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Abstract: Recently, the design complexity of System-on-a-chip (SoC) has increased and additional functionalities have been added to SoC. 

Moreover, their operation clocks are frequently transferred from single clock domain to multiple clock domains. Because of the volume of the 

crossing signals and the variety methods of implementing crossed clock, the verification of clock domain crossings (CDCs) has become a very 

important and challenging task in deep submicron designs. Therefore, specialized CDC verification solutions can accurately detect CDC issues 

and efficiently debug the root causes of these problems that we require to perform design analyses. This paper describes certain case studies 

involving CDC verification and the relationship between clock and operating frequencies. Variable combination of clock frequencies “rclk” and 

“wclk” was evaluated for the asynchronous first-in first-out (FIFO) memory design. When a synchronizer was inserted, the power consumption 

decreased with the frequency; however, the performance achieved a “dead point” when “wclk” was about 1.3 times the value of “rclk.” The 

results confirmed that different combinations of clock frequency affected the circuit characteristics. 
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I. INTRODUCTION 

Advanced System-on-a-chip (SoC) architectures support 
many asynchronous clock domains. The implementation of a 
faulty clock domain crossing (CDC) interface can cause 
metastability propagation downstream, resulting in functional 
errors. These errors are intermittent, and are often hard to 
detect and diagnose using traditional verification techniques 
such as simulations. Undetected CDC issues can cause chip 
failures in the field and result in expensive chip respins. The 
most precise, comprehensive, and innovative CDC solution 
performs structural and functional analyses to ensure that 
signals crossing asynchronous clock domains on SoC designs 
are reliably received [1]. 

CDC issues typically require considerable time and effort 
for debugging. Therefore, automatic verification and 
debugging capabilities are required in CDC solutions to reduce 
the turn-around-time (TAT) required for FPGA designs [2]. 

Our paper is structured as follows: Section 2 describes the 
background to multi-clock design. Section 3 gives an overview 
of CDC verification solution in three essential elements. 
Section 4 presents an outline of the CDC verification used in 
the asynchronous FIFO memory design. Section 5 describes a 

set of experiments that we conducted on diverse real-world 
applications on the asynchronous design, and furthermore 
presents the design methodology for the simulation and 
verification of FIFO memory design. Lastly, Section 6 
discusses our conclusions and future work. 

II. BACKGROUND 

The number of advanced multiclocking architectures has 

increased dramatically because of the demands for high 

performance and low power consumption in SoC designs, 

recently. Interactions between these clock domains need to be 

verified to ensure correct functionality [3]. For multi-clock 

domain designs, Register Transfer Level (RTL) or gate-level 

simulation can not accurately capture the timing of data 

transfers between different clock domains. Consequently, even 

if the simulation is run, the device behavior can not be 

accurately predicted [4], and serious bugs might be missed in 

the verification flows [5]. Therefore, a specialized CDC 

verification tool is needed to deal with the difficult verification 

issue, which can not be handled by simulation-based verified 

methodologies [6]. 
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III. CDC VERIFICATION FLOW 

The CDC verification solution sets the industry benchmark 
by providing the following three essential elements for a 
complete CDC verification solution: automatic clock intent 
analysis (structural CDC analysis), integrated formal analysis, 
and dynamic CDC verification [7]. It is the only solution that 
enables accurate prediction of device behavior for an 
asynchronous clock interface [8]. It gives users the confidence 
that all CDC bugs will be found before tapeout, and expensive 
respins will be avoided [9]. 

A. Automatic clock intent analysis 

Automatic clock intent analysis infers CDC intent from the 
design stage, and offers a comprehensive analysis that 
identifies clock or reset issues, incorrect or missing 
synchronization, glitch potentials, reconvergence, structurally 
unsafe crossings, and potential data or control crossings that 
require functional verification. This analysis is the fastest and 
most accurate because of the CDC solution’s advanced 
correlation algorithms, and offers the most complete support 
for crossing styles in the industry. 

For example, with structural analysis, the CDC solution can 
automatically identify the following issues: 

1) Reset issues 
In clock/reset issues, the CDC solution can identify issues 

related to missing synchronizers on the asynchronous reset 
crossings. Fig. 1 indicates two asynchronous clock domains 
“clka” and “clkb” and an asynchronous reset “async_reset,” 
generated from the “clka” domain used to reset flops in the 
“clkb” domain. The problem with this circuit is that there is a 
missing synchronizer for the “clkb” domain reset.  

The CDC solutions can automatically identify such issues 
with asynchronous reset signals. For more details on the reset 
related issues, CDC solution can identify the point of reset 
signals without the synchronizer. Therefore, we easy to be able 
to find out a point to be input by some synchronizers on circuit 
point. 

2) Structural CDC  issues 
The CDC solution performs CDC analysis and identifies 

unsafe CDC structures in the design. Fig. 2 shows signals from 
different asynchronous clock domains combining and crossing 
into another clock domain. The crossing signal may have 
glitches that can cause problems in downstream logic. The 
CDC solution can automatically identify such cases using 
glitch potential. Fig. 3 shows two signals crossing clock 
domains, are synchronizing in the clk2 domain, and 
reconverging. The CDC solution can automatically identify 
such reconvergence issues. In Fig. 4, a crossing signal is 
diverges into two different synchronizer paths. Because of this, 
the signals can lose correlation, and problems can therefore 
occur in the downstream logic. The CDC solution can 
automatically identify such issues with divergence.  

In Fig. 5, the signal crossing clock domains has a missing 
synchronizer. This can lead to loss of data because of 
metastability problems [10]. This system can automatically 
identify such problems. 

 

Figure 1.  Missing reset synchronizer. 

 

 

 

 

 

Figure 2.  Glitch. 

 

 

 

 

 

 

 

 

Figure 3.  Reconvergence. 

 

 

 

 

 

 

Figure 4.  Signal losing correlation. 

 

 

 

 

 

Figure 5.  Loss of data. 

clka clkb 

   

 

async reset 

  

 

 clk3 

clk2 

Control 1 

 

 Control 2 

 

clk1 clk2 

clk1 clk2 

 

  

  

 

  
clk2 

clk2 

clk1 

  
Control 

clk1 clk2 



A. Matsuda, S. Baba: Automated Verification and Clock Frequency …                                                                               3 

 
 

 

     

 

Figure 6.   

3) CDC interface/handshake identification 
In Fig. 6, a simple CDC handshake interface is illustrated. 

For correct operation of the interface, the control signal needs 
to be synchronized. This synchronized signal needs to be 
associated with a data transfer from Tx Data to Rx Data. 
Moreover, a feedback signal needs to be generated in the Tx 
domain to indicate that the data transfer was performed. This 
CDC system will automatically identify all handshake 
structures. Thus, all types of synchronizer structures will be 
understood and identified. 

B. Formal integration analysis 

The integrated formal analysis exhaustively verifies the 
safety of crossings using an innovative metastability-aware 
formal engine, which ensures the safety of data transfer by 
verifying the underlying design principle, according to which 
the CDC data path must be a multi-cycle path. This addresses 
the root case of metastability problems, and can be applied to 
any form of data transfer protocol. The integrated formal 
solution leverages the automatic clock intent analysis result to 
produce a composite report, saving users time and effort [11]. 
Thus, this automatic and formal CDC solution simplifies the 
designer’s sign-off task. 

Fig. 6 illustrates a simple CDC interface, which consists of 
a data crossing that is controlled by a control and feedback 
signal. This system CDC will automatically identify these data 
and control crossings. For the control crossings, this system 
will perform formal analysis to verify the following: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1) Pulse width  check 
It verifies that the control pulses generated in the 

transmitter domain are of a sufficient duration to be captured in 
the receiver domain. If the pulse is missed, the pulse width 
check fails, and a value change dump (VCD) trace will be 
generated. Failing pulse width checks will identify problems 
with the pulse generation logic from fast-to-slow clock 
domains. 

2) Gray code check 
It verifies that the first-in first-out (FIFO) control signals 

are correctly gray coded. If gray encoding is incorrect, the gray 
code check will fail, and a VCD trace will be generated. Failing 
gray code checks identify problems with gray encoding. 

3) Formal glitch check 
It verifies that the glitch generated in the transmitter domain 

can be captured in the receiver domain. If the glitch is captured, 
the formal glitch check fails, and a VCD trace will be 
generated. Failing glitch checks identify problems with the 
combinatorial logic on asynchronous crossings. 

4) Data stability check 
It verifies that it is possible to launch Tx data and capture 

Rx data on the next receiving clock edge. If possible, the data 
stability check fails, and a VCD trace will be generated. Failing 
data stability checks identify problems with control and 
feedback logic. 
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C. Dynamic CDC verification 

The dynamic CDC verification capability in this CDC 
system leverages existing simulation test-benches for CDC 
verification. Dynamic CDC verification injects the effects of 
metastability during the simulation to catch functional errors. It 
also includes monitors to check for gray code, pulse width, data 
stability, and glitch violations. This automates CDC sign-off 
and supports popular simulators. 

As shown in Fig. 6, the control and feedback signals 
functionally control the data transfer from Tx data to Rx data. 
In regular simulation-based verification, the effects of 
metastability across asynchronous clock domains are not 
considered. However, during real chip operations, it is possible 
that a control signal transition can be missed in the receiver 
clock domain because of metastability, and the data transfer 
can therefore be corrupted. This problem cannot be identified 
with regular simulation-based verification. 

Dynamic CDC verification will automatically inject 
metastability effects on the crossing signals. Users can include 
this metastability injection file in the top-level test-bench, and 
perform simulation-based verification with metastability 
models. In this way, problems with improper control logic can 
be found and debugged in the test-benches. Dynamic CDC 
verification will also include monitors for catching gray code, 
pulse width, data stability, and glitch violations in top-level test 
benches. 

IV. CDC ANALYSIS 

CDC verification is conducted in the asynchronous FIFO 
memory design file “sync.v” by Verilog HDL. The 
specification of this design can be easily described. This design 
file has two clock domains “wclk” and “rclk.” When a read 
enable signal “rd_ok” is asserted for more than one cycle, a 
read pointer signal “rd_ptr” is generated. Simultaneously, when 
a data read enable signal “rd_enb” is asserted, the read pointer 
signal “rd_ptr” will still be generated. The write pointer signal 
“wr_ptr” is used in the “rd_ptr” generation logic to detect the 
FIFO empty situation. 

CDC verification was first carried out in this design, and 
the following situations were identified: 

1.  Two clock domains “wclk” and “rclk” were recognized. 

2.  All FIFO data were recognized by the category as  

     W_DATA (data crossing with potential error) 

3.  The control signal controlling the transmission between  

     the clock domains was not recognized. 

The W_DATA indicates that it is a DATA crossing with 
warnings. The data association status was “none,” which means 
there are no CTRL signals to handle the data transmission. As a 
result, an error in the clock name was determined in the always 
block, in where “rd_ptr” is generated. Therefore, it was 
corrected from “wclk” to “rclk,” and we then reran this system. 

The 2nd analysis result indicates that the “wr_ptr” 
information showed up in the W_DATA category. However, 
there were still no CTRL signals. Note that CTRL signals are 

usually required to control data transmission in the design. The 
“wr_ptr” information is used in the “rd_ptr” generation logic, 
which is generated in the “rd_clk” domain. The “wr_ptr” is 
generated in the “wr_clk” domain, whereas the “rd_ptr” is 
generated in the “rd_clk” domain. Therefore, “wr_ptr” should 
be considered as the CDC signals. However, no synchronizers 
were used in this “wr_ptr”; therefore “wr_ptr” was seen as 
W_DATA. We then added the double synchronizer for the 
“wr_ptr,” as shown in Fig. 7, and reran this system. 

 

 

Figure 7.  Analysis result from the 1st run. 

 

 

 

Figure 8.  Analysis result from the 2nd run. 

 

 

 

Figure 9.  Structure of the control signal is used for data transfer in the 

received (RX) domain. 

 

 

 

Figure 10.  W_ASYNC_RST_FLOPS warning. 
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Figure 11.  Flops with reset from asynchronous domains. 

 

 

 

Figure 12.  Example of reconvergence issue. 

 

 

 

Figure 13.  Reconvergence issue in this design. 

 

 

 

Figure 14.  Example of data stability issue. 

The signal “wr_ptr” is identified as a CTRL signal as 
shown in Fig. 8. Also, the data association status is now Load-
Control, which means that the “wr_ptr” is a type of CTRL 
signals that handles data transmission, as shown in Fig. 9. 

This system has the capability to detect the issues related to 
reset signals. In this design, this system showed a 
W_ASYNC_RST_FLOPS warning, which means that the flops 
are reset by a signal from the asynchronous clock domain, as 
shown in Figs. 10 and Fig. 11. 

Then, we added the reset synchronizer in the design as 
shown in Fig. 12, and reran this system. The 
W_ASYNC_RST_FLOPS did not show up in this new analysis 
result. This system also detected the reconvergence issue, as 
shown in Fig. 13. 

This system identifies the issue as a W_RECON_GROUPS 
warning. In this design, the write pointers “wr_ptr” have this 
warning since it is a multibit control signal, but in this case, the 
warning can safely be ignored as long as the write pointers is 
correctly gray coded. 

In addition to these structural analyses, we also ran this 
formal analysis system and found the data stability issue, as 
shown in Fig. 14. The red line in Fig. 14 accurately indicates 
the point of “FAILURE.” 

This system performs data stability checks to ensure that 
the transmitted data are not captured at the next clock edge in 
the receiving clock domain. In this design, this failure indicates 
that the data were read out too early. 

In summary, we identified the following issues during this 
CDC system analysis: 

1) Incorrect clk specification in the “rd_ptr” logic. 

2) Missing “wr_ptr” synchronizer clock for domain  

    crossing. 

3) Missing reset synchronizer. 

4) Data stability issue on FIFO data. 

We now describe the benefit of using the CDC solution. 
First, we obtained the result of comparing the design effort 
with a traditional design methodology and a design 
methodology that uses the CDC solution tool. 

The analysis results revealed the mistake where the clock 
was always used in the block in which “rd_ptr” is generated. It 
should have been used in the block “rclk,” instead of “wclk.”  
Next, the signal “wr_ptr” was generated as the control signal in 
the “wclk” domain, but in this case, it is recognized as the data 
signal. Therefore, the signal “wr_ptr” was corrected so that it 
may be recognized as a control signal using a synchronizer. 
The control signals show the structure used for data transfer by 
the receiver (read side) in Fig. 9. Also, this design uses a reset 
signal “as is” from a different clock domain. Therefore, the 
reset was set to always use a synchronized reset that generates 
“rd_ptr,” “rd_enb” and “dout” signals. 
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V. EXPERIMENTAL RESULTS 

CDC verification was carried out in the asynchronous FIFO 
memory design whose specification can be easily described. 
The FIFO memory designs consist of two clock domains, 
namely “wclk” and “rclk.” When the “rd_ok” signal is asserted 
for more than one cycle, a read pointer “rd_ptr” signal is 
generated. At the same time, when the data read enable signal 
“rd_enb” is asserted, the read pointer “rd_ptr” continues to be 
generated. The write pointer “wr_ptr” is used in the “rd_ptr” 
generation logic to detect the FIFO empty situation [12]. 

 

 

 

 

 

 

 

 

 

Figure 15.  Description with no synchronizer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16.  The double flip-flop synchronizer description. 

 

 

 

 

 

 

 

 

 

 

 

Figure 17.  Circuit diagram with no synchronizer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18.  Circuit diagram of double flip-flop synchronizer circuit. 

… 

always@(posedge rclk or negedge r_rstn2) 

 begin 

  if (~r_rstn2) 

    begin 

    rd_ptr <= 3'b000; 

     rd_enb <= 1'b0; 

     end 

    else if (wr_ptr == rd_ptr)   

  

 
� 

always@(posedge rclk or negedge r_rstn2) 

 begin 

        if ( ~r_rstn2 ) begin 

                   wr_ptr1 <= 3'b000; 

                   wr_ptr2 <= 3'b000; 

                end 

        else 

                begin 
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                end 

 end 

 

… 

 

always@(posedge rclk or negedge r_rstn2 

 begin 

  if (~r_rstn2) 

     begin 

        rd_ptr <= 3'b000; 

         rd_enb <= 1'b0; 

     end 

  else if (wr_ptr2 == rd_ptr) 
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TABLE I.  CIRCUIT EVALUATION “WCLK” = 60MH 

 

TABLE II.  CIRCUIT EVALUATION “WCLK” = 75MHZ 

rclk          

(MHz) 

wclk 

(MHz) 

Max Freq 

(MHz) 

Power  

(mW) 

75 75 110.2 58.2 

80 75 112.2 58.1 

90 75 115.0 57.9 

100 75 105.3 58.0 

110 75 112.2 57.9 

120 75 121.4 57.8 

 

In this design, the CDC verification was first carried out 
and the two clock domains were identified as “wclk” and 
“rclk.” No synchronizer existed between these domains, as 
shown in Fig. 15. Therefore, the synchronizers were inserted 
into these circuits to counter metastability, as shown in Fig. 16. 
For simplicity, these are described using a concrete circuit 
diagram. The circuit diagram of the asynchronous transfer was 
not properly synchronized, as shown in Fig. 17. For these 
measures, the synchronizers were inserted into the “wr_prt” 
signal with “rclk,” as shown in Fig. 18. The three double flip-
flops synchronizers were eventually inserted into these circuits, 
shown by a dashed line surrounding the three synchronizers in 
Fig. 18. 

The clock frequency combination of “rclk” and “wclk” 
plays a significant role in the CDC solution. Therefore, a 
variable clock frequency was evaluated for the design in which 
the synchronizer was inserted for CDC issue measure. 

Table 1 shows the combination of “rclk” and “wclk.” The 
“wclk” frequency was fixed to 60MHz and the “rclk” 
frequency was changed from 60 MHz to 140 MHz. In the 
design in which the synchronizer was inserted, the power 
consumption decreased with the frequency, but the 
performance achieved a “dead point” when “wclk” was about 
1.3 times the value of “rclk.” In particular, the point was a 

combination of “rclk” = 80 MHz and “wclk” = 60 MHz. These 
results show that different combinations of clock frequency are 
effective in resolving the CDC issues [13]. 

Next, the “wclk” signals were fixed to 75 MHz, and the 
“rclk” signals were changed from 75 MHz to 120 MHz, as 
shown in Table 2. This is also the same as the results in Table 
1, and the dead point was observed when “wclk” was about 1.3 
times “rclk.” In particular, the point was a combination of 
“rclk” = 100 MHz and “wclk” = 75 MHz. 

The results of this experiment are described in the 
combination of “rclk” and “wclk,” which is shown in the 
following equation [14]. 

          wclkrclk f
N

f  )
1

1(                                (1) 

Experimental results when N = 3 are shown in Fig. 18. 

            wclkrclk ff 
3

4
 .                                  (2) 

When (2) is satisfied, the dead point affects the 
performance. This can be verified from Tables 1 and 2. 

VI. CONCLUSION AND FUTURE WORK 

There are complex issues regarding multiple clock domains 
and operating clock frequency, which complicate the CDC 
solution. Clock frequency is considered when dealing with 
CDC issues and it is inevitable for automation to be considered 
in CDC solutions. This case study shows that automated 
verification and debugging using the CDC solution are very 
effective. Moreover, it clarifies the analysis methodology in the 
design of multiple clock domains. Debugging was advanced 
while changing design descriptions based on an analysis report 
of the CDC solution beginning at the original source cord in 
this case study.  

In addition, CDC issues require attention to be paid to 
different combinations of clock frequency. It is thought that it 
can lead to improvements in the performance (clock cycle) of 
the synchronous circuit design for the CDC issue measure. In 
the future, we intend to analyze many more clock domains in 
order to confirm the commonly used methodologies. 
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