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Abstract: In this paper models with transaction costs for pricing of European options using mixed fractional Brownian motion (fbm) 
and Partial differential equation (PDE) model are considered. Investigation on price sensitivity to volatility and formulation of 
asymptotic strategy for replicating self financing assets are also made. Simulation experiments for the models are run to obtain the call 

and put prices using fbm with Hurst parameter 1
3H   and the Crank-Nicolson method for the numerical solution to the PDE model. 

It is found that stock prices increase with time to maturity dates, whereas, the call prices decrease steadily as time approaches maturity 
dates in conformity with theta hedging strategy. 
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1. INTRODUCTION  

The Black-Scholes Model (BSM) is the most popular model for pricing financial derivatives. The model has been 
found to be inconsistent with empirical features of financial return series such as non independence, nonlinearity, etc. 
([1], [2], [3], [4], [5] & [6]). The crux of assumption for deriving the Black-Scholes Model (BSM) was that the market is 
complete, that is, investors do not incur transaction cost in the trading with a risk-free asset (bond with constant return) 
and a risky asset (stock).Moreover, the price is governed by a geometric Brownian motion with constant rate of return 
and constant volatility ([7], [8] & [9]]). 

Furthermore, using the BSM the value of an option, in the absence of arbitrary opportunity, is the expectation of 
discounted payoff at maturity time with risk-neutral measure in which the stock rate of return equals the risk-free rate. 
The question most researchers often asked is whether it is possible to replicate an option with transaction cost without 
involving some risks ? In some trading in options element of risks have been found to be essential (see Figlewski [10]). 

Transaction costs in organized markets are often assumed to be absent, but in the over the counter trades (OTC) for 
pricing of exotic options, transaction costs are involved in the trading. BSM which forms the basis of most financial 
calculators no arbitrage opportunity and no transaction cost are the fundamental assumptions for the trading. In practice, 
a transaction cost needs to be taken into consideration for accurate for pricing of options especially European call and put 
options. Figlevski ([10]) demonstrated that even in discrete-time model, transaction cost is a substantial factor in hedging. 
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There are three general methods for calculating transaction costs. A transaction cost: i) is calculated as a percentage 
of the underlying security; ii) is a fixed charge for each shares; or iii) is a single flat fee charged regardless of the number 
of shares. Transaction costs are sometimes calculated as combination of these three methods ([1], [11], [12], [13] & [14]). 

We will not look at ways the transaction costs are charged, but will focus on models with transactions cost as a 
percentage of the underlying security. In a finite state market, the fundamental theorem of arbitrage has two parts. The 
first part relates to existence of a risk neutral measure, while the second relates to the uniqueness of the measure (See 
[15], [16] & [17]): 

1) The first part states that there is no arbitrage if and only if there exists a risk neutral measure that is equivalent to the 

original probability measure. 

2) The second part states that a market is complete if and only if there is a unique risk neutral measure that is equivalent 

to the original probability measure. 
The fundamental theorem of pricing is a way for the concept of arbitrage to be converted to a question about whether 

or not a risk neutral measure exists. 

The fundamental theorem in more general markets when stock price returns follow a single Brownian motion, there is 
a unique risk neutral measure. When the stock price process is assumed to follow a more general semi martingale process 
(see [15], [18]), then the concept of arbitrage opportunity is too strong, and a weaker concept with vanishing risk must be 
used to describe this opportunity in an infinite dimensional setting. 

There are several interesting models for pricing and hedging of European options in literature we will only consider 
some selected few ones relevant to our study. We note that, Leland [18] used relaxation effect to derive an option price 

that is equivalent to BSM but with modified volatility   
1
2^

21
t



 
 


   .where     is the original volatility,    is 

the proportional transaction cost and  t   is the transaction frequency. In this formula, both     and  t   are assumed to 

be small while keeping the ratio  / t    at order of one. 

We note that the replication of a European option with transaction cost was proposed by Xiao et. al. [6]; Lai and Lim 

[19] in the limiting  ,t   showed that the replication price approaches the super replication price of the option plus the 

liquidation value of the initial endowment (see [6] & [20]). 

Zakamoaline ([13] & [21]) considered utility based option pricing and hedging problem in a market with both fixed 
and proportional transaction costs. Simulation comprising of the performance of the utility based hedging strategy against 
the asymptotic strategy was made. 

Furthermore, the problem of delta-hedging portfolio of options with transaction costs was considered by Les and 
Steward ([22]) and results obtained by maximizing expected utility (or minimizing a cost function on the replication 
error). 

David ([2]) gave an in-depth review on the use of fractional Brownian motion for pricing European options and 
Delbaen and Schachermayer [23] studied the European option pricing with transaction cost by the use of stochastic 
volatility and obtained results on replication of options using asymptotic analysis. 

Many financial instruments are being developed in the recent times for pricing options. Therefore, this paper 
considers models with transaction costs which are driven by the mixed fractional Brownian motion which may be used 
for pricing European exotic options. 

Simulation experiments would be run for hedging the cost for a self-financing trading strategy and replicating a 
portfolio using fractional binomial motion(fbm) would be made ([24]&[25]). We will also consider a trading strategy 
using a PDE model with transaction cost and make use of the Crack-Nicolson scheme to derive numerical solution to the 
PDE model. 

Simulation experiments would be carried out to obtain the call and put prices for European option using the fbm with 

Hurst parameter  1

3
H   . Moreover, the modified BSM of Leland type with variable volatility and the transaction cost 

will be used to price the European option couple with the investigation on price sensitivity to volatility. Finally, the 
asymptotic strategy for replicating self financing assets will also be considered. 
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2. PRELIMINARY DEFINITIONS AND NOTATIONS 

Notation 

 
maxS   boundary value for asset with spot price  ( )S t    

    constant volatility  

 
_

   
variable volatility  

 sgn( )   transaction cost  

 
H   fbm volatility  

 k   index number  

 t   discrete step of time  t    

 0S   initial asset price  

 K   strike price  

 r   risk free interest rate  
 q   Dividend  

 x   discrete step of space  x    

 
: 0 : 0.01 : 0.15x   

range of  x   such that  0 0.15,x   using step size 0.01   

 [ , ] 1C P BSA   Matlab Code for computing call and put prices  

Remark 1 

We will make use of the denotation  1BSA   to invoke the code in the Matlab library for computing European option 

price using the BSM in the Matlab Financial Tool Box. 

 1 ( 0, , , , , ); ;BSA blsprice S K r T sigma q sigma    

That is  
_

1 ( 0, , , , , ); ,BSB blsprice S K r T sigma q sigma    this does same computation as  1BSA   except that the 

constant volatility has been replaced by variable volatility, i.e.  
_

.   

If we introduce a counter  x   into  1BSB   we can compute prices with respect to changes in volatility by making use 

of: 

 2 ( 0, , , , , );BSA blsprice S K r T sigma x q    

Here  sigma    and  x   is the counter to be used. 

 2 ( 0, , , , , );BSB blsprice S K r T sigma x q    

We will take  
_

sigma    when pricing with variable volatility. 

| | is the transaction cost. 

Definition 1 

Measure to reduce or eliminate an exposure to risk is referred to as hedging. The term hedging an exposure and 
hedging a risk are used interchangeably. 

Definition 2 [26] 

Liquid Assets are assets which are themselves money, or can be converted into money with minimum delay and risk 
of loss .Short -dated marketable security e.g. treasury bills .Liquidity is the property of having liquid asset. 

Definition 3 

Let  ( )ih t   denotes the number of stocks with number  i   in the portfolio at time  t   and  ( )iS t   the price of  i   

stock in a frictionless market with continuous time  
1

( ) ( ) ( )
n

i i

i

v t h t S t


   then the portfolio is said to be self-financing if  

1

( ) ( ) ( )
n

i i

i

dv t h t dS t


   is it replication and they have same cash flow (Static) or dynamic replication with different cash 
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flow but same Greeks .A market is complete if and only if there is a unique martingale measure to model the behavior of 

the asset. 

3. STATEMENT OF PROBLEM 

3.1 Fractional Brownian motion 

Fractional Brownian motion (fbm) was introduced by Kolmogrov [27] and studied extensively by Mandelbrot and 
Van Ness ([25]). 

A Gaussian process  { , 0}H H

tB B t    is called fractional Brownian motion (fbm) with Hurst parameter  (0,1)H    

if  
2 2 21

2
{ } 0, { , } ( , ) | | .H H H H H H

t t s tE B E B B R t s s t t s      H

tB   can be obtained from integral representation as 

(see [2]) 

1 1
2 2

0

1
[( ) ) (( ) ) ]

( )

H HH

t sB t s s dw
C H

                                                             (1) 

Where  { ( )w A  is a borel sunset }   of  R   and it is a Brownian measure and  

1 1
2 2 2

0

1
( ) ((1 ) ) )

2

H H
C H s s ds

H


 

 
    

 
                                                                               (2) 

The equation (1) was obtained by Mandelbrot and Van Ness in [25].If  1

2
H    then  1

2

( , ) min( , ),R t s s t  therefore  

H

tB   is the ordinary Brownian motion; generally, 

 2 2(2 )!
( ) | |

!2

H H k k

t s k

k
E B B t s

k
                                                                                     (3) 

Fbm is said to have stationary increment in the interval  [ , ]s t   if it has normal distribution with  { } 0H

tE B    and  

 2 2( ) | | .H H H

t sE B B t s     

Remark 2 

 
H

tB   is generally a self similar process in which ,for any  0, H H H

ct tc B c B    for  . H

tt R B   is stationary since it 

has the property that  ~H H H

t s tB B     implies  12
1 2 ( 1)2
| |~ (2 )H H

n n

n pHn
j j j

B B 


 

  as  n   .The order of 

variation of  
H

tB   is in fact  
1p H    and zero if  

1p H   .This is only consistent with semi -martingale behavior 

if  1

2
H    for more study on fractional Brownian motion (fbm)(

_

 see[2],[6],[24]&[28]). 

The mean self financing delta hedging strategy in a discrete-time setting was considered by Leland [18] by the use of 

the fundamental equation of asset with variable volatility .We will consider the continuous version wherein we will allow  

0S   . Hence we have a continuous stochastic differential of the form 
2_

2
2

2
0

2
t t

t t

C C C
rS S rC

t S S

  
   

  
                                                                        (4) 

Where the modified volatility (see [18]) is given by 

2_
2 2 2 1 2 2 22

( ) ( ( ) )sgn( )H H

H Ht k t
t


     

 

                                                                                                       (5) 

 

( , ) ( max( ,0))                                                                                                                                                             (6)

( )
1

Q rTC t S E e S Kt T

r
S N d Ket

 


 

( )
( )                                                                                                                                                          (7)

2
T t

N d

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And 
2

2| |
t

C

S




  is the transaction cost .If  0    and  0t    then the problem is ill-poised, but     is always positive 

for the simple European option with no transaction cost. When there is transaction cost, the model becomes the standard 

BSM with modified volatility. 

In the equation (7)    is volatility of the market using fbm method and it includes the transaction cost. When  1

2
H   

and  0   , the modified volatility  
_

   , that is, the model becomes the BSM. 

The European option call price under this dispensation is  

Where  

2_

2

2_

2_
ln( ) ( )( )

1 2 1,
St
K

r T t

T t

d d d T t





  



      

And  
2

_
2 2 2 1 2 2 22( ) ( ( ) )sgn( ) .H H

H Ht
t k t

 
             

 (.) ~ (0,1).N N   

Xiao et.al. [6] Showed that the minimum price of an option with transaction cost is  

Such that 

min min ( , )                                                                                              (8)

Subject to ( , ) max( ,0)                                                          

t

T T

C C t S

C T S S K



 

( )

1 2

                               (9)

( , ) ( ) ( )                                                       (10)r T t

t tC t S S N d Ke N d  

 
Stochastic calculus with respect to Wick integral was used to derive the fbm analogue of the BSM (see [2]) as  

Where  

2_
2 2( )

2

2_
2 2

ln( ) ( ( ) )

1, 2 .
H HS T tt

K

H H

r T t

T t

d





  



   

3.2 Replication of portfolio with self financing 

Let us consider an European call option in which an investor invested in stock with strike price  K   and maturity at  

T   , with mean risk of return  0r    and volatility  0.   By BSM we have the following stochastic differential 

equation 

    t t t tdS rS dt S dw                                                                                   (11) 

Where  { , 0}tw t    is a standard Brownian motion with no transaction cost 

Let  0( )t tx    be a continuous process which admits the following decomposition 

t t tx L M                                                                                                                                                                   (12) 

Where 
tL is increasing in t and it is a deterministic process and 

tM is martingale process. 

Now consider the portfolio with transaction cost such that (see [29])  

                                                                                                                                                                     (13)

    

t t t

t t t t

dx dL dM

dy ry dt aS dL

 

                                                                                                                                                            (14)
 

Where 

 tx   Is the number of share held in stock, ty   is the number of share held in bonds and  0r    is a fixed risk-free rate 

with  1a     and  1 ; , [0,1]b        ,    is the cost the investor pays in the purchase of the underlying stock 

while     is paid for the sale of the underlying asset. 

Let 

( ) ( )( , , , )

T T

r T u r T u

u u u u

t t

L M t T a e S dL b e S dM       

Such that 

( , , , ) ( , , , ) ( , ), 1,2,3i i

T TC L M t T L M t T z S X i                                                                                (15) 

Therefore, ( , , , )iC L M t T   is the total cost with the transaction cost incur over  [ , ]t T   and  ( , )i

T Tz S X   is the 

liquidity value of the stock for the share at maturity  TS  . 

The terminal wealth of the investor is  
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( )( , ) ( , , , )i i r T t i

T t T T ty z S x y e C L M t T                                                                                                          (16) 

Where  
ty   denotes the initial wealth at time  t  . The hedging cost is the difference between the terminal value of 

the initial wealth and the terminal wealth. 

3.3 Replicating a self- finance portfolio with transaction cost 

We will replicate a European option with transaction cost using strategies proposed by Xiao et. al.  [28]. 

Consider a portfolio at the current time t  as follows  

1 2( ) ( )t t tX t S X t D                                                                                                                                                 (17) 

Where
1( )X t  is the number of shares bought at time t, 

2 ( )X t  is the number of bonds bought at time t,  and t tS D are the 

shares and amount spent on the bonds at time t respectively. 

3.4 Numerical solutions 

Partial differential equations in continuous form can be approximated by discrete finite difference scheme (FDS).FDS 
of option pricing are numerical methods used in Mathematics of Finance for the valuation of option. We will make use of 
FDS to transform the continuous PDE into discrete algebraic equation and then solve the equation to obtain the 
approximate solution to the PDE. 

We discretize the continuous data  ( , )S t   by discrete data  ( , )i jS t   such that: 

 max0, ,2 ,...,S S S M S S      

 0, ,2 ,...,t t t N t T      

Therefore, max ,
S T

M N
S t     and  , ( , )i jC C i S j t    the grid nodal points. In the nodal diagram in the Fig.1  

( , )i j   represents the computation at  ( , ), 0,1,..., , 0,1,..., .i S j t i M j N      

Boundary conditions 

For Call option  ( , ) max[ ( ) ,0]C S T S T K    

For very large  
max( ), ( , ) 0.S T C S t    

The PDE is discretized at each value at each lattice point is specified as a function of value at later and adjacent point 
see the nodal diagram. 

 

Figure 1: Nodal diagram 

3.5 Cranck-Nilcolson method 

Crank-Nicolson method (CNM) is based on central difference scheme in space and the trapezoidal rule in time with 
second-order convergence with time. The choice of CNM for our study is because it is efficient, it saves CPU time, has 

less absolute error and it is unconditionally stable. The errors of approximation for CNM is of order  
2 2~ (( ) ( ) )o x    

where     and  x   are time and space discretization respectively. The CNM we will consider will include the 

transaction cost in the variable volatility function in the equation (7). The model can also be studied by including the 
transaction cost in the PDE but the volatility must be constant. 

If we apply Cranck-Nilcoson method to the PDE above we have 

1
2

2

1 2

2

( , ) ( , ) ( , )
( )

j j j
C S t C S t C S t

o S
tt




 
 

 


                                                                         (18)  
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We will make use of  

1
2

2 2 2

1 2

2 2 2

( , ) ( , ) ( , )1
( )

2

i j i j i j
S x t S x t S x t

o S
x t t


 

   
   

    

                                                                                          (19) 

By the central approximation for differentiation with respect to  t   in  1
2

( , )i j
C S t


  we have 

1
2 1 2

( , ) ( , ) ( , )
( )

j j j
C S t C S t C S t

o t
t t




 
 

 


                                                                                                              (20) 

 
( )

,(0, ) , max[ ,0]r T t

i NC t Ke C K i S      

 
( )

0, , 0,1,2,...,r N j t

jC Ke j N     

 , 0, 0,1,...,M jC j N    

4. RESULTS 

The solution to the equation(1) by the use of Ito formula which is a standard result in the literature is  
2

0 2
exp( ( ))tS S rt t w t      where    is the ordinary Brownian motion, r   is risk free interest rate and     is the 

constant volatility([33]). 

Let us replicate a portfolio using fbm realization then the solution to the equation (11) is 

2
2

0 exp( )
2

H H

t tS S rt B t


                                                                                                        (21) 

Where  
H

tB   is fmb with Hurst parameter  H   , r   is the mean rate of return and  0    is the constant volatility .If  

1

2
H    we note that the original BSM can be recovered from the fmb version. The spot price of an asset using fbm form 

is, therefore, given as  
2 2

0 2
exp( )H H

t tS S rt B t    . Where 0S the initial stock price is ,K   is the strike price , r   is 

risk free interest rate ,T   is the expiration time or the maturity time,  sigma        is the volatility of the market and    

is the transaction cost. 

Back to the equation (14), the stochastic differential equations with initial wealth at time  t   using the fmb realization 

is given as 
2

2

0 exp( )
2

H H

t t t tdy ry dt aS rt B t dL


                                                                                      (22) 

And the terminal wealth of the investment can be calculated to be 

( ) ( ) ( )

( , )

T T

i r T t r T u r T u

T t u u u u

t t

i

T T

y e a e S dL b e S dM

z S X

     



 
                                                                (23) 

             

The European option can be price with transaction cost ( sgn( ) 0   ) or with no transaction cost (i.e.  sgn( ) 0   ). 

The simulation experiments carried out in this paper are done using Matlab codes. We start our simulation with the 

Black Schole Model (BSM) for  0 30,S   take  1 0 , 1, 40, 50, 0.1k k kS S S S k K r         and  0.02   . In the 

Fig.2a we have the plot for  .Then we have the plot in the Fig.2b below: 
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Figure 2a: Fractional Brownian motion 
1

3
H   

Fig.2b shows how Stock price changes as time approaches maturity times .Fig.3 is the simulation of stock price using 
the fbm 

 

Figure 3: Stock price using binomial motion 

 

Let us consider replicating a portfolio using fbm realization then solution to the equation (1) (see [2]) is  
2

2

0 exp( )
2

H H

t tS S rt B t


   where  
H

tB   is fmb with Hurst parameter  H   , r   is the mean rate of return and  

0    is the volatility .If  1

2
H    we note that we recover the original BSM from fmb ([14]). The plot of graph of  

2 2

0 2
exp( )H H

t tS S rt B t     using  0.33, 0.24, 0 100, 0.02H S r      and  1000N    is in the Fig.4. We 

observe also that stock price by the use of fbm realization increases with time to maturity time. Moreover, the call price 

decreases steadily as time approaches maturity in conformity with theta hedging strategy (i.e. the theta must always 

negative). 

Let  90K    naira and  0.02r    then the call price of the stock using fbm as time approaches maturity is shown in 

Fig.4. 
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Figure 4: Call price for stock using fractional binomial model 

 

Let us consider a portfolio such that  

rt

t t t tx e y S                                                                                               (24) 

Where  
tx   and  

ty  are stochastic processes and  
tx   is describing the number of stocks owned by the investor at 

time  t   and  
ty   is the number of bonds owned by the investor at time  t   . 

The portfolio is self-financing if  

0

0 0

t t

rs

t s s sr x e ds y S ds                                                                                                                                         (25) 

This means that there is no fresh investment and there is no consumption if  ( , ) 0,tR t s    that is  

, 1

( , ) 0i j t i j

i j

a a R t s


   for any sequence of real-numbers { }, 1,2,3,..., .ia i n  By definition ,an arbitrage is a self-finance 

portfolio which satisfies  0 0, 0T      and  ( 0).TP    Fig.5 is the call prices as time approaches maturity times for 

various values of  .  Other parameters used in the simulation in the Fig. 5 are the same as in the Fig.4 except     is 

changing. 

 

Figure 5: Call price as time approach maturity times 
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Fig.5a, 0.025,   Fig.5b , 0.030,   Fig5.c , 0.035    and Fig.5.d , 0.035.    

 
Figure 6: Option prices using constant volatility Black Schole model 

 

We have simulated the BSM with modified volatility using the Matlab code  2BSB   and  2BSA   . Therefore, for  
_

00.350, 0.070, 52, 50, 5 /12, 0, 0.625,r K S T q          

 0.333, 0.667HH     and  sgn( ) 0.500    the call price and put prices were found to be  4.2715C    and 

4.7768P  respectively.  Using increment of  0.01x    and volatility lying between  0   and  0.15   we have the graphs 

of stock price against volatility in the Fig.6, the blue curve is the call prices while the red star curve is the put prices. The 
Fig. 8 gives the graph of option price against volatility. 

 

Figure 7: Graph of option price against volatility 
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Figure 8: The function Q (t) with transaction frequency 

The Fig.9 gives corresponding graphs using variable volatility model with transaction cost using the Avellaneda and 

Paras function  ( )Q t   when  0.2, 0.34     and  0.01 1, 0.1.t stepsize     we observe that  ( )Q t     is a 

concave and increasing function with respect to transaction frequency. Avellaneda and Paras function gives a clue on 

how develop a modified volatility function which should be concave and increasing with transaction frequency .We can 

easily check that  
_

   has the two properties. 

Now, let us study how variability in stock will affects portfolio using asymptotic strategy. First of let us assume that  

3/2| | (( ) )H

t tB o t    ([6]&[13]) which will then implies that  0H

t

B

B




   as  .t   Base on the assumption on  

| |tB   we will derive asymptotic formula for  tS   from variability on portfolio  t   using mixed fmb and the modified 

volatility. It is not difficult to show that  

3
2
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  

  
                                                             (26) 

Therefore 
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2 1( ) (( ) (log( ))
2

Ht

t H t

S
B B o t t                                                                (27) 

Therefore the change in the value of the portfolio is  

1 2 1( ) ( ) | ( ) |
2

t t t t

k
X t S X t D X t S                                                                                      (28) 

Where the transaction costs of the rehedging over the interval is equal to  12
| ( ) |k

tX t S   .Therefore hedging order of  

1| ( ) |X t   is 
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Hence equation (28) becomes 
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1

1 2

2 1
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                                                                        (31) 

But  
_

H

t t tdS rS dt B     hence 

_
1
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                                                                                     (32) 

Therefore 

 
3
22 2 2 1( ) ( ) ((( ) (log( )) )H

t t H tt S B B o t t           

Thus 

  
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2 ( ) log|(( ) 1)|2 ,
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
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    
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 Valid for  2.71.t e    Using the asymptotic formula for  

tS   above, for  0.350, 0.667, 2.80, 0.02H tt B         and  0.015H

tB   , we get  164.7.tS    

Now let us consider the nonlinear BSM in the partial differential equation (PDE) form .In order to have a numerical 

stable solution to the model, the Crank-Nicolson method was made use of. Moreover, equations (4-6) were used to 

convert the PDE into matrix form as follows: 

0j

iAF b                                                                                                   (33) 

Where 
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2 2( ) 2 ( )

1 1 max2
[1 ( 2 )], [0,..., ( )]r T t i j j j r T rrN N

i i ie a i F F F b s Ke   
         

Where  ,a N     is risk aversion factor, N   is the number of option to be sold and     is the proportion of 

transaction cost. Using the equation (33) the simulation to the PDE was obtained. For  

0.350, 0.33, 0.67, 50HH K       , 2.8, 0.02tt B     and the transaction cost= sgn( ) 0.500      using 

the variable volatility formula in the equation (22) we found that  
_

4.1767.   Using the values  

0 max0.070, 50, 5 /12, 200, 0, 2r S T S q N        and the CNM. The call price was found to be 41.073.   

5.   CONCLUSIONS 

The pricing of European options with transaction cost using mixed fractional Brownian motion and the PDE model 
have been considered. The Crank-Nicolson scheme was used to obtain numerical solutions to the PDE model by pricing 
the European options with transaction cost. Asymptotic formula for stock price is derived using the mixed fractional 
Brownian motion and simulations are made for the models at various scenarios. 

The pricing of a European option with transactions cost can be treated as correction term in the BSM, as mentioned 

above, the BSM has limitation in describing the real market behavour. Hence models with transactions cost and 

stochastic volatilities offer accurate models for pricing options. Modeling and simulation with transaction cost have 

several interesting aspects such as option pricing via utility maximization and pricing using mean-reverting stochastic 

volatility which this paper did not cover. Option pricing in the presence of transaction costs can also be based on an 
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optimal portfolio approach. Approximate replication schemes are noted to work well for small levels of transaction 

costs, but they cannot cope with larger values of transaction costs. Further research work can be extended to these 

aspects. 
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