

International Journal of Computing and Network Technology
ISSN 2210-1519

Int. J. Com. Net. Tech. 3, No. 3 (Sept. 2015)

E-mail address: malemran@buc.edu.om
http://journals.uob.edu.bh

Speeding Up the Learning in A Robot Simulator

Mostafa Al-Emran
1

1Al Buraimi University College, Al Buraimi, Oman

Received: 10 May 2015, Revised: 25 July 2015, Accepted: 10 August 2015, Published: 1 (September) 2015

Abstract: Q-learning is a one of the well-known Reinforcement Learning algorithms that has been widely used in various problems.

The main contribution of this work is how to speed up the learning in a single agent environment (e.g. the robot). In this work, an

attempt to optimize the traditional Q-learning algorithm has been done via using the Repeated Update Q-learning (RUQL) algorithm

(the recent state-of-the-art) in a robot simulator. The robot simulator should learn how to move from one state into another in order to

reach the end of screen as faster as possible. An experiment has been conducted in order test the effectiveness of the RUQL

algorithm versus the traditional Q-learning algorithm by comparing both algorithms through using similar parameters’ values for

several trials. Experiment results revealed that the RUQL algorithm has outperforms the traditional Q-learning algorithm in all the

trials.

Keywords: Robot, Simulator, Q-Learning.

1. INTRODUCTION

Q-learning has proved its effectiveness as one of the
Reinforcement Learning algorithms as to be used in a
wide range of problems. Recently, researchers try to
optimize the traditional Q-learning performance such as:
Q-learning Influence Map (QIM) [1], Transfer Learning
(TL) [2], Frequency Adjusted Q-learning (FAQL) [3] and
the Repeated Update Q-learning (RUQL) [4].

In this paper, RUQL has been used to optimize the
traditional Q-learning performance in a robot simulator.
The robot simulator has been programmed in Java. The
robot should learn how to move from one state into
another in order to reach the end of the screen as faster as
possible. An experiment has been conducted in order to
compare the RUQL algorithm and the traditional Q-
learning algorithm by trying similar parameters’ values
for both algorithms for several trials.

The other paper sections are organized as follows:
section 2 will provide a background about Q-learning;
section 3 will demonstrate the related research papers in
the field; section 4 will describe the methodology and
techniques used; evaluation and analysis will take place
under section 5; discussion of results will be demonstrated
in section 6; conclusion and future work will be presented
in section 7.

2. Q-LEARNING

Q-learning is one of the Reinforcement Learning
algorithms [1], [4], [6] that has been widely used in
various domains such as: simple toys, face recognition

and games [5]. The Q-learning update equation is
described as follows:

 () ()
 (() ())

Q-learning attempts to find an optimal action policy
by calculating the function Q(s,a) where s represents the
state from the possible set of statesS, and a represents the
action from the possible set of actions A. The parameters:
α represents the learning rate and γ represents the
discount factor.

3. RELATED WORK

Different research papers have been worked on
different optimization techniques in order to enhance the
traditional Q-learning performance. Cho [1] stated that
the larger number of environment’s states where the
agent interacts with, can cause the Q-learning to take
more time to learn these states as much as the number of
states become larger. Q-learning technique using an
influence map (QIM) has been proposed in order to
reduce the amount of time required for learning.

Celiberto [2] utilizes the Transfer Learning (TL)
among agents that permits the use of cases as heuristics
in order to speed up the regular Q-learning. Q-learning
shows artifacts in non-stationary environments (e.g. the
probability of playing the best action might be reduced if
the Q-values diverge considerably from the true values;
this could occur in the initial phase along with the
changes in the environment. Kaisers [3] had resolved the

114 Mostafa Al-Emran: Speeding Up the Learning in A Robot Simuator

http://journals.uob.edu.bh

mentioned artifacts through Frequency Adjusted Q-
learning (FAQL). FAQL on the other hand suffered from
the practical concerns that limit the policy sub-space for
which the behavior was enhanced.

Abdallah [4] presented a novel solution that solves the
undesirable artifacts of Q-learning and without the
practical concerns of FAQL through the Repeated Update
Q-learning (RUQL). In order to test the efficiency of the
RUQL, experiments have been conducted in different
multi-agent environments (e.g. Prisoner’s Dilemma
Game, Multi-Armed Bandit, and social learning).
Experiments results revealed that RUQL is much better
than both FAQL and QL in non-stationary environments.
The RUQL update rule is described as follows:

 () []

 () () [

 ()

 ()] [()]

If an action is selected with low probability π(s,a) then
instead on updating that action once, RUQL repeats the
update (1/π(s,a)) times.

RUQL proved its efficiency in different multi-agents
environments, however a single agent environment (e.g.
robot) still not yet investigated; the reason that motivated
us to conduct this research.

4. METHODOLOGY AND TECHNIQUES

A. Software and Language used

The robot simulator has been programmed using Java
programming language and the software used for
programming is NetBeans IDE (which extensively used
for Java desktop applications).

B. MDP Model

The most widely used model in Reinforcement Learning
that describes the agent environment in <S, A, P, R> format
where S represents the states, A represents the Actions, P
represents the transition probability and R represents the
reward. In the robot simulator, the states are represented by
the robot arm and hand directions, so there are four states:
(Arm up, hand right), (Arm up, hand left), (Arm down, hand
right) and (Arm down, hand left). Actions are represented by
the robot arm and hand movements, so the actions are: (Arm
up, Arm down, hand right, hand left). Reward is represented
by the distance in which the robot is traveled to reach the
end of the screen. Fig. 1 depicts the robot simulator where
the yellow line represents the arm and the red line represents
the hand.

Figure 1. The Robot Simulator.

C. Parameters Description and Values

The optimal parameters’ values that have been
observed during the experiment (more in section 5) that
allow the robot based on the RUQL to move as faster as
possible up to the end of the screen is: γ= 0.9, α = 0.8 and
Epsilon = 0.4. These parameters values make it easily for
the robot to reach the end of the screen in 1 minute and 2
seconds.

D. Techniques and improvements

In order to optimize the traditional Q-learning
performance and allow the simulated robot to reach the
end of the screen as faster as possible, the Repeated
Update Q-learning (RUQL) has been used in this work.
An experiment has been conducted (section 5) in order to
test the effectiveness of the RUQL algorithm and
compare it to the traditional Q-learning algorithm in a
robot simulator. A video

had been recorded in order to

show the race between the RUQL algorithm versus the
traditional Q-learning algorithm via using the optimal
parameters’ values.

5. EVALUATION AND ANALYSIS

An experiment has been conducted in order to
compare the RUQL algorithm (which is the main concern
in this work) and the traditional Q-learning algorithm by
trying the same parameters’ values for both algorithms
for each trial (more than 60 trials) and observes which
one is reaching faster up to the end of the screen as in
(Table 1). Table 1 show a sample from the entire number
of these trials (where each trial is represented by a
record) as follows:

TABLE I. RUQL VS. Q-LEARNING.

Epsilon Gamma Alpha
Q-learning

 (time in minutes)

RUQL

(time in
minutes)

0.6 0.8 0.8 2:22 2:10

0.4 0.6 0.1 2:45 0022

0.6 0.9 0.8 2:30 1:53

0.6 0.7 0.9 2:21 1:51

0.6 0.6 0.8 2:49 1:42

0.5 0.8 0.8 2:14 1:27

0.4 0.6 0.3 2:10 1:21

0.4 0.6 0.9 2:42 1:20

0.4 0.8 0.8 2:04 1:13

0.4 0.6 0.7 2:23 1:07

0.4 0.9 0.8 1:51 1:02

http://en.wiktionary.org/wiki/%CE%B3

111 Int. J. Com. Net. Tech. 3, No. 3, 113-115 (Sept. 2015)

http://journals.uob.edu.bh

The parameters’ values in the above table are listed
according to the time (from the largest to the smallest) in
which the robot moves up to the end of the screen.

6. DISCUSSION

By analyzing the experiment trials that were
described in (Table 1), we can conclude the following:

 RUQL outperforms the traditional Q-learning
with all the parameters’ values used.

 By reducing the epsilon value, the robot moves
faster up to the end of the screen.

 The table has explicitly revealed that the optimal
parameters’ values for getting the optimal robot
speed are: γ = 0.9, α = 0.8 and Epsilon = 0.4.

7. CONCLUSION AND FUTURE WORK

The Repeated Update Q-learning (RUQL) algorithm
has been used in this work in order to optimize/ improve
the traditional Q-learning algorithm in a robot simulator
(i.e. in a single agent environment). Experiment results
revealed that the RUQL algorithm has outperformed the
traditional Q-learning algorithm in all the trials. The
robot has learned how to move from one state into
another in order to reach the end of the screen in 1 minute
and 2 seconds.

The current work focuses on speeding up the
learning via using RUQL algorithm and compares it to
the traditional Q-learning algorithm. As a future
direction, we could work on programming the robot
simulator using the FAQL algorithm and compare the
observed results to the results of this work.

REFERENCES

[1] Cho, K., Sung, Y., & Urn, K. (2007, October). A
Production Technique for a Q-table with an Influence Map
for Speeding up Q-learning. In Intelligent Pervasive
Computing, 2007. IPC. The 2007 International Conference
on (pp. 72-75). IEEE.

[2] Celiberto, L. A., Matsuura J. P. L pez de M ntaras R.
Bianchi, R. A. (2010, October). Using transfer learning to
speed-up reinforcement learning: a cased-based approach.
In Robotics Symposium and Intelligent Robotic Meeting
(LARS), 2010 Latin American (pp. 55-60). IEEE.

[3] Kaisers, M., & Tuyls, K. (2010, May). Frequency adjusted
multi-agent Q-learning. In Proceedings of the 9th
International Conference on Autonomous Agents and
Multiagent Systems: volume 1-Volume 1 (pp. 309-316).
International Foundation for Autonomous Agents and
Multiagent Systems.

[4] Abdallah, S., & Kaisers, M. (2013, May). Addressing the
Policy-bias of Q-learning by Repeating Updates. In
Proceedings of the 2013 international conference on
Autonomous agents and multi-agent systems (pp. 1045-
1052). International Foundation for Autonomous Agents
and Multiagent Systems.

[5] Rodrigues Gomes, E., & Kowalczyk, R. (2009, June).
Dynamic analysis of multiagent Q-learning with ε-greedy
exploration. In Proceedings of the 26th Annual
International Conference on Machine Learning, pp. 369-
376. ACM.

[6] Al-Emran, M. (2015, April). Hierarchical Reinforcement
Learning: A Survey. International Journal of Computing
and Digital Systems, 4(2).

[7] T. Hester and P. Hester “Intrinsically motivated model
learning for developing curious robots ” Artificial
Intelligence, 2015.

[8] L. Lin H. Xie D. Zhang and L. Shen “Supervised neural
Q_learning based motion control for bionic underwater
robots ” Journal of Bionic Engineering 7 S177-S184,
2010.

[9] J. Grizou M. Lopes and P. Y. Oudeyer “Robot learning
simultaneously a task and how to interpret human
instructions ” IEEE Development and Learning and
Epigenetic Robotics (ICDL), 2013 IEEE Third Joint
International Conference, pp. 1-8, August 2013.

[10] R. Pegoraro, A. H. R. Costa, and C. H. Ribeiro,
“Experience generalization for multi-agent reinforcement
learning ” IEEE Computer Science Society SCCC'01
XXI Internatinal Conference of the Chilean, pp. 233-239,
2001.

[11] X. Wu J. Kofman and H. R. Tizhoosh “Active
exploratory Q-learning for large problems ” IEEE
Systems, Man and Cybernetics, ISIC, pp. 4040-4045,
October 2007.

[12] J. Li and W. Liu “A novel heuristic Q-learning algorithm
for solving stochastic games ” IEEE Neural Networks
IJCNN, IEEE World Congress on Computational
Intelligence, pp. 1135-1144, June 2008.

[13] J. Broekens, “Robot Learning from Feedback ” Springer
Encyclopedia of the Sciences of Learning, pp. 2873-2875,
2012.

Mostafa Al-Emran is the Head of

Technical Support / Admission &

Registration Department at Al

Buraimi University College. Al-

Emran got his BSc in Computer

Science from Al Buraimi

University College with the first

honor level. He got his MSc in

Informatics from The British

University in Dubai with a

distinction level. Al-Emran has

published some research papers and is currently working on

different research areas in Computer Science.

