
Int. J. Com. Dig. Sys. 2, No. 1, 1-8 (2013) 1

Automated Verification and Clock Frequency Characteristics in

CDC Solution

Akitoshi Matsuda

1
 and Shinichi Baba

2

1
Dept. of Automotive Science, Kyushu University, Fukuoka 814-0001, Japan

2
Kyushu Embedded Forum, Fukuoka 814-0001, Japan

e-mail: matsuda_aki@slrc.kyushu-u.ac.jp, shinichi.baba@nifty.com

Received 17 May. 2012, Revised 31 Oct. 2012, Accepted 8 Dec. 2012

Abstract: Recently, the design complexity of System-on-a-chip (SoC) has increased and additional functionalities have been added to SoC.

Moreover, their operation clocks are frequently transferred from single clock domain to multiple clock domains. Because of the volume of the

crossing signals and the variety methods of implementing crossed clock, the verification of clock domain crossings (CDCs) has become a very

important and challenging task in deep submicron designs. Therefore, specialized CDC verification solutions can accurately detect CDC issues

and efficiently debug the root causes of these problems that we require to perform design analyses. This paper describes certain case studies

involving CDC verification and the relationship between clock and operating frequencies. Variable combination of clock frequencies “rclk” and

“wclk” was evaluated for the asynchronous first-in first-out (FIFO) memory design. When a synchronizer was inserted, the power consumption

decreased with the frequency; however, the performance achieved a “dead point” when “wclk” was about 1.3 times the value of “rclk.” The

results confirmed that different combinations of clock frequency affected the circuit characteristics.

Keywords: System-on-a-chip; clock domain crossings; clock frequency; CDC solution; asynchronous memory.

I. INTRODUCTION

Advanced System-on-a-chip (SoC) architectures support
many asynchronous clock domains. The implementation of a
faulty clock domain crossing (CDC) interface can cause
metastability propagation downstream, resulting in functional
errors. These errors are intermittent, and are often hard to
detect and diagnose using traditional verification techniques
such as simulations. Undetected CDC issues can cause chip
failures in the field and result in expensive chip respins. The
most precise, comprehensive, and innovative CDC solution
performs structural and functional analyses to ensure that
signals crossing asynchronous clock domains on SoC designs
are reliably received [1].

CDC issues typically require considerable time and effort
for debugging. Therefore, automatic verification and
debugging capabilities are required in CDC solutions to reduce
the turn-around-time (TAT) required for FPGA designs [2].

Our paper is structured as follows: Section 2 describes the
background to multi-clock design. Section 3 gives an overview
of CDC verification solution in three essential elements.
Section 4 presents an outline of the CDC verification used in
the asynchronous FIFO memory design. Section 5 describes a

set of experiments that we conducted on diverse real-world
applications on the asynchronous design, and furthermore
presents the design methodology for the simulation and
verification of FIFO memory design. Lastly, Section 6
discusses our conclusions and future work.

II. BACKGROUND

The number of advanced multiclocking architectures has

increased dramatically because of the demands for high

performance and low power consumption in SoC designs,

recently. Interactions between these clock domains need to be

verified to ensure correct functionality [3]. For multi-clock

domain designs, Register Transfer Level (RTL) or gate-level

simulation can not accurately capture the timing of data

transfers between different clock domains. Consequently, even

if the simulation is run, the device behavior can not be

accurately predicted [4], and serious bugs might be missed in

the verification flows [5]. Therefore, a specialized CDC

verification tool is needed to deal with the difficult verification

issue, which can not be handled by simulation-based verified

methodologies [6].

International Journal of Computing and Digital Systems

@ 2013 UOB

CSP, University of Bahrain

mailto:matsuda_aki@slrc.kyushu-u.ac.jp
mailto:shinichi.baba@nifty.com

2 A. Matsuda, S. Baba: Automated Verification and Clock Frequency …

III. CDC VERIFICATION FLOW

The CDC verification solution sets the industry benchmark
by providing the following three essential elements for a
complete CDC verification solution: automatic clock intent
analysis (structural CDC analysis), integrated formal analysis,
and dynamic CDC verification [7]. It is the only solution that
enables accurate prediction of device behavior for an
asynchronous clock interface [8]. It gives users the confidence
that all CDC bugs will be found before tapeout, and expensive
respins will be avoided [9].

A. Automatic clock intent analysis

Automatic clock intent analysis infers CDC intent from the
design stage, and offers a comprehensive analysis that
identifies clock or reset issues, incorrect or missing
synchronization, glitch potentials, reconvergence, structurally
unsafe crossings, and potential data or control crossings that
require functional verification. This analysis is the fastest and
most accurate because of the CDC solution’s advanced
correlation algorithms, and offers the most complete support
for crossing styles in the industry.

For example, with structural analysis, the CDC solution can
automatically identify the following issues:

1) Reset issues
In clock/reset issues, the CDC solution can identify issues

related to missing synchronizers on the asynchronous reset
crossings. Fig. 1 indicates two asynchronous clock domains
“clka” and “clkb” and an asynchronous reset “async_reset,”
generated from the “clka” domain used to reset flops in the
“clkb” domain. The problem with this circuit is that there is a
missing synchronizer for the “clkb” domain reset.

The CDC solutions can automatically identify such issues
with asynchronous reset signals. For more details on the reset
related issues, CDC solution can identify the point of reset
signals without the synchronizer. Therefore, we easy to be able
to find out a point to be input by some synchronizers on circuit
point.

2) Structural CDC issues
The CDC solution performs CDC analysis and identifies

unsafe CDC structures in the design. Fig. 2 shows signals from
different asynchronous clock domains combining and crossing
into another clock domain. The crossing signal may have
glitches that can cause problems in downstream logic. The
CDC solution can automatically identify such cases using
glitch potential. Fig. 3 shows two signals crossing clock
domains, are synchronizing in the clk2 domain, and
reconverging. The CDC solution can automatically identify
such reconvergence issues. In Fig. 4, a crossing signal is
diverges into two different synchronizer paths. Because of this,
the signals can lose correlation, and problems can therefore
occur in the downstream logic. The CDC solution can
automatically identify such issues with divergence.

In Fig. 5, the signal crossing clock domains has a missing
synchronizer. This can lead to loss of data because of
metastability problems [10]. This system can automatically
identify such problems.

Figure 1. Missing reset synchronizer.

Figure 2. Glitch.

Figure 3. Reconvergence.

Figure 4. Signal losing correlation.

Figure 5. Loss of data.

clka clkb

async reset

 clk3

clk2

Control 1

 Control 2

clk1 clk2

clk1 clk2

clk2

clk2

clk1

Control

clk1 clk2

A. Matsuda, S. Baba: Automated Verification and Clock Frequency … 3

Figure 6.

3) CDC interface/handshake identification
In Fig. 6, a simple CDC handshake interface is illustrated.

For correct operation of the interface, the control signal needs
to be synchronized. This synchronized signal needs to be
associated with a data transfer from Tx Data to Rx Data.
Moreover, a feedback signal needs to be generated in the Tx
domain to indicate that the data transfer was performed. This
CDC system will automatically identify all handshake
structures. Thus, all types of synchronizer structures will be
understood and identified.

B. Formal integration analysis

The integrated formal analysis exhaustively verifies the
safety of crossings using an innovative metastability-aware
formal engine, which ensures the safety of data transfer by
verifying the underlying design principle, according to which
the CDC data path must be a multi-cycle path. This addresses
the root case of metastability problems, and can be applied to
any form of data transfer protocol. The integrated formal
solution leverages the automatic clock intent analysis result to
produce a composite report, saving users time and effort [11].
Thus, this automatic and formal CDC solution simplifies the
designer’s sign-off task.

Fig. 6 illustrates a simple CDC interface, which consists of
a data crossing that is controlled by a control and feedback
signal. This system CDC will automatically identify these data
and control crossings. For the control crossings, this system
will perform formal analysis to verify the following:

1) Pulse width check
It verifies that the control pulses generated in the

transmitter domain are of a sufficient duration to be captured in
the receiver domain. If the pulse is missed, the pulse width
check fails, and a value change dump (VCD) trace will be
generated. Failing pulse width checks will identify problems
with the pulse generation logic from fast-to-slow clock
domains.

2) Gray code check
It verifies that the first-in first-out (FIFO) control signals

are correctly gray coded. If gray encoding is incorrect, the gray
code check will fail, and a VCD trace will be generated. Failing
gray code checks identify problems with gray encoding.

3) Formal glitch check
It verifies that the glitch generated in the transmitter domain

can be captured in the receiver domain. If the glitch is captured,
the formal glitch check fails, and a VCD trace will be
generated. Failing glitch checks identify problems with the
combinatorial logic on asynchronous crossings.

4) Data stability check
It verifies that it is possible to launch Tx data and capture

Rx data on the next receiving clock edge. If possible, the data
stability check fails, and a VCD trace will be generated. Failing
data stability checks identify problems with control and
feedback logic.

Tx Data

Control

Feedback

Rx Data

Data Stability Check

Pulse Width Check

Gray Code Check

Glitch Check

CDC handshake and formal analysis.

.

4 A. Matsuda, S. Baba: Automated Verification and Clock Frequency …

C. Dynamic CDC verification

The dynamic CDC verification capability in this CDC
system leverages existing simulation test-benches for CDC
verification. Dynamic CDC verification injects the effects of
metastability during the simulation to catch functional errors. It
also includes monitors to check for gray code, pulse width, data
stability, and glitch violations. This automates CDC sign-off
and supports popular simulators.

As shown in Fig. 6, the control and feedback signals
functionally control the data transfer from Tx data to Rx data.
In regular simulation-based verification, the effects of
metastability across asynchronous clock domains are not
considered. However, during real chip operations, it is possible
that a control signal transition can be missed in the receiver
clock domain because of metastability, and the data transfer
can therefore be corrupted. This problem cannot be identified
with regular simulation-based verification.

Dynamic CDC verification will automatically inject
metastability effects on the crossing signals. Users can include
this metastability injection file in the top-level test-bench, and
perform simulation-based verification with metastability
models. In this way, problems with improper control logic can
be found and debugged in the test-benches. Dynamic CDC
verification will also include monitors for catching gray code,
pulse width, data stability, and glitch violations in top-level test
benches.

IV. CDC ANALYSIS

CDC verification is conducted in the asynchronous FIFO
memory design file “sync.v” by Verilog HDL. The
specification of this design can be easily described. This design
file has two clock domains “wclk” and “rclk.” When a read
enable signal “rd_ok” is asserted for more than one cycle, a
read pointer signal “rd_ptr” is generated. Simultaneously, when
a data read enable signal “rd_enb” is asserted, the read pointer
signal “rd_ptr” will still be generated. The write pointer signal
“wr_ptr” is used in the “rd_ptr” generation logic to detect the
FIFO empty situation.

CDC verification was first carried out in this design, and
the following situations were identified:

1. Two clock domains “wclk” and “rclk” were recognized.

2. All FIFO data were recognized by the category as

 W_DATA (data crossing with potential error)

3. The control signal controlling the transmission between

 the clock domains was not recognized.

The W_DATA indicates that it is a DATA crossing with
warnings. The data association status was “none,” which means
there are no CTRL signals to handle the data transmission. As a
result, an error in the clock name was determined in the always
block, in where “rd_ptr” is generated. Therefore, it was
corrected from “wclk” to “rclk,” and we then reran this system.

The 2nd analysis result indicates that the “wr_ptr”
information showed up in the W_DATA category. However,
there were still no CTRL signals. Note that CTRL signals are

usually required to control data transmission in the design. The
“wr_ptr” information is used in the “rd_ptr” generation logic,
which is generated in the “rd_clk” domain. The “wr_ptr” is
generated in the “wr_clk” domain, whereas the “rd_ptr” is
generated in the “rd_clk” domain. Therefore, “wr_ptr” should
be considered as the CDC signals. However, no synchronizers
were used in this “wr_ptr”; therefore “wr_ptr” was seen as
W_DATA. We then added the double synchronizer for the
“wr_ptr,” as shown in Fig. 7, and reran this system.

Figure 7. Analysis result from the 1st run.

Figure 8. Analysis result from the 2nd run.

Figure 9. Structure of the control signal is used for data transfer in the

received (RX) domain.

Figure 10. W_ASYNC_RST_FLOPS warning.

A. Matsuda, S. Baba: Automated Verification and Clock Frequency … 5

Figure 11. Flops with reset from asynchronous domains.

Figure 12. Example of reconvergence issue.

Figure 13. Reconvergence issue in this design.

Figure 14. Example of data stability issue.

The signal “wr_ptr” is identified as a CTRL signal as
shown in Fig. 8. Also, the data association status is now Load-
Control, which means that the “wr_ptr” is a type of CTRL
signals that handles data transmission, as shown in Fig. 9.

This system has the capability to detect the issues related to
reset signals. In this design, this system showed a
W_ASYNC_RST_FLOPS warning, which means that the flops
are reset by a signal from the asynchronous clock domain, as
shown in Figs. 10 and Fig. 11.

Then, we added the reset synchronizer in the design as
shown in Fig. 12, and reran this system. The
W_ASYNC_RST_FLOPS did not show up in this new analysis
result. This system also detected the reconvergence issue, as
shown in Fig. 13.

This system identifies the issue as a W_RECON_GROUPS
warning. In this design, the write pointers “wr_ptr” have this
warning since it is a multibit control signal, but in this case, the
warning can safely be ignored as long as the write pointers is
correctly gray coded.

In addition to these structural analyses, we also ran this
formal analysis system and found the data stability issue, as
shown in Fig. 14. The red line in Fig. 14 accurately indicates
the point of “FAILURE.”

This system performs data stability checks to ensure that
the transmitted data are not captured at the next clock edge in
the receiving clock domain. In this design, this failure indicates
that the data were read out too early.

In summary, we identified the following issues during this
CDC system analysis:

1) Incorrect clk specification in the “rd_ptr” logic.

2) Missing “wr_ptr” synchronizer clock for domain

 crossing.

3) Missing reset synchronizer.

4) Data stability issue on FIFO data.

We now describe the benefit of using the CDC solution.
First, we obtained the result of comparing the design effort
with a traditional design methodology and a design
methodology that uses the CDC solution tool.

The analysis results revealed the mistake where the clock
was always used in the block in which “rd_ptr” is generated. It
should have been used in the block “rclk,” instead of “wclk.”
Next, the signal “wr_ptr” was generated as the control signal in
the “wclk” domain, but in this case, it is recognized as the data
signal. Therefore, the signal “wr_ptr” was corrected so that it
may be recognized as a control signal using a synchronizer.
The control signals show the structure used for data transfer by
the receiver (read side) in Fig. 9. Also, this design uses a reset
signal “as is” from a different clock domain. Therefore, the
reset was set to always use a synchronized reset that generates
“rd_ptr,” “rd_enb” and “dout” signals.

6 A. Matsuda, S. Baba: Automated Verification and Clock Frequency …

V. EXPERIMENTAL RESULTS

CDC verification was carried out in the asynchronous FIFO
memory design whose specification can be easily described.
The FIFO memory designs consist of two clock domains,
namely “wclk” and “rclk.” When the “rd_ok” signal is asserted
for more than one cycle, a read pointer “rd_ptr” signal is
generated. At the same time, when the data read enable signal
“rd_enb” is asserted, the read pointer “rd_ptr” continues to be
generated. The write pointer “wr_ptr” is used in the “rd_ptr”
generation logic to detect the FIFO empty situation [12].

Figure 15. Description with no synchronizer.

Figure 16. The double flip-flop synchronizer description.

Figure 17. Circuit diagram with no synchronizer.

Figure 18. Circuit diagram of double flip-flop synchronizer circuit.

…

always@(posedge rclk or negedge r_rstn2)

 begin

 if (~r_rstn2)

 begin

 rd_ptr <= 3'b000;

 rd_enb <= 1'b0;

 end

 else if (wr_ptr == rd_ptr)

�

always@(posedge rclk or negedge r_rstn2)

 begin

 if (~r_rstn2) begin

 wr_ptr1 <= 3'b000;

 wr_ptr2 <= 3'b000;

 end

 else

 begin

 wr_ptr1 <= wr_ptr;

 wr_ptr2 <= wr_ptr1;

 end

 end

…

always@(posedge rclk or negedge r_rstn2

 begin

 if (~r_rstn2)

 begin

 rd_ptr <= 3'b000;

 rd_enb <= 1'b0;

 end

 else if (wr_ptr2 == rd_ptr)

�

wclk

FF

FF

wr_ptr[2:0]

rd_ptr[2:0]

Component

rclk

wclk

rclk

Synchronizer (double flip-flop)

FF FF FF

FF FF FF

FF FF FF

FF

FF

FF

wr_ptr[2] rd_ptr_1[2] rd_ptr_2[2]

 rd_ptr_1[1] rd_ptr_2[1]

 rd_ptr_1[0] rd_ptr_2[0]

rd_ptr[2]

rclk

wr_ptr[1]

wr_ptr[0]

rd_ptr[1]

rd_ptr[0]

A. Matsuda, S. Baba: Automated Verification and Clock Frequency … 7

TABLE I. CIRCUIT EVALUATION “WCLK” = 60MH

TABLE II. CIRCUIT EVALUATION “WCLK” = 75MHZ

rclk

(MHz)

wclk

(MHz)

Max Freq

(MHz)

Power

(mW)

75 75 110.2 58.2

80 75 112.2 58.1

90 75 115.0 57.9

100 75 105.3 58.0

110 75 112.2 57.9

120 75 121.4 57.8

In this design, the CDC verification was first carried out
and the two clock domains were identified as “wclk” and
“rclk.” No synchronizer existed between these domains, as
shown in Fig. 15. Therefore, the synchronizers were inserted
into these circuits to counter metastability, as shown in Fig. 16.
For simplicity, these are described using a concrete circuit
diagram. The circuit diagram of the asynchronous transfer was
not properly synchronized, as shown in Fig. 17. For these
measures, the synchronizers were inserted into the “wr_prt”
signal with “rclk,” as shown in Fig. 18. The three double flip-
flops synchronizers were eventually inserted into these circuits,
shown by a dashed line surrounding the three synchronizers in
Fig. 18.

The clock frequency combination of “rclk” and “wclk”
plays a significant role in the CDC solution. Therefore, a
variable clock frequency was evaluated for the design in which
the synchronizer was inserted for CDC issue measure.

Table 1 shows the combination of “rclk” and “wclk.” The
“wclk” frequency was fixed to 60MHz and the “rclk”
frequency was changed from 60 MHz to 140 MHz. In the
design in which the synchronizer was inserted, the power
consumption decreased with the frequency, but the
performance achieved a “dead point” when “wclk” was about
1.3 times the value of “rclk.” In particular, the point was a

combination of “rclk” = 80 MHz and “wclk” = 60 MHz. These
results show that different combinations of clock frequency are
effective in resolving the CDC issues [13].

Next, the “wclk” signals were fixed to 75 MHz, and the
“rclk” signals were changed from 75 MHz to 120 MHz, as
shown in Table 2. This is also the same as the results in Table
1, and the dead point was observed when “wclk” was about 1.3
times “rclk.” In particular, the point was a combination of
“rclk” = 100 MHz and “wclk” = 75 MHz.

The results of this experiment are described in the
combination of “rclk” and “wclk,” which is shown in the
following equation [14].

 wclkrclk f
N

f )
1

1((1)

Experimental results when N = 3 are shown in Fig. 18.

 wclkrclk ff 
3

4
 . (2)

When (2) is satisfied, the dead point affects the
performance. This can be verified from Tables 1 and 2.

VI. CONCLUSION AND FUTURE WORK

There are complex issues regarding multiple clock domains
and operating clock frequency, which complicate the CDC
solution. Clock frequency is considered when dealing with
CDC issues and it is inevitable for automation to be considered
in CDC solutions. This case study shows that automated
verification and debugging using the CDC solution are very
effective. Moreover, it clarifies the analysis methodology in the
design of multiple clock domains. Debugging was advanced
while changing design descriptions based on an analysis report
of the CDC solution beginning at the original source cord in
this case study.

In addition, CDC issues require attention to be paid to
different combinations of clock frequency. It is thought that it
can lead to improvements in the performance (clock cycle) of
the synchronous circuit design for the CDC issue measure. In
the future, we intend to analyze many more clock domains in
order to confirm the commonly used methodologies.

ACKNOWLEDGMENT

This work was supported in part by Kakihara Science and
Technology Foundation. The authors would like to thank Dr.
Jin Zhang at EVE-USA Inc. who has shared her valuable
comments.

REFERENCES

[1] Y. Feng, Z. Zhou, D. Tong, and X. Cheng, “Clock domain

crossing fault model and coverage metric for validation of SoC

design,” in Proc. Design, Automation and Test in Europe

(DATE07), pp. 1-6, 2007.

[2] M. Su, Y. Chen and X. Gao, “A general method to make multi-

clock system deterministic”, in Proc. Design, Automation and

Test in Europe (DATE10), pp. 1480-1485, 2010.

rclk

(MHz)

wclk

(MHz)

Max Freq

(MHz)

Power

(mW)

60 60 113.3 67.3

70 60 114.3 68.2

80 60 102.7 68.6

90 60 105.2 69.2

100 60 108.0 71.3

110 60 114.0 72.2

120 60 118.2 72.8

130 60 120.5 73.0

140 60 128.1 74.0

8 A. Matsuda, S. Baba: Automated Verification and Clock Frequency …

[3] R. Ginosar, “Fourteen ways to fool your synchronizer,” in Proc.

International Synposium Asynchronous Circuits and Systems,

pp. 89-96, 2003.

[4] D. Kim, M. Ciesielski, K. Shim and S. Yang, “Temporal parallel

simulation: A fast gate-level HDL simulation using higher level

models” in Proc. Design, Automation and Test in Europe

(DATE11), pp. 1584-1589, 2011.

[5] S. Sarwary, and S. Verma, “Critical clock-domain-crossing

bugs,” Electronics Design, Strategy, News, pp. 55-60, 2008.

[6] A. Chakraborty and M. R. Greenstreet, “Efficient self-timed

interfaces for crossing clock domains,” International

Symposium on Advanced Research in Asynchrnous Circuits and

Systems, pp.78-88, 2003.

[7] J. Kessels, A. Peeters, and S. Kim, “Bridging clock domains by

synchronizing the mice in the mousetrap,” in Proc. International

Workshop on Power and Timing Modeling, Optimization, and

Simulation, pp.141-150, 2003.

[8] C. Kwok, V. Gupta, and T. Ly, “Using assertion-based

verification to verify clock domain crossing signals,” in Proc.

Design and Verification Conference, pp. 654-659, 2003.

[9] T. Kapschitz and R. Ginosar, “Formal verification of

syncronizers,” in Correct Hardware Design and Verification

Methods, Vol. 3725, pp. 359-362, 2005.

[10] R. Ginosar, “Metastability and synchronizers: A tutorial,” IEEE

Trans. on Design & Test of Computers, Vol. 28, No. 5, pp. 23-

35, 2011.

[11] B. Keng, S. Safarpour, and A. Veneris, “Automated debugging

of SystemVerilog assertions” in Proc. Design, Automation and

Test in Europe (DATE11), pp. 323-328, 2011.

[12] A. Matsuda and J. Zhang, “Debugging methodology and timing

analysis in CDC solution,” in Proc. the IEEE International

Conference on ASIC, Vol.1, pp. 393-396, 2011.

[13] A. Matsuda and S. Baba, “A debug solution with synchronizer

for CDC,” in Proc. the Workshop on Synthesis And System

Integration of Mixed Information Technologies (SASIMI2012),

pp. 390-393, 2012.

[14] A. Matsuda and S. Baba, “A clock frequency characteristics in

across clock domains,” in Proc. International Technical

Conference on Circuits/Systems, Computers and

Communications (ITC-CSCC2012), C-T1-01, 2012.

