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Abstract: Q-learning is a one of the well-known Reinforcement Learning algorithms that has been widely used in various problems. 

The main contribution of this work is how to speed up the learning in a single agent environment (e.g. the robot). In this work, an 

attempt to optimize the traditional Q-learning algorithm has been done via using the Repeated Update Q-learning (RUQL) algorithm 

(the recent state-of-the-art) in a robot simulator. The robot simulator should learn how to move from one state into another in order to 

reach the end of screen as faster as possible. An experiment has been conducted in order test the effectiveness of the RUQL 

algorithm versus the traditional Q-learning algorithm by comparing both algorithms through using similar parameters’ values for 

several trials. Experiment results revealed that the RUQL algorithm has outperforms the traditional Q-learning algorithm in all the 

trials. 
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1. INTRODUCTION 

Q-learning has proved its effectiveness as one of the 
Reinforcement Learning algorithms as to be used in a 
wide range of problems. Recently, researchers try to 
optimize the traditional Q-learning performance such as: 
Q-learning Influence Map (QIM) [1], Transfer Learning 
(TL) [2], Frequency Adjusted Q-learning (FAQL) [3] and 
the Repeated Update Q-learning (RUQL) [4]. 

In this paper, RUQL has been used to optimize the 
traditional Q-learning performance in a robot simulator. 
The robot simulator has been programmed in Java. The 
robot should learn how to move from one state into 
another in order to reach the end of the screen as faster as 
possible. An experiment has been conducted in order to 
compare the RUQL algorithm and the traditional Q-
learning algorithm by trying similar parameters’ values 
for both algorithms for several trials.  

The other paper sections are organized as follows: 
section 2 will provide a background about Q-learning; 
section 3 will demonstrate the related research papers in 
the field; section 4 will describe the methodology and 
techniques used; evaluation and analysis will take place 
under section 5; discussion of results will be demonstrated 
in section 6; conclusion and future work will be presented 
in section 7. 

2. Q-LEARNING 

Q-learning is one of the Reinforcement Learning 
algorithms [1], [4], [6] that has been widely used in 
various domains such as: simple toys, face recognition 

and games [5]. The Q-learning update equation is 
described as follows: 
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Q-learning attempts to find an optimal action policy 
by calculating the function Q(s,a) where s represents the 
state from the possible set of statesS, and a represents the 
action from the possible set of actions A. The parameters: 
α represents the learning rate and γ represents the 
discount factor. 

3. RELATED WORK 

Different research papers have been worked on 
different optimization techniques in order to enhance the 
traditional Q-learning performance. Cho [1] stated that 
the larger number of environment’s states where the 
agent interacts with, can cause the Q-learning to take 
more time to learn these states as much as the number of 
states become larger. Q-learning technique using an 
influence map (QIM) has been proposed in order to 
reduce the amount of time required for learning. 

Celiberto [2] utilizes the Transfer Learning (TL) 
among agents that permits the use of cases as heuristics 
in order to speed up the regular Q-learning. Q-learning 
shows artifacts in non-stationary environments (e.g. the 
probability of playing the best action might be reduced if 
the Q-values diverge considerably from the true values; 
this could occur in the initial phase along with the 
changes in the environment. Kaisers [3] had resolved the 
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mentioned artifacts through Frequency Adjusted Q-
learning (FAQL). FAQL on the other hand suffered from 
the practical concerns that limit the policy sub-space for 
which the behavior was enhanced. 

Abdallah [4] presented a novel solution that solves the 
undesirable artifacts of Q-learning and without the 
practical concerns of FAQL through the Repeated Update 
Q-learning (RUQL). In order to test the efficiency of the 
RUQL, experiments have been conducted in different 
multi-agent environments (e.g. Prisoner’s Dilemma 
Game, Multi-Armed Bandit, and social learning). 
Experiments results revealed that RUQL is much better 
than both FAQL and QL in non-stationary environments. 
The RUQL update rule is described as follows: 
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If an action is selected with low probability π(s,a) then 
instead on updating that action once, RUQL repeats the 
update (1/π(s,a)) times.  

RUQL proved its efficiency in different multi-agents 
environments, however a single agent environment (e.g. 
robot) still not yet investigated; the reason that motivated 
us to conduct this research. 

4. METHODOLOGY AND TECHNIQUES 

A. Software and Language used 

The robot simulator has been programmed using Java 
programming language and the software used for 
programming is NetBeans IDE (which extensively used 
for Java desktop applications). 

B. MDP Model 

The most widely used model in Reinforcement Learning 
that describes the agent environment in <S, A, P, R> format 
where S represents the states, A represents the Actions, P 
represents the transition probability and R represents the 
reward. In the robot simulator, the states are represented by 
the robot arm and hand directions, so there are four states: 
(Arm up, hand right), (Arm up, hand left), (Arm down, hand 
right) and (Arm down, hand left). Actions are represented by 
the robot arm and hand movements, so the actions are: (Arm 
up, Arm down, hand right, hand left). Reward is represented 
by the distance in which the robot is traveled to reach the 
end of the screen. Fig. 1 depicts the robot simulator where 
the yellow line represents the arm and the red line represents 
the hand. 

 

Figure 1.  The Robot Simulator. 

 

C. Parameters Description and Values 

The optimal parameters’ values that have been 
observed during the experiment (more in section 5) that 
allow the robot based on the RUQL to move as faster as 
possible up to the end of the screen is: γ= 0.9, α = 0.8 and 
Epsilon = 0.4. These parameters values make it easily for 
the robot to reach the end of the screen in 1 minute and 2 
seconds. 

D. Techniques and improvements 

In order to optimize the traditional Q-learning 
performance and allow the simulated robot to reach the 
end of the screen as faster as possible, the Repeated 
Update Q-learning (RUQL) has been used in this work. 
An experiment has been conducted (section 5) in order to 
test the effectiveness of the RUQL algorithm and 
compare it to the traditional Q-learning algorithm in a 
robot simulator. A video

 
had been recorded in order to 

show the race between the RUQL algorithm versus the 
traditional Q-learning algorithm via using the optimal 
parameters’ values. 

5. EVALUATION AND ANALYSIS 

An experiment has been conducted in order to 
compare the RUQL algorithm (which is the main concern 
in this work) and the traditional Q-learning algorithm by 
trying the same parameters’ values for both algorithms 
for each trial (more than 60 trials) and observes which 
one is reaching faster up to the end of the screen as in 
(Table 1). Table 1 show a sample from the entire number 
of these trials (where each trial is represented by a 
record) as follows: 

 

TABLE I.  RUQL VS. Q-LEARNING. 

Epsilon Gamma Alpha 
Q-learning 

 (time in minutes) 

RUQL  

(time in 
minutes) 

0.6 0.8 0.8 2:22 2:10 

0.4 0.6 0.1 2:45 0022 

0.6 0.9 0.8 2:30 1:53 

0.6 0.7 0.9 2:21 1:51 

0.6 0.6 0.8 2:49 1:42 

0.5 0.8 0.8 2:14 1:27 

0.4 0.6 0.3 2:10 1:21 

0.4 0.6 0.9 2:42 1:20 

0.4 0.8 0.8 2:04 1:13 

0.4 0.6 0.7 2:23 1:07 

0.4 0.9 0.8 1:51 1:02 

 

http://en.wiktionary.org/wiki/%CE%B3
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The parameters’ values in the above table are listed 
according to the time (from the largest to the smallest) in 
which the robot moves up to the end of the screen. 

6. DISCUSSION 

By analyzing the experiment trials that were 
described in (Table 1), we can conclude the following: 

 RUQL outperforms the traditional Q-learning 
with all the parameters’ values used. 

 By reducing the epsilon value, the robot moves 
faster up to the end of the screen.  

 The table has explicitly revealed that the optimal 
parameters’ values for getting the optimal robot 
speed are:  γ = 0.9, α = 0.8 and Epsilon = 0.4. 

7. CONCLUSION AND FUTURE WORK 

The Repeated Update Q-learning (RUQL) algorithm 
has been used in this work in order to optimize/ improve 
the traditional Q-learning algorithm in a robot simulator 
(i.e. in a single agent environment). Experiment results 
revealed that the RUQL algorithm has outperformed the 
traditional Q-learning algorithm in all the trials. The 
robot has learned how to move from one state into 
another in order to reach the end of the screen in 1 minute 
and 2 seconds. 

The current work focuses on speeding up the 
learning via using RUQL algorithm and compares it to 
the traditional Q-learning algorithm. As a future 
direction, we could work on programming the robot 
simulator using the FAQL algorithm and compare the 
observed results to the results of this work. 
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