � a0Þ2

h i
> 0

then there exists a constant d > 0 such that any solution
ðX1ðtÞ;X2ðtÞ;X3ðtÞÞ of system (3) determined by

X1ð0Þ ¼ X10; X2ð0Þ ¼ X20; X3ð0Þ ¼ X30

ultimately satisfies
kX1ðtÞk2 þ kX2ðtÞk2 þ kX3ðtÞk2 6 k

for all t 2 Rþ.

Proof. For the case Fð�Þ–0, in the light of the assumptions of

Theorem 3, we can conclude that

_WðtÞ 6 �q1kX1k2 � q2kX2k2 � q3kX3k2

þ aa0b0kX1k þ a0kX2k þ kX3kð ÞkFð�Þk
6 �q1kX1k2 � q2kX2k2 � q3kX3k2

þ aa0b0d0kX1k þ a0d0kX2k þ d0kX3kð Þ
The rest of the proof can be easily done by following a sim-

ilar procedure as shown in Meng (1993), Tunc and
Mohammed (2014). Hence, we omit the details of the proof.
5. Conclusion

A kind of nonlinear vector functional differential equations of

third order with a constant delay has been considered. Some
qualitative behaviors of solutions, stability/boundedness/
ultimately boundedness of solutions, have been discussed.

The technique of proofs involves defining an appropriate Lya-
punov functional. Our results include and improve some recent
results in the literature.
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