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Abstract In this article, the existence of a unique solution of Fredholm—Volterra integral equation
of the second kind is guaranteed. The Fredholm integral term is assumed in position with bad ker-
nel, while the Volterra integral term is considered in time with continuous kernel. Under certain
conditions and new discussions, the bad kernel will tend to a logarithmic kernel. Then, using
Chebyshev polynomial, a main theorem of spectral relationships of Fredholm integral equation
of the first kind with logarithmic kernel multiplying by a smooth kernel is stated and used to obtain
numerically the Fredholm—Volterra integral equation of the second kind. Finally, numerical results
are obtained and the error, in each case, is computed.

© 2016 University of Bahrain. Publishing services by Elsevier B.V. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Integral equations of various types and kinds are playing an
important role in branches of mathematical physics (Bai,
2013), mathematical engineering (Assari et al., 2013) and con-
tact problems in the theory of elasticity (Heydari et al., 2013;
Li and HuaZou, 2013; Aleksandrov and Covalenko, 1986).
Therefore, many different methods are established and used
to solve the linear and nonlinear integral equation analytically
and numerically (Abdou, 2002; Diogo and Lima, 2008;
Anastassiou George and Ali, 2009; Bazm and Babolian,
2012;Biazar et al., 2003; Yiizbasi, 2014; Yiizbasi et al., 2011;
Toutounian and Tohidi, 2013).
Here, Consider the F-VIE of second kind
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(M.A. Abdou),

ud(x, 1) — )v/ol V(|t —1|)®(x,1)dr

[ k(o )ow. ar

—1

= n0y(2) — f.(x)] = f(x, 1), (L.1)
k(z)=/0°° Mm, L(u):‘l‘iz,
Z:y;x’ g=1, ce(0,00) (1.2)

under the pressure condition

/l o(t,y)dy =P(t), t€[0,T], T<I. (1.3)

where 0 = 2(%‘ in which G is a modulus of elasticity and v is

)
Poisson’s coefficient and 4 has many physical meanings. The

constant u defined the kind of integral equation. The given
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Table 1 Case (i-a, b); represents the solution @y (x, ¢) and its Table 3 Case (ii-c, e); represents the solution ®y(x, ) and its

error for different times in the simple case m = 0. error for different times in (n+m) > 2,m # 0.

t X () Error t X () Error

0.0004 —-0.99 0.0000016329 3.078945881 x 10710 0.0004 -0.99 0.0000002684 9.725059768 x10~!!
—0.495 0.0000003591 4.857498762 %10~ !! —0.495 0.00000005247 1.534273982 x 10!
0.495 0.0000002638 2.189115679 x 10! 0.495 0.00000004113 6.914470741 x10~12
0.99 0.0000006029 5.164023745 x 10! 0.99 0.00000010064 2.958295512 x10~!!

0.03 —0.99 0.009023297514 1.700838626 x10~° 0.03 —-0.99 0.0006625698160 2.507508228 x 1077
—0.495 0.001984376047 2.687898694 x 10~ —0.495 0.0001303995479 3.955688645 x10~°
0.495 0.001457778739 1.199968349 x 10~/ 0.495 0.0001015636111 1.783400322 x10~°
0.99 0.003331872637 5.164023745 x 1077 0.99 0.0002517222761 7.628269714 x10~8

0.8 —0.99 4.060805158 2.014803307 x10~° 0.8 —0.99 0.4709180393 2191556523 x107*
—0.495 0.8979563585 1.012343762 %1073 —0.495 0.09266452116 3.060634234 x10~°¢
0.495 0.6898680429 1.23451387 %1073 0.495 0.07213350091 7.983953360 x10~°
0.99 1.503538143 2.24356819 x1073 0.99 0.1788083769 1.342967242 x10~4

Table 2 Case (ii-c, d); represents the solution ®y(x,?) and its
error for different times in |n —m| > 1,m #* 0,m #* n.

t X () Error

0.0004 —0.99 0.0000001212 4.537270489 x 10!
—0.495 0.00000002348 7.158224453 x 10712
0.495 0.00000001831 3.225977507 x 10712
0.99 0.0000000455 1.380206111 x10~'2

0.03 —0.99 0.0006696992769 2.507393716 x 107
—0.495 0.0001297634539 3.955503532 x 108
0.495 0.0001011735411 1.783327980 x10~°
0.99 0.0002514196828 7.627930927 x10~%

0.8 —0.99 0.4759821898 2.198124642 x10~*
—0.495 0.09221639101 2.652620889 x 1076
0.495 0.07185440241 8.092946383 x 107>
0.99 0.1785797793 1.35594521 x107*

function of time V(|7 — t|) represents the kernel of VI term and
belongs to the class C([0, 77,0, 7]), where t,7 € [0,7],T < 1.
The kernel of position, p(x,y)k(|[=¥|), of FI term behaved
)., given by (1.2), and smooth for p(x,y).

badly for k(|=*
The given functions f, (x) belongs to the space L,[—1, 1], while
y(2), P(7) belong to the space C[0,7]. The integral equation
(1.1) with bad kernel of position (1.2), under the pressure con-
dition (1.3), is investigated from the mixed contact problem of
a rigid elastic surface (G,v), G is the displacement magnitude
and v is Poisson’s coefficient, having an elastic material occu-
pying the domain [—1, 1] with respect to position through
the time ¢,¢ € [0, 7], T < 1. The given function f{x,?) is the
sum of two functions, the first function y(¢) represents the dis-
placement of the surface under the action of pressure P(¢), and
the second function f,(x) describes the basic formula of the
surface. The unknown function ®(x, ) represents the normal
stresses between the layers of the surface, which is supplied
by a position force p(x,y).

This paper is divided into 7 sections. In section 2, the exis-
tence and uniqueness of Eq. (1.1) are discussed. In section 3
F-VIE of the second kind is considered in position and time

in the space L,[—1,1] x C[0,7],T < 1. The FI term belongs
to the space L,[—1,1] and has a bad behavior kernel. While
the VI term belongs to the space C[0, 7], 7 < 1, with a contin-
uous kernel. In section 4, a main theorem of spectral relation-
ships for the FIE of the first kind is considered. In section 5, we
use the main theorem to obtain a linear system of VIE of the
second kind. In section 6, numerical results and estimated
errors are computed. In section 7, general conclusions are
deduced.

2. Existence and uniqueness

In order to guarantee the existence of a unique solution of Eq.
(1.1), under the pressure condition (1.3), we assume the
following:

(i) The bad  behaved

kernel satisfies

| k()
{fi] ffllk2(|“‘%‘“|)cbwly}E = A, where A is a small con-

stant, while the smooth kernel |p(x,y)| < N;.
(i) The positive kernel of time is continuous and satisfies

V(t—1|) < N2y Vt,te]0,T].

(iii) The given function f(x,¢) is continuous with its partial
derivatives in the space L,[—1, 1] x C[0, T] and its norm

is given as ||f1|,,.c = maXogrgr{f,llfz(xv ‘c)dx} .

(iv) The unknown function ¢(x,¢) satisfies Lipschitz condi-
tion with respect to position and Hélder condition with
respect to time and behaves in Ly[—1, 1] x C[0, 7] as the
given function f(x,1).

ol—

Theorem 2.1. The solution of Eq. (1.1) exists and is unique
under the condition

|1l
AN ———. 2.4
g N, T+ N, C (2:4)

The existence of solutions will be proved using Picard
method. For this, Eq. (1.1) becomes
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ud,(x,1) = /l/or V(|t — 1)) ®,_1(x, 7)dr

+/l/71p(x,y)k<’yiTxD¢’n71(y7 t)dy

+fix, ). (2.5)
Introduce
W, (x, 1) = ©,(x,1) — Oy (x,1), wPolx, 1) =f(x,1), (2.6)
where ¥, = ®,. Then, we deduce
x,0) =Y Wx,1). (2.7)
=0

Hence, after using Cauchy—Schwarz inequality and apply-
ing the previous conditions, one obtains

A
[Wa(x, DIl < ol Wt (x, 0], 00 = H(NZT+ NiA). (2.8)
By induction, we get
1 H
[Wa(x, )| = o" —. (2.9)
u
Therefore, using the condition of Eq. (2.4), we deduce that

{W¥,(x,)} is uniformly convergent, then the formula (2.7) is
also uniformly convergent and leads to write

®,(x, 1) ZT X, 1). (2.10)
Therefore, ®(x,7) exists and represents a continuous
solution.

To prove the uniqueness, assume ®(x,?) is another solu-
tion. Hence, we get

~owa=[2| [ V=@t -

| (x, 1) ®(x,7))dr

+)/ plx.y)k ]y;‘) v, ))dy‘.
(2.11)

Using Cauchy—Schwarz inequality, we have
|D(x, ) — ®(x, 1)|| < atf|D(x, 1) — D(x, 7). (2.12)

From (2.4), we see that ® = @.

3. The kernel of position

The function L(u) of Eq. (1.2) is continuous and positive, for
u € (0,00) and satisfies the following asymptotic equalities:

L(u)=q—(¢=Nu+0), u—0, (3.13)

L(u):l—o—%—l— 0™, u— oo, g 1. (3.14)
All the previous works of Popov (1982) and Aleksandrov
and Covalenko (1986), in solving the problems of continuum
mechanics, discussed the solution of FIE of the first and sec-
ond kind when the kernel takes the form of Eq. (1.2) under
the condition (3.14), i.e. u — 0o or ¢ = 1.
In this work, we discuss the solution of F-VIE when the

kernel of Fredholm in the form of Eq. (1.2) under the

condition u — 0 of Eq. (3.13). For this aim, consider the first
and the second approximation of L(u) in (3.13). After using
the following famous relations (Gradshteyn and Ryzhik, 1994)

/ cos(uz) di— —In
0 u

4)
x—yl+d, (d:ln%, c—>oc)7
(3.15)

1 o0
- / cos(vx)dv = 0(x), 6(x) is the Dirac function, (3.16)
{l[u(,\—a)—o—u(x—o—b)}, a<x<b
—x)dy = .
0, otherwise.

/1w
(3.17)

where /(y) is any function, the IE (2.5) will be reduced to the
following

ad(x, 1) — ),/O,H(|l —1))®P(x, 1)dr
+2Kf@JNMX*N*ﬂ®mOW

+ [ pna( a0, nar

- qu(x, 1). (3.18)
Here,

__n V(e —1)

and

= q}L

A= -1 (3.20)

From the values of 1, we obtain the physical meaning
between 1 and ¢ in which the logarithmic kernel satisfies

1 1 ) % 1 _ 1 1
In"|x — y|dxd <=, )»:}~{1+7+—+~}.
{/—1 /—1 | 4 y} A g ¢
(3.21)

Also, from (3.19), we can deduce that for large values of ¢,
the total resistance force H(|t — t|) decreases. So, the external
resistance force for ¢ — oo, is not available and the total resis-
tance, in this case, is the resistance of material only.

As an important special case, put =0 and p(x,y) =1, in
Eq. (3.18), then differentiating the result with respect to x

and taking the substitution y =2u — 1,x =2v — 1, to get
do(u) L O(v)dv
) = 22
=[O, (3:22)
f1(x,0) L
O(u) =¥(x) =d(x,0), hu)=gx)= , A==,
() = ¥(x) = ©(x,0), h(u) = g(x) Wg—1) p

under the condition
0(0) =06(1) =0,

Eq. (3.22) has appeared in both combined infrared gaseous
radiation and molecular conduction.
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4. Spectral relationships of FIE of the first kind

Theorem 4.2 (Main theorem). The spectral relationships for
the integral equation

[ ()l = ] - (. )y = fx. 1), (423)

after representing the given functions p(x,y),f(x,t) and the
unknown function ®(x,t) in terms of Chebyshev polynomials
of the first kind of order n, T,(x), are given as

/‘ plxplinlx -y - dT,0) .

(1-37)
n(ln2 — d), n=m=
ET,,( ), m=0,n>=1
(4.24)
- nzm(ll 2;;;"_ m#0, n=0
i Tin- m(x), [n—m| =1, n*m#0
WTH,"(X), n+mz=1, n#0,m#=0,
where p(x,y) is given by
ZTm (4.25)

m=0

The proof of this theorem depends completely on the work
of Abdou and Basseem (2010).

5. Method of solution

For solving Eq. (3.18), we assume that the given function
f(x,1), in the light of weight function of 7,(x), is given by

me (5.26)

n=0

S 1)

where f, () satisfies

2 rl
2 [ S, 0T, (x)dx, n#0

1ult) = fll ‘ (5.27)
L flx, dx n=0.

and the unknown function ®(x, ) takes the form

D(x,1) = ZM (5.28)

2
n=0 l—x

to
(5.29)

In this case, see (Abdou et al., 2009), the orthogonal poly-
nomials method is convergent of order r if and only if for N
sufficiently large number, there exists D(¢) > 0,Vr € [0, 7],
independent of N such that

|®(x, ) — Dy(x,0)]| < D()N". (5.30)
Hence, the truncated error is
Ey= gg&xT 7N+1an(t) < D(f)N™". (5.31)

With the aid of Egs. (5.26), (4.25), (5.28), (3.17) and (3.16)
the formula (3.18) reduced to

Zan / a(t

+ ZZZTm(x)[ a, () T(»)(In |x — y| — d)

T(x)

Wit

H(|t =)

n=0 m=0 1
Do) v+ a ZT 1 N.(z) T,(x)
\/17 g " m=0 " qilnz()n V17x27
(5.32)

Using the main theorem 4, the solution can be obtained as
follows:
Case (i-a): For m = 0,n = 0, we have

t
[+ 24(In2 — d) + 2] ao (1) — /1/ ay(t)H(|t — t|)dt
0
A
g—1
Case (i-b): For m = 0,n > 1, and with the aid of the following

formulas (Bateman and Ergeyli, 1985; Gradshteyn and
Ryzhik, 1994)

(5.33)

- 0, n#m
7"@1) "’(f)d =z n=m#0 (5.34)
—J n, n=m,
1
Tm(x)ZI(x) = E[ m+n( )+ T‘\m n|( )] (m7n = 0)> (535)
: 2, n=0,24,...
/ T,,(x)dx:{lw n (5.36)
. 0, n=13,5...,
we get
N j t
H+Z(2;A’”+2A ) l)—/l/ H(|t — 1])a,(t)dr
= 0
= ) (537)
where
An,/ = - (n+1)2 + 1- \n 1|2 , n+ [ = even (538)
0, n+1=odd
and
L I=
A= { ipe feren (5.39)
0, [=odd

Case (ii-c): For m = 1,n =0, we deduce

A+ i (% + zAm)] - z/ot HJt = o])ay(x)de

_ L) (5.40)

g—1

Case (ii-d): For |n—m| >
establish

I,n > 1,m > 1,n# m, we can
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nml + 2Bm l) a"(t)

—/1/0 H(|t—r|)an(r)dr:@ (5.41)

n—m+[=even

! 2 + L 2
B’17m7] — 1—(n—m+l) 1—(n—m—I) (542)

0, n—m+[=odd

W, m+ 1= even

1
—L 4
B, = { ;)*(’"*”' (5.43)

Case (ii-e): For (n+m) >

(5

m=l1 [=

m+ 1= odd.

2,n = 1,m =1, we get

n(1)

Qnml + ZB;:: l>

- /'L/O H(|t — 1])a,(t)dr

AU
= (5.44)

where

Qn = 1- (rH—m-H)2 + n+m—l)
0, n—m+1=odd.

m+ [ = even

7, N —
(5.45)

The formulas (5.33)-(5.44) represent VIEs of the second
kind. Many different methods, analytic or numeric, can be
used to obtain the solution of VIE (Linz, 1985).

6. Numerical results

To obtain the numerical solution of F-VIE (5.32), we divide
the interval time [0,7] of VIEs (5.33)-(5.36),(5.37)(5.40),
(5.41)—(5.44) to obtain a LAS (Delves and Mohamed, 1985).
Then, with the aid of the results of main theorem, we can cal-
culate the unknown function ®y(x,7),-1<x<1,0<1<
T <1 for different times ¢={0.0004,0.03,0.8}, when
N=60,M=7V(t—1|) = - flx, 1) = x*,d = 0.01,
4 =0.1,¢g = 10 and u = 1. The tables are given for different
cases.

7. Conclusion

From the numerical results of Tables 1-3, we can deduce that;
the error takes maximum value at the endpoints while takes
the minimum when x ~ 0, and it becomes smaller when
decreasing the time. By increasing N, the error decreases where
the maximum error becomes 7 x 107, at N = 100 and the
other parameters at t = 0.8 are constants, while at N = 60,
the maximum error is 2 x 10, The smooth function p(x,y)
has an effect for the potential function ®(x, ¢), that is the error
becomes smaller for bigger powers of x and y in p(x,y), i.e
when M = {7, 14} and the other parameters at ¢ = 0.8 are con-
stants, the maximum error becomes 2 x 10~* and 2 x 1074,

respectively. When ¢ is big enough, the solution becomes more
stable, for example, ¢ = 1000, 1 = 10 at = 0.8 the maximum
error becomes 1.23 x 107°.
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