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Abstract: The analysis of data for outliers is a part of model building and data summarizing for model testing, parameter estimation, 

prediction and peculiarity investigations. Any influential point can disproportionately pull the ordinary least squares line and distort 

the predictions. Thus the detection of outlying observations is very essential in the course of model building in various disciplines, 

such as, medical research, economics, sociology, computer science, etc. A point is an influential one if it causes dramatic change in 

the model after its deletion. Each of the available test statistics has different cutoff values that indicate the amount of outlyingness. 

Sometimes only one statistic is sufficient to provide the information about influential points but often it is necessary to examine the 

cutoff of more than one influence measure. The reason behind is that all the cutoff values are either a function of the sample size or 

number of predictors or both. Also validity of the cutoff value is subjected to some additional conditions. In this paper we try to 

critically examine those conditions with the help of simulation study. We shall use a few combinations of  (   ) , where   is the 

sample size and   is the no. of outliers for assessing the performances. 

 

Keywords:  Influential observations, Cooks distance, DFFITS, COVRATIO and Leverage. 

1. INTRODUCTION 

The analysis of data for outliers is a part of model building and data summarizing for model testing, parameter 

estimation, prediction and peculiarity investigations, however the perception of outlier is not at all simple [1]. Detection 

of outlying observations is very essential in the course of model building in various disciplines, viz., medical research, 

economics, sociology, computer science, etc. The ordinary least-squares (OLS) regression line passes through the 

centroid of the data and it assigns equal weights to all the observations. So the least square estimation is highly sensitive 

to outliers and influential observations. In the absence of outliers and with the fulfillment of the assumptions of zero 

mean, constant variance and uncorrelated errors the OLS provides us the BLUE of the regression parameters. But any 

anomalous point can disproportionately pull the line and distort the predictions. Detection of outlying observations is a 

very essential part of good regression analysis. The concept of influential point plays the central role in the detection 

process. In the linear regression framework, there are various ways to detect influential observations. An influential 

observation is one which either individually or together with several other observations, has a demonstrably larger 

impact on the calculated values of various estimates (coefficient, standard errors, t-values, etc.) than to the case for most 

of the other observation [21].The outlier is indeed an influential point, but the contrary is not always true [1]. An outlier 

(either in response space or in the space of the predictors) will not necessarily influential in affecting the regression 

equation. Tukey (1977) emphasized the importance of exploring the data, rather than just examining one of two 

summary statistics [15]. Thus two aspects of outlier detection are there which may be classified as case analysis and 

summary measure analysis. Another approach is the robust regression which is said to be insensitive to such wild 

points. But interestingly Hurber (1977) illustrated that in case of outliers in the predictor space robust approach may be 

inefficient, which indicates a need for case analysis in case of robust regression. The misleading consequence of the 

summary statistic was proved by Anscombe (1973) where same value of    was obtained for three different data sets. 

[15]. Hocking (1983) found that the hat diagonals and ―deleted‖ studentized residuals provide most of the evidence 

needed to track down maverick cases. Contrary to that, Welsch (1980) found that neither the hat diagonals nor 

studentized residuals alone will sufficient. He suggested DFFITSi [16]. 
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Since the work initiated by Mickey, Dunn and Clark (1967), several influence measures were developed to measure 

their influence on the forecast [2]. To be an influential one a point should cause dramatic change in the model after its 

deletion. Each of those test statistics has different cutoff values that indicate the amount of outlyingness. Sometimes only 

one statistic is sufficient to provide the information about influential points but often it is necessary to examine the cutoff 

of more than one statistic. The reason behind is that all the cutoff values are either a function of the sample size or 

number of predictors or both. Also validity of the cutoff value is subjected to some additional conditions [1]. The cut-off 

points should be used with caution. Diagnostic methods are not designed to be used as formal test of hypothesis (Hadi, 

1992). Now-a-days the major statistical packages like BMDP, SPSS, SAS, MINITAB, R etc. avail the values of some 

outlier diagnostics which make the use of those diagnostics much wider. But the usage needs some proper guidelines 

regarding the benchmark value. In this paper we try to critically examine those conditions with the help of simulation 

study. We shall use a few combinations of  (   )  to assess the performances.  

 

2. MEASURES OF INFLUENCE 

The inclusion or exclusion of a point often make some change either in the estimated regression parameters or 

fitted values. Thus the influence of any point in a model is measured in terms of the change that occurred when that 

suspicious point is omitted from the model. Considering the linear regression model with intercept in matrix form  

                                                        ( )                                                               

where      is the response vector;   (   )  (   )        with         is the design matrix;  (   )    is the vector of 

parameters and     (     )  .With the fulfillment of the major assumptions concerning the model (1) the ordinary 

least-squares (OLS) regression yields the best linear unbiased estimate (BLUE) of the regression parameters. Those four 

assumptions are (i) Linearity at least approximately of the response with the predictors ; (ii) Independence nature of 

errors ; (iii) Equal error variance     (iv) Normality of the errors [3]. The least squares estimate (LSE) of β is given by 

  (   )     
 
 and the vector of fitted values as  ̂    ̂     where    (   )    is the hat (weight or 

projection) matrix. Here   maps the vector of observed values into a vector of fitted values [1]. Thus the vector of LS 

residuals becomes ̂     ̂  (   ) . The different types of measures with their usual cutoff are as follows. 

 

2.1. Cook’s Distance  : Cook (1997) proposed a measure using the information from the studentized residuals and the 

variances of residuals and predicted values. Denoting the LSE of    without the i
th 

observation as  ̂(  ) the statistic is 

given by- 
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Where    is the studentized residuals defined by      [ (     )
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,
 and             is the estimate of the error 

variance. Here    combines residual magnitude and the location of the i
th 

 point in  X-space to access influence. 

Since  ̂(  )    ̂   ̂(  )   ̂, we can write 
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                      ( ) 

        Removal of the i
th 

data point should keep the  ̂(  )close to  ̂  unless the point is an outlier.    as influence measure 

is based on confidence ellipsoid whose centre is at  ̂  . Thus    is the squared Euclidean distance that the vector of 

fitted response moves when the i
th 

observation is deleted. Or in other words we can say that    examines the changes 

occurred in estimates for  ̂   when some cases are deleted. This is the basic idea in influence analysis as introduced by 

Cook [3].      is based on a scaled Mahalanobis type squared distance between  ̂ and  ̂(  ). Stevens (1984) suggested 

the use of    after having some signal of outlyingness from large hat diagonals (Mahalanobis distance) and studentized 

residuals [15]. Jensen and Ramirez (1998) established the effectiveness of Cook’s statistic with the use of eigen values 

as well as associated  -values [12].  

 

Cook and Weisberg (1994) suggested the use of the median of F-distribution with (   )and (     )degrees 

of freedom as a benchmark for identifying the influential subset. In another piece of work Muller and Mok (1997) 

showed that if we use the above benchmark then the test size will systematically and rapidly decrease with   . Ideally 
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cut off point should allow consistent interpretation across regression analysis. But the median or any other quantile of 

 (         ) , does not allow us such consistency [11].   

 

2.2. COVRATIOi,: This measure uses the concept based on the role of the  i
th

 observation on the precision of 

estimation and it is defined by 

          
|( (  )
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Here COVRATIOi >1 indicates that i
th

 observation improves the precision of estimation and  COVRATIOi <1 

indicates degradation. Belsley et al. (1980) recommended that the i
th

 observation is influential if {   (   )   +  
          *   (   )   [1]. 

 

2.3. DFFITSi, : It is a measure of influence introduced by Belsley, Kuh and Welsch (1980), which measures how the 

deletion of the i
th

 observation influence the predicted or fitted values [1]. It is given as 

        ( ̂   ̂(  )) √ (  )
    ⁄                    ( ) 

        (
   

     
)
   

                                    ( ) 

The rule of thumb is that an observation for which  |       |   √(   )   warrants attention. Vellman and 

Wesch(1981) suggested that |       | values greater than 1 to 2 warrant special attention.          is affected by 

both leverage and prediction error [1].  

 

2.4. Hat matrix diagonals as a measure of influence: 

The fitted response is a linear combination of the observed response values and elements of hat matrix. Thus 

 ̂        ∑          indicates how heavily   contributes to ̂  via   . Cook and Weisberg (1982) say that ―for any 

     ,   ̂  will be dominated by       if    is an outliers [4]. The hat matrix plays an important role for detecting 

influential observations as it determines the variance and covariance of residuals *   (  )   
 (     )+  and that of 

fitted responses *   ( ̂)     +. The elements     may be regarded as the amount of leverage (impact/influence) 

exerted by the i
th 

observation on the i
th 

fitted value. The diagonal     is the standardized measure of the distance of the i
th 

observation from the centre (or centroid) of the X-space [6]. Generally   ⁄         with an average value    ̅̅ ̅  
     ( )

 ⁄  
(   )

 ⁄   and the data points with      (   )    may be regarded as outliers in X-space [3]. 

Larger the value of    , smaller is the    (  ). So large leverage will lead to the closer fit of  ̂  to   . Leverage reflects 

the position of an observation in the multidimensional space of the carriers or predictors [17]. In extreme case      , 

the error variance becomes zero. That’s why a point which is located extremely in the  -space may not always 

influential unless it has an unusual value in  -space. Another guideline is that          indicate very high leverage, 

whereas             indicate moderate leverage. Additional evidence of an outlying case is the existence of a gap 

between the leverage values for   most of the cases and the unusually high leverage value(s) [5]. 

 

2.5. Atkinson’s   (Modified
 
   ):  

To incorporate the deletion effect on variance estimate Atkinson (1985) modified    by replacing    by  (  )
   and 

scaling by a factor (     ) (   ) instead of   (   ) and then taking the square root . As a result the modified 

Cooks measure becomes  
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          √(     )                      (9) 

 

The above measures Cook’s   ,         and Atkinson’s    tells us parallel stories for most sets of data [4].  

Draper and Smith suggested using these according to the user’s preferences.  

 

2.6. Potentials: Hadi (1992) found that if there is a high leverage point then the information matrix might have broken 

down and consequently the observations may not have the appropriate leverage. He introduced a single case deleted 

measure of leverage known as potentials defined as 

 

      
 ( (  )

  (  ))
  
   

 

where  (  ) is the data matrix with i
th

 row deleted. Its relationship with hat diagonals is given by          (     ). 

Those observations with very large potentials are considered as high leverage points [16]. Hadi suggested using the cut 

off as   

    (   )          (   ) . Here   is a constant appropriately selected such as 2 and 3. Also realizing the fact that 

mean and s.d. are non-robust even for one extreme observation, Hadi suggests using median and median absolute 

deviation (MAD) respectively.  

 

2.7. Peña’s statistic: This statistic measures the influence of an observation by the rest of the data. Peña suggested that 

instead of examining the overall effect on the vector  ̂due to deletion of one observation we can measure how the 

deletion of each sample point affects the forecast of a specific observation separately [10]. In regression model, it can be 

done by considering the vectors  
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The proposed statistic at the i
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 observation is defined as the squared norm of the standardized vector   , that is, 
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where    is the Cook’s distance and     √(   
        )    is the correlation between the forecasts  ̂  and  ̂ . Thus    

is a linear combination of Cook’s distances and it has some important properties: (i) in case of outlier free data and 

small hat diagonals  (  )    (   ); (ii)    approximately follows normal distribution; (iii) in the presence of high-

leverage identical outliers, the sensitivity statistics will identify them and    will be smaller for the outliers than for the 

good data points [10]. 
 

3. SIMULATION STUDY 

Here we are comparing the above measures using Monte-Carlo simulation study. The linear model (1) can be 

written as follows as a way to model the outlier which is known as mean shift outlier model. 
 

                                                        (  )     
    

where   is an     vector consisting of  (  )
 
unknown non-zero values, at   suspicious locations and having zeros 

elsewhere. Also for simplicity we consider    as the resultant contaminated vector having two components from 

response and predictor space outliers, i.e.,        . For a hypothesized value of   there are ( 
 
) partitions of the 

data and out of that (
   
 
) will have clean data and ( 

 
)  (   

 
)  will include the outliers. Without any loss of generality, 

the   ’s for osbservations other than planted outliers are generated as  (   )  random variables. The outliers are 

introduced by adding known quantity to the first   of these variates. The explanatory variables are constructed by 

generating independent uniform (   )  variates. The residual correlations resulting from such a set of explanatory 

variables are expected to be fairly small, and therefore the test procedure is expected to perform in optimal way. The 
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results of the study are based on 1,000 simulations. The power comparisons were made in such a way that for    

sample size,   number of outliers, c1= number of times the statistic detects outliers and c2= number of times the 

statistic exactly detects    outliers; the performance are being measured as the quantity c1/(Total number of repetitions 

× number of outliers). Also if the statistic is free from swamping and masking effect then its actual performances are 

being obtained by the quantity c1/(Total number of repetitions × number of outliers). 
 

 

Table 1:  Empirical performances of different influence measures for various combinations 

(     )   k 

          

(   ( 

  )  ) 

        

( √(   )  ) 
   (

 (   )

 
) 

    

(        ) 

   

(       ) 

  (   ) 

(5,5) 10 2 1.747 0.732 0.3015 0.162 0.972 0.0105 

(5,5) 15 2 1.673 0.839 1.112 0.7665 1.4125 0.1355 

(5,5) 20 3 1.2833 0.6273 1.0497 0.4997 1.2867 0.1877 

(5,5) 25 4 1.1195 0.5115 0.9475 0.3883 1.2255 0.2013 

(5,5) 30 4 1.2022 0.575 1.0965 0.635 1.4418 0.2765 

(5,20) 10 2 1.7335 0.7505 0.2955 0.055 1.0415 0.015 

(5,20) 15 2 1.6885 0.851 1.112 0.9315 1.541 0.1375 

(5,20) 20 3 1.2977 0.631 1.085 0.4897 1.4647 0.186 

(5,20) 25 4 1.1183 0.5175 1.0818 0.347 1.3923 0.2048 

(5,20) 30 4 1.2148 0.579 1.0958 0.685 1.6753 0.2852 

 

 

Table 2:  Empirical performances of different influence measures detecting exact number of outliers for various situations 

(     )   k 

          

(   ( 

  )  ) 

        

( √(   )  ) 
   (

 (   )

 
) 

    

(        ) 

   

(       ) 

  (   ) 

(5,5) 10 2 0 0 0 0.0005 0.0005 0.0135 

(5,5) 15 2 0 0 0.0005 0 0 0 

(5,5) 20 3 0.0003 0.0003 0.0003 0 0 0 

(5,5) 25 4 0.0003 0 0 0 0 0 

(5,5) 30 4 0 0 0.0003 0 0 0 

(5,20) 10 2 0 0 0.0015 0.0165 0.0005 0 

(5,20) 15 2 0 0.0005 0.0005 0.0005 0 0.004 

(5,20) 20 3 0 0.0003 0.0003 0.0003 0 0 

(5,20) 25 4 0.0003 0 0.0003 0.0003 0 0 

(5,20) 30 4 0 0 0.0003 0 0 0 
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. RESULTS AND DISCUSSION 

 

 

 

 

 

4. RESULTS AND DISCUSSION 

The resulting empirical powers are given the tables 1and 2. Here the first five rows corresponds to low leverage 

outliers and rest of the rows represents the high-leverage outliers. For the low-leverage outliers in both predictor and 

response space we see that COVRATIO and Pena’s Statistic performs better than the others, especially better than 

DFFITS. Here we have not presented the performance Atkinson’s    as it is the scaled version of DFFITS. As sample 

size and number of outlier increases Pena’s measure can indentify more outlier than the others. Although Pena’s 

statistic does not show any monotonic change either increase or decrease in its power as the combination of  ,  , and δ 

changes. But the performance of COVRATIO falls down for large   and    . Cooks distance gains the least power 

among the others, but its detection power increases as n and k increases. But if we consider the cutoff for Cook’s 

distance as 1 then there were no detection of any observation as outlier. The detection performance is based on the 

cutoff   . Regarding the performance of hat diagonals we observe that its performance does not increase for the high-

leverage outliers. Now if we take into account of the swamping and masking effects then we see that only two of the 

statistics are relatively better than others. Table-2 indicates that the hat diagonals and the Potentials may be considered 

to lessen the masking and swamping effects. While the Cooks and Pena’s statistics are very poor in exact detection of 

outliers. 
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5. CONCLUSION 

On the basis of the simulation results we conclude that for large sample with k>>1 COVRATIO and Pena’s 

statistics seems to be suitable to track down outliers. While Pena’s statistics is more reliable than COVRATIO to 

overcome masking and swamping effects. For high-leverage outliers DFFITS can be useful to detect outliers when 

sample size is moderately large. Also hat diagonal remains the only alternative to locate the outliers when outliers are in 

predictor space. Above all one noticeable result was that instead of using the ambiguous cutoff the best way locate the 

outliers is to examine the index plots of each statistic (or residuals) against the observation numbers. The plots like 

         vs. ,      vs.  , etc. are useful to identify the influential observations. 
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