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Abstract In this paper, we have studied the flow of incompressible fluids in a straight square duct

through the porous medium. The couple stress fluid model and Jeffrey fluid model are considered

separately to study the flow properties. The governing partial differential equations have been

solved numerically using finite difference method in each case. In both the cases, the variation of

different flow parameters on the fluid velocity is illustrated graphically and the numerical results

for the volume flow rate have been presented through tables. It is observed that, the velocity and

volume flow rate decrease with an increase in couple stress parameter and porosity parameter, while

the velocity and volume flow rate increase with an increase in Jeffrey parameter and pressure

gradient.
� 2016 University of Bahrain. Publishing services by Elsevier B.V. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The study of non-Newtonian fluids is very important because
of its applications in several industrial and engineering pro-
cesses. Many materials such as drilling mud, blood, ketchup,

tooth-paste, certain oils and greases, polymer melts and many
other emulsions have been treated as non-Newtonian fluids.
Due to vast variety in the physical structure of real fluids, it

is not easy to propose a single constitutive equation which
exhibits all properties of real fluids. Therefore, a number of
non-Newtonian fluid models have been proposed to predict

the behavior of real fluids. Due to its diverse applications,
many authors have studied the non-Newtonian fluid flows in
different geometries (see Radhakrishnamacharya, 1977; Rao,

1999; Vajravelu et al., 2002; Fetecau and Fetecau, 2005;
Kothandapani and Srinivas, 2008; Firouzi and
Hashemabadi, 2009; Khan et al., 2010; Liu et al., 2011;

Mukhopadhyay and Bhattacharyya, 2012; Ellahi, 2013;
Devakar, 2013; Hayat et al., 2013a,b). A comprehensive review
of fluids of differential type and their applications is made by

Ellahi (2014).
The couple stress fluid model initiated by Stokes (1984) pre-

sents a simple generalization of the classical viscous Newtonian
model which allows for polar effects such as the presence of

couple stresses and body couples in the fluid medium. The
important feature of this fluid is that, the stress tensor is not
symmetric. The equations governing the couple stress fluid flow

are of higher order than the classical Navier–Stokes equations
and offer challenges to the researchers working in this field. The
study of couple stress fluid is very useful in understanding
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various physical problems because it possesses the mechanism
to describe the rheological complex fluids such as liquid crys-
tals, lubricants containing small amount of polymer additive

and human blood. In view of this, several researchers have
made their contributions to the study of couple stress fluid flow
problems. Devakar and Iyengar (2008) have discussed Stokes’

first and second problems for an incompressible couple stress
fluid. Srinivasacharya et al. (2009) have discussed the flow
and heat transfer of couple stress fluid in a porous channel with

an expanding and contracting wall. Ramana Murthy et al.
(2010) have presented finite difference solution for MHD flow
of couple stress fluid between two concentric rotating cylinders
with porous lining. Devakar and Iyengar (2010) have studied

the run up flow of an incompressible couple stress fluid between
parallel plates. Farooq et al. (2013) have studied the non-
isothermal Poiseuille flow between two heated parallel inclined

plates using incompressible couple stress fluid. Devakar et al.
(2014) have obtained analytical solutions of couple stress fluid
flows between parallel plates with slip boundary conditions.

Recently, Ramesh and Devakar (2015) have discussed the
effects of magnetic field and heat transfer on the peristaltic flow
of an incompressible couple stress fluid through porous med-

ium in an inclined asymmetric channel.
Another non-Newtonian fluid model that has attracted the

attention of researchers in fluid dynamics is the Jeffrey fluid
model which describes the effects of the ratio of relaxation

to retardation times and retardation time. Kothandapani and
Srinivas (2008) have studied the peristaltic transport of a Jef-
frey fluid under the effect of magnetic field in an asymmetric

channel. Qayyum et al. (2012) have discussed the unsteady
squeezing flow of Jeffery fluid between two parallel disks.
Akbar and Nadeem (2012) have analyzed the simulation of

variable viscosity and Jeffrey fluid model for blood flow
through a tapered artery with a stenosis. Ellahi et al. (2013)
have discussed three-dimensional stretched flow of Jeffrey fluid

with variable thermal conductivity and thermal radiation.
The flow through porous medium is of fundamental impor-

tance in geomechanics, biomechanics and industry. The appli-
cations in which flow through a porous medium is mostly

prominent are filtration of fluids, seepage of water in river
beds, movement of underground water and oils, functioning
of human lung, physiological fluid flow in bile duct and gall-

bladder with stones, and flow of blood through small blood
vessels. Aforementioned applications inspired the researchers
to investigate the flows through porous medium in different

geometries. Afifi and Gad (2001) have made a theoretical study
on the interaction of peristaltic flow with pulsatile magneto-
fluid through a porous medium. Murthy et al. (2004) have dis-
cussed the effect of double stratification on free convection in

Darcian porous medium. Zeeshan and Ellahi (2013) have stud-
ied the effect of heat transfer and magnetic field on the third
grade fluid in a pipe with porous space. A few more studies

on the flows through porous medium for diverse situations
are made by Prasad and Kumar (2011), Tripathi (2002),
Ellahi et al. (2013) and Sheikholeslami et al. (2014).

The flow of fluid in a square duct is one of the most impor-
tant flows in fluid mechanics because of its applications in
industry and medicine. The applications include supply of flu-

ids via pipe lines in the oil and petrochemical industries, food
production, the fabrication of chemical materials, medical
applications, and the injection of polymeric materials. The
flow through a straight duct of square cross section was
reported by Williams and Baker in 1966 (Johnson, 1998).
Rahman and Ahmad (1982) have presented finite element
analysis of axial flow with heat transfer in a square duct.

Cook and Rahman (1986) have presented exact solutions of
the temperature and velocity distributions for the Newtonian
fluid flow through a square duct. Subsequently, many authors

have studied the flow problems through the ducts of square
cross section. Sayed-Ahmed (2000) discussed the laminar heat
transfer for thermally developing flow of a Herschel–Bulkley

fluid in a square duct. Beale (2005) studied the effect of mass
transfer on Newtonian fluid in square duct. Adachi (2006) dis-
cussed the stability of natural convection in an inclined square
duct with perfectly conducting side walls. Zhang et al. (2007)

have presented the numerical study of flow of Oldroyd-3-
Constant fluid in a straight duct with square cross-section.
Lee (2008) studied the convective heat transfer to water near

the critical region in a horizontal square duct. Norouzi et al.
(2010) have investigated the inertial and creeping flow of a
second-order fluid in a curved duct with a square cross-

section. Heris et al. (2011) have made an experimental study
on the forced convective heat transfer through square cross-
sectional duct under laminar flow regime using CuO/water

nanofluid. Tympel et al. (2012) have investigated the distortion
of liquid metal flow in a square duct due to the influence of a
magnetic point dipole. Sarma et al. (2014) have presented a
numerical study for steady MHD flow of liquid metal through

a square duct under the action of strong transverse magnetic
field. Kun et al. (2014) have investigated experimentally the
study of pseudoplastic fluid flows in a square duct of strong

curvature. Ting and Hou (2015) have numerically investigated
the convective heat transfer of water-based Al2O3 nanofluid
flowing through a square cross-section duct with a constant

heat flux under laminar flow conditions.
The fully developed flow through straight uniform square

duct has not been studied so far neither for couple stress fluid

nor for Jeffrey fluid. The aim of present paper is to investigate
the flow of couple stress fluid and Jeffrey fluid in a straight
duct of uniform square cross section separately. The channel
is filled with homogeneous porous medium. The Cartesian

coordinate system has been considered. We find the numerical
solution of the governing partial differential equations using
finite difference method. The graphical results are presented

for velocity profile with various involved fluid parameters for
both problems.
2. Formulation of the problem

Consider the steady flow of an incompressible non-Newtonian
fluid through a straight square porous duct with uniform

square cross-section. We choose the Cartesian coordinate sys-
tem such that the z-axis along the axis of the duct and x; y-axes
along the sides of square duct. Let x ¼ a and y ¼ a be the
lengths of the square duct in x and y directions respectively.

The fluid is set into motion by a constant pressure gradient
in the positive z-direction so that the flow occurs only in z-
direction (see Fig. 1). Since the flow is along the z-direction,

the velocity at any point in the flow field is expected to be in
the form �q ¼ ð0; 0;wðx; yÞÞ. The equations governing the flow
of an incompressible non-Newtonian fluid through the porous

medium are given by Nadeem and Akram (2010) and Tripathi
(2002)



Fig. 1 Geometry of the problem.
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r � �q ¼ 0; ð1Þ

q
@�q

@t
þ �q � r�q

� �
¼ q �Fþr � sþ R; ð2Þ

where �q is the velocity vector, q is the density, �F is the body
force per unit mass, s is the stress tensor and R is the Darcy

resistance and it is given as

R ¼ � l
k
�q; ð3Þ

where k is the permeability parameter.

2.1. Couple stress fluid model

The constitutive equations concerning the force stress tensor s
and the couple stress tensor M� that arise in the theory of cou-
ple stress fluids are given by

s ¼ ð�pþ k� r: �qÞIþ l r �qþ ðr �qÞT� �þ 1

2
I� ½r:M� þ qC�;

ð4Þ

M� ¼ mIþ 2grðr � �qÞ þ 2g0ðrðr � �qÞÞT: ð5Þ
In the above m is 1

3
trace of M�; l and k� are the viscosity coef-

ficients, C is the body couple vector and g; g0 are the couple
stress viscosity coefficients. These material constants are con-

strained by the inequalities

l P 0; 3k� þ 2l P 0; g P 0; jg0j 6 g: ð6Þ
The choice of velocity �q ¼ ð0; 0;wðx; yÞÞ automatically satisfies

the continuity equation (1) and the momentum equation (2)
takes the form

lr2w� gr4w� l
k
w� @p

@z
¼ 0; ð7Þ

where r2 ¼ @2

@x2
þ @2

@y2
and r4 ¼ r2r2.

The boundary conditions for this flow are

wðx; 0Þ ¼ 0 ¼ wðx; aÞ for 0 6 x 6 a

wð0; yÞ ¼ 0 ¼ wða; yÞ for 0 6 y 6 a

�
;

ðNo-slip boundary conditionsÞ ð8Þ

@w

@x
¼ @w

@y
on the boundary: ðHyperstick boundary conditionÞ

ð9Þ
Introducing the non-dimensional variables

�x ¼ x

a
; �y ¼ y

a
; �z ¼ z

a
; �w ¼ qa

l
w; �p ¼ qa2

l2
p;

c2 ¼ g
la2

; r2 ¼ a2

k
: ð10Þ

After simplification and dropping the bars, the Eq. (7) can be

written as

@4w

@x4
þ 2

@4w

@x2@y2
þ @4w

@y4
� 1

c2
@2w

@x2
þ @2w

@y2

� �
þ r2

c2
w ¼ G

c2
; ð11Þ

in which G ¼ � @p
@z
, a constant.

The non-dimensional boundary conditions to be satisfied

are

wðx; 0Þ ¼ 0 ¼ wðx; 1Þ for 0 6 x 6 1; ð12Þ

wð0; yÞ ¼ 0 ¼ wð1; yÞ for 0 6 y 6 1; ð13Þ

@w

@x
¼ @w

@y
on the boundary of the square duct: ð14Þ

Though the non-homogeneous partial differential equation
(11) is linear, it is not amenable for exact solution.

2.2. Jeffrey fluid model

The stress tensor for the Jeffrey fluid is given by

s ¼ �pIþ l
1þ k1

r�qð Þ þ r�qð ÞT� �þ k2
d

dt
r�qð Þ þ r�qð ÞT� �	 


;

ð15Þ
where p is the pressure, I is the identity matrix, l is the

dynamic viscosity, k1 is the ratio of relaxation and retardation
times, k2 is the retardation time.

The velocity �q ¼ ð0; 0;wðx; yÞÞ satisfies the incompressibil-

ity condition and the momentum equation (2) can be written as

l
1þ k1

@2w

@x2
þ @2w

@y2

� �
� @p

@z
� l

k
w ¼ 0: ð16Þ

The boundary conditions are given by

wðx; 0Þ ¼ 0 ¼ wðx; aÞ for 0 6 x 6 a; ð17Þ

wð0; yÞ ¼ 0 ¼ wða; yÞ for 0 6 y 6 a: ð18Þ
Introducing the non-dimensional variables

�x ¼ x

a
; �y ¼ y

a
; �z ¼ z

a
; �w ¼ qa

l
w; �p ¼ qa2

l2
p; r2 ¼ a2

k
:

ð19Þ
After dropping the bars the Eqs. (16)–(18) become

@2w

@x2
þ @2w

@y2
� r2ð1þ k1Þw ¼ �Gð1þ k1Þ; ð20Þ

in which G ¼ � @p
@z
, a constant with the boundary conditions

wðx; 0Þ ¼ 0 ¼ wðx; 1Þ for 0 6 x 6 1; ð21Þ

wð0; yÞ ¼ 0 ¼ wð1; yÞ for 0 6 y 6 1: ð22Þ
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3. Numerical solution of the problem

3.1. Couple stress fluid model

Themomentum equation governing the flow (11) along with the
boundary conditions (12)–(14) are solved numerically using

finite differencemethod. The derivatives are replaced by the cen-
tral difference approximations to obtain algebraic system and
the classical Gauss elimination method is used to solve the

resulting algebraic system of equations. The second order finite
difference approximations of the higher order derivatives of w
occurring in the momentum equation are given in the following:

@2w

@x2

� �
i;j

¼ wiþ1;j � 2wi;j þ wi�1;j

h2
; ð23Þ
@2w

@y2

� �
i;j

¼ wi;jþ1 � 2wi;j þ wi;j�1

k2
; ð24Þ

@4w

@x4

� �
i;j

¼ wiþ2;j � 4wiþ1;j þ 6wi;j � 4wi�1;j þ wi�2;j

h4
; ð25Þ

@4w

@y4

� �
i;j

¼ wi;jþ2 � 4wi;jþ1 þ 6wi;j � 4wi;j�1 þ wi;j�2

k4
; ð26Þ

where h; k are step sizes in x; y-directions respectively.
Fig. 2 Variations of velocity for various values of G when

c ¼ 0:15 and r ¼ 1 at x ¼ 0:5.

Fig. 3 Velocity profiles in 3-D for various values of G when

@4w

@x2@y2

� �
i;j

¼ wiþ1;jþ1 � 2wi;jþ1 þ wi�1;jþ1 � 2wiþ1;j þ 4wi;j � 2wi�1;j þ
h2k2
Substituting the Eqs. (23)–(27) in the Eq. (11), and using
h ¼ k, we get

wi;j ¼ A wiþ1;j þ wi�1;j þ wi;jþ1 þ wi;j�1

� �
� B wiþ2;j þ wi�2;j þ wi;jþ2 þ wi;j�2

� �
� C wiþ1;jþ1 þ wi�1;jþ1 þ wiþ1;j�1 þ wi�1;j�1

� �þD; ð28Þ

in which

A ¼ 8c2 þ h2

h4r2 þ 4h2 þ 20c2

	 

; B ¼ c2

h4r2 þ 4h2 þ 20c2

	 

;

C ¼ 2c2

h4r2 þ 4h2 þ 20c2

	 

; D ¼ Gh4

h4r2 þ 4h2 þ 20c2

	 

:

The boundary conditions (12)–(14) give,

wi;0 ¼ 0 ¼ wi;n and 0 6 i 6 n; ð29Þ
w0;j ¼ 0 ¼ wn;j and 0 6 j 6 n; ð30Þ
w1;j ¼ w�1;j; wnþ1;j ¼ wn�1;j; wi;�1 ¼ wi;1; wi;nþ1 ¼ wi;n�1:

ð31Þ

The difference equation (28) gives rise to an algebraic system
of equations in terms of wi;j. The resultant algebraic system

has been solved by making use of Gauss-elimination method.
c ¼ 0:15 and r ¼ 1 (a) G ¼ 5, (b) G ¼ 10 and (c) G ¼ 15.

Fig. 4 Variations of velocity for various values of c when G ¼ 10

and r ¼ 1 at x ¼ 0:5.

wiþ1;j�1 � 2wi;j�1 þ wi�1;j�1
; ð27Þ



Fig. 5 Velocity profile in 3-D for various values of c when G ¼ 10 and r ¼ 1 (a) c ¼ 0:1, (b) c ¼ 0:15 and (c) c ¼ 0:2.

Fig. 6 Variations of velocity for various values of r when

G ¼ 10 and c ¼ 0:15 at x ¼ 0:5.

Fig. 8 Variations of velocity for various values of G when

r ¼ 0:5 and k1 ¼ 0:1 at x ¼ 0:5.

70 M. Devakar et al.
3.2. Jeffrey fluid model

Eq. (20) along with the boundary conditions (21) and (22) are
solved numerically using finite difference method. The deriva-

tives are replaced by the central difference approximations to
obtain algebraic system of equations and the classical Gauss
elimination method is used to solve the resulting algebraic sys-

tem of equations. Using the second order central difference
approximations of the second order derivatives (23) and (24)
in Eq. (20) and after simplification, we get

Ewi;j � wiþ1;j � wi�1;j � wi;jþ1 � wi;j�1 ¼ F; ð32Þ
in which

E ¼ 4þ r2ð1þ k1Þh2
� �

and F ¼ G ð1þ k1Þh2:
Fig. 7 Variations of velocity profile in 3-D for various values of
The boundary conditions (21) and (22) become

wi;0 ¼ 0 ¼ wi;n and 0 6 i 6 n; ð33Þ

w0;j ¼ 0 ¼ wn;j and 0 6 j 6 n; ð34Þ
The difference equation (32) gives us an algebraic system of
equations in terms of wi;j. This system is solved using the clas-

sical Gauss elimination method with the help of Matlab
program.

4. Volume flow rate

The volume flow rate across the cross section of the duct is

given as
r when G ¼ 10 and c ¼ 0:15 (a) r ¼ 0, (b) r ¼ 1 and (c) r ¼ 2.



Fig. 9 Velocity profiles in 3-D for various values of G when k1 ¼ 0:1 and r ¼ 0:5 (a) G ¼ 5, (b) G ¼ 10 and (c) G ¼ 15.

Fig. 10 Variations of velocity for various values of k1 when

G ¼ 10 and r ¼ 0:5 at x ¼ 0:5.

Fig. 12 Variations of velocity for various values of r when

G ¼ 10 and k1 ¼ 0:1 at x ¼ 0:5.
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Q ¼
Z 1

0

Z 1

0

wðx; yÞdxdy: ð35Þ

As the analytical solution of the velocity is not known in both
the cases, the above integral is evaluated numerically to find
the volume flow rate for different set of flow parameters.
The effect of various parameters on the volume flow rate is

presented numerically in Tables 1–3 in the case of couple stress
fluid model and Tables 4–6 in the case of Jeffrey fluid model.

5. Results and discussion

In this section, we have discussed the influence of the different
flow parameters on the velocity and volume flow rate. The
Fig. 11 Velocity profile in 3-D for various values of k1 when G
results are graphically (two and three-dimensional) presented
for the velocity profiles in Figs. 2–7 in the case of couple stress

fluid and the Figs. 8–13 in the case of Jeffrey fluid. The effect
of various flow parameters on the volume flow rate for couple
stress fluid model and Jeffrey fluid model are respectively seen

in Tables 1–3 and 4–6. It can be seen from Tables 1–3 that, the
volume flow rate increases with the increasing pressure gradi-
ent while it decreases with the increasing couple stresses and

porosity parameter. It is observed from Tables 4–6 that, the
volume flow rate increases with the increasing pressure gradi-
ent and Jeffrey parameter while it decreases with the increasing
porosity parameter. Table 7 represents the comparison of pre-

sent results with the Newtonian fluid model. It is observed
from this table that, the results of couple stress fluid and
¼ 10 and r ¼ 0:5 (a) k1 ¼ 0, (b) k1 ¼ 0:1 and (c) k1 ¼ 0:2.



Fig. 13 Variations of velocity profile in 3-D for various values of r when G ¼ 10 and k1 ¼ 0:1 (a) r ¼ 0, (b) r ¼ 0:5 and (c) r ¼ 1.

Table 1 Numerical values of the volume flow rate with the

pressure gradient for r ¼ 1 and c ¼ 0:15.

G Q

5 0.0510

10 0.1020

15 0.1530

Table 2 Numerical values of the volume flow rate with the

couple stress parameter for G ¼ 10 and r ¼ 1.

c Q

0.1 0.1534

0.15 0.1020

0.2 0.0703

Table 3 Numerical values of the volume flow rate with the

porosity parameter for G ¼ 10 and c ¼ 0:15.

r Q

0 0.1039

1 0.1020

2 0.0967

Table 4 Numerical values of the volume flow rate with the

pressure gradient for r ¼ 0:5 and k1 ¼ 0:1.

G Q

5 0.1892

10 0.3784

15 0.5676

Table 5 Numerical values of the volume flow rate with the

Jeffrey parameter for G ¼ 10 and r ¼ 0:5.

k1 Q

0 0.3444

0.1 0.3784

0.2 0.4123

Table 6 Numerical values of the volume flow rate with the

porosity parameter for G ¼ 10 and k1 ¼ 0:1.

r Q

0 0.3835

0.5 0.3784

1 0.3640
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Jeffrey fluid in the limiting cases are in good agreement with
that of Newtonian fluid.

Figs. 2 and 3 represent the velocity profiles for different val-
ues of pressure gradient. It is clear from the figures that, the
velocity increases with an increase in pressure gradient. More-

over, it is noticed that, the flow is due to the constant pressure
gradient. If the pressure gradient is zero, no flow occurs. Figs. 4
and 5 give the velocity profiles for different values of couple

stress parameter. It is observed from the figures that, the veloc-
ity decreases with an increase in couple stress parameter. Since

c2 ¼ g
la2 ; c increases as the couple stress parameter g increases.

Thus, an increase in couple stresses has a decreasing effect on
the fluid velocity. Figs. 6 and 7 exhibit the velocity profiles for
different values of porosity parameter. It is depicted from the
figures that, the velocity decreases with an increase in porosity

parameter. Moreover, it is noticed that, r ¼ 0 gives the clear
medium. From this we can say that the velocity decreases from
clear medium to porous medium.

Figs. 8 and 9 represent the velocity profiles for different val-
ues of pressure gradient. It is observed from these figures that,
the velocity increases with an increase in pressure gradient.

Moreover, as the flow is due to the constant pressure gradient
only, no flow takes place if the pressure gradient is zero.
Figs. 10 and 11 illustrate the variation of velocity with various
values of the Jeffrey parameter k1. From these figures, it is

depicted that, an increase in non-Newtonian parameter k1
increases the velocity of the fluid. It is clearly noticed from
our analysis that, k1 ¼ 0 gives Newtonian fluid model. There-

fore, the fluid velocity increases from Newtonian to non-
Newtonian fluid. Figs. 12 and 13 display the variation of veloc-
ity with various values of the porosity parameter r. From the

figures, it is seen that the velocity is a decreasing function of
the porosity parameter r. As r ¼ 0 gives the flow through clear
medium, it can be seen that, the velocity decreases that from

non-porous medium to porous medium.



Table 7 Comparison of velocity for the couple stress fluid, Jeffrey fluid and Newtonian fluid when the other parameters are fixed

when x ¼ 0:5; G ¼ 10.

y w (Couple stress fluid velocity when c ¼ 0 and r ¼ 0) w (Jeffrey fluid velocity when k1 ¼ 0 and r ¼ 0) Newtonian fluid velocity

0.0 0.000000000 0.000000000 0.000000000

0.1 0.290286758 0.290286758 0.290723782

0.2 0.496740178 0.496740178 0.49755873

0.3 0.633484384 0.633484384 0.634591483

0.4 0.711180317 0.711180317 0.71246492

0.5 0.736351021 0.736351021 0.737695336

0.6 0.711180317 0.711180317 0.71246492

0.7 0.633484384 0.633484384 0.634591483

0.8 0.496740178 0.496740178 0.49755873

0.9 0.290286758 0.290286758 0.290723782

1.0 0.000000000 0.000000000 0.000000000
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6. Conclusions

The pressure driven steady flow of incompressible couple stress

and Jeffrey fluids through porous medium in a uniform
straight square duct have been studied separately. In both
the problems, the numerical solution of velocity is obtained

using finite difference scheme. The numerical results for the
volume flow rate have been presented through tables. The
results indicate that, the limiting solutions of couple stress fluid
and Jeffrey fluid flows are in good agreement with that of

Newtonian fluid flow. The flow characteristics are analyzed
through two and three dimension plots for both the cases. It
is noticed that, the velocity and volume flow rate are the

increasing functions of pressure gradient. The velocity and vol-
ume flow rate are decreasing from clear medium to porous
medium in both the cases. It is also observed that, an increase

in the couple stress parameter decreases the fluid velocity and
volume flow rate, and an increase in Jeffrey parameter
increases the velocity and volume flow rate.
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Appendix A.

The governing equation for the flow of Newtonian fluid
through duct of uniformly square cross section is given by
lr2w� @p

@z
¼ 0; ð36Þ

with the boundary conditions

wðx; 0Þ ¼ 0 ¼ wðx; aÞ for 0 6 x 6 a; ð37Þ

wð0; yÞ ¼ 0 ¼ wða; yÞ for 0 6 y 6 a: ð38Þ
Using the non-dimensional scheme (10), the Eqs. (36)–(38)
become,

r2wþ G ¼ 0; ð39Þ
with the boundary conditions

wðx; 0Þ ¼ 0 ¼ wðx; 1Þ for 0 6 x 6 1; ð40Þ

wð0; yÞ ¼ 0 ¼ wð1; yÞ for 0 6 y 6 1: ð41Þ
Using the method of separation of variables, the solution of
Eq. (39) with boundary conditions (40) and (41) is obtained as

wðx;yÞ ¼G

2
yð1� yÞ�

X1
k¼1

8

ð2k� 1Þ3p3

" �
cosh½ð2k� 1Þpx�

þ 1� cosh½ð2k� 1Þp�ð Þ sinh½ð2k� 1Þpx�
sinh½ð2k� 1Þp�

�
sin½ð2k� 1Þpy�



:

ð42Þ
This velocity field for the Newtonian fluid case has been used
to compare the results of limiting solutions of couple stress and
Jeffrey fluids.
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