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Abstract: It has become imperative in statistical inference to seek beyond the widely practiced squared loss function to 

accommodate the asymmetric conditions. An attempt in this direction is generally model-specific and the present work has 

considered inference on count data, as one such model of importance. In particular, the objective is to study the performance of 

Bayesian estimators for Poisson parameter based on four well established loss functions. The explicit forms are derived and a 

comprehensive data analyses has been carried out through a simulation study. The study highlights the distinct behaviour of each of 

the methods to make an appropriate choice based on the small sample behaviour of the data sets. 
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1. INTRODUCTION 

Estimation of parameters in discrete distributions has witnessed active research debate and discussion; yet it provides 

ample scope to pursue research for a better understanding and conclusion [7, 10, 14, 15].  This is true in the case of 

Poisson distribution that has been widely accepted for count data models, especially to rare events. Sample mean has 

been considered as the most celebrated unbiased minimum variance estimator for Poisson parameter in frequentist 

approach. However, limitation of this simple statistic is in terms of robustness in that a single value can skew the mean 

and many standard statistical texts [1, 6, 8] have addressed this problem.  
 

The problem of statistical inference beyond unbiased estimators is also well discussed in the literature [3, 9, 13, 23]. 
Generally, mean squared error or loss function optimality and Bayes risk are considered as major evaluation criteria in 
comparison of estimators. This paper is confined to Bayesian approach with risk function optimality to investigate 
competing estimators for Poisson parameter. Loss function optimality using Bayes risk has drawn research attention in 
many studies [20,11,19] for obtaining point estimators. 

In this direction, an attempt has been made with Poisson model in Bayesian perspective. This study aims to compare 
the effect of symmetric and asymmetric loss functions. Point estimates are derived from four loss functions. Comparison 
for their performance is carried out using Bootstrap method based on the observations made in Efron [17, 19, 22]. 

The following section elaborates on the methods for estimating Poisson mean in the realm of Bayesian inference, and 

explicit expressions for point estimation. Section 3 and 4 provide details of simulation study and analyses based on two 

practical data sets respectively and finally the conclusive remarks are presented in the last section. 

2. ESTIMATORS FOR POISSON PARAMETER 

 If X1, X2,………,Xn are iid random variables  distributed as Poisson (θ), then 

Y = ∑ Xi~ Poisson (nθ) 

with the likelihood of θ y⁄  as 
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L(θ y⁄ )= f(y θ⁄ ) = {
e−nθ (nθ)y

y!
y = 0,1,2 … … , n  ;   θ > 0

0 elsewhere

 

The major aspect of this study is to obtain estimators δ (x1, x2,…,xn) based on loss function optimality; to choose an 
action (in terms of δ) that minimizes loss and the risk function (a function of θ). That is, risk function is the average loss 
R(θ, δ) = E[L(θ, δ)]. The widely used loss function includes squared error loss and absolute error loss that yield 
respectively mean and median as estimators for θ. Further, many studies [12, 13, 16] have shown the importance of 
including asymmetric loss functions such as Stein’s loss or LINear-EXponential (LINEX) loss functions [8]. Four loss 
functions have been considered and the loss function optimality in Bayesian inference is a direct approach of minimizing 
the posterior expected loss. 

 L1. Squared Error Loss Function (SELF) 

L(θ,δ) = (θ-δ)
2
and the corresponding estimator δ1(x) is the mean of the posterior distribution. 

 L2. Scaled Squared Error Loss Function (SSELF) 

L(θ,δ) = 
(θ−δ)2

θk  

E[L(θ,δ)] =E[
θ2+δ2−2θδ

θ k ] 

= E[θ2−k + δ2θ−k − 2θ1−kδ] 

= δ2E[θ−k] − 2δE[θ1−k] + E[θ2−k],a quadratic function in δ.  

 On differentiation with respect to δ and equating to zero, we get δ2 = 
E[θ1−k]

E[θ−k]
 

L3. LINEX Error Loss Function (LELF) 

L(θ,δ) = ec(δ−θ) −  c(δ − θ)–  1           (c > 0) 

E[L(θ,δ)] = E[ecδ−cθ − c(δ − θ) − 1] 

        = ecδE[e−cθ] − cδ + cE(θ) − 1 

Differentiating the above with respect to δ and equating to zero, gives 

δ3 =−
1

c
ln E[e−cθ] 

L4. General Entropy Loss Function (GELF)   [5] 

L(θ,δ) = w[(
δ

θ
)

p

− p ln (
δ

θ
) − 1]         p > 0, w ≠ 0 

E[L(θ,δ)] = w[E (
δ

θ
)

p

− E[p(lnδ − lnθ)] − 1] 

= w[δp E(θ
−p) − p lnδ + p E(lnθ) −  1] 

Differentiating with respect to δ and equating to zero again, gives 

δ4 = [
1

E(θ
−p)

]

1

p
 

In addition to the above, two more loss functions have extensive applications. It may be noted that with w = p = 1 in 

GELF, provide Stein’s Error Loss Function;L(θ,δ) = 
δ

θ
− 1 − log 

δ

θ
  and with k = 2 in SSELF leads to Quadratic Error 

Loss Function L(θ,δ) = [
θ−δ

θ
]

2

 

Subsequently, the study has considered comparing the performance of these point estimators obtained using L1 to L4 

with five prior combinations. Three prior specifications are based on the model, Y = ∑Xi ~ Poisson (nθ) with θ follows 

Gamma (GAM), or Truncated Normal (TRN), or normal distribution for lnθ (FEM); whereas other two prior schemes 
(REM and ZIP) are working with normal and Bernoulli distributions on the appropriate transformations on θi under the 
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likelihood Xi ~ Poisson (θi). The comparison of loss functions is carried out through a simulation study followed by real 
data sets to validate the results  and are implemented in R using R2WinBugs package [20]. 

3. SIMULATION STUDY 

The simulation study includes four parametric values of θ (= 0.01, 0.5, 2, and 5) to reflect a plausible range of small 
to larger positive real value. However, parametric values greater than 5 do not reflect appreciable change in the 
comparison study and hence are not presented.  The inference problem could be affected by the sample size and four 
representative values are considered for n (= 10, 50, 100, and 500). Suitable constants are assumed to all hyper priors 
involved in the five prior specifications. Mean squared error is the evaluation criteria based on 500 simulated values of 
each combination of n and θ and the respective estimates are presented in Table 1.  

The simulation largely indicates that MSE due to all four loss functions decreases with increasing values of n and for 
all values of θ. Also, all loss functions have MSE closer to zero under GAM, TRN uniformly when θ (< 1.0) for all 
values of n. The loss functions are observed to be having an oscillatory behaviour based on the other three priors, 
especially FEM and REM, for all n. 

SELF favours REM in terms of smaller MSE for all values of θ < 5and n < 200. Under SELF, FEM has uniformly 
higher values of MSE (greater than 12) when θ = 5 but the comparison is reversed for n = 200 and θ = 5. Similar 
observation can be made under SSELF that favours FEM for smaller n and θ; whereas for increasing values of n and θ < 
5, REM has comparatively smaller MSE.  

LELF shows a decreasing MSE under REM when n increases with smaller θ but not favouring FEM in those cases 
which has MSE larger than 13; when n is small both priors are not so favourable. In the case of GELF, REM shows 
smaller MSE for intermediate values of n and all values of θ but MSE is 15.02 when n is 10 and θ is 5.  Also, FEM seems 
favourable in n = 10 and 200. For a comparative purpose when n = 10 and θ = 10, maximum MSE can be observed for 
SELF under FEM (12.319); for SSELF (12.661), LELF (20.364), and GELF (15.02) under REM. However, the 
behaviour of all loss functions under ZIP shows consistency in MSE that lies between the pairs GAM, TRN and FEM, 
REM when θ is smaller and for all values of n  and increases for higher values of θ. 

TABLE 1. MEAN SQUARED ERROR OF THE ESTIMATORS OBTAINED FROM FOUR LOSS FUNCTIONS AND FIVE 

PRIOR DISTRIBUTIONS FOR DIFFERENT SAMPLE SIZE (N) AND THE PARAMETER (Θ) 

Loss 

functi

on 

Prio

r 

n = 10 n = 50 n = 100 n = 200 

θ = 

0.01 

θ = 

0.5 

θ = 

2 

θ = 

10 

θ = 

0.01 

θ = 

0.5 

θ = 

2 

θ = 

10 

θ = 

0.01 

θ = 

0.5 

θ = 

2 

θ = 

10 

θ = 

0.01 

θ = 

0.5 

θ = 

2 

θ = 

10 

SELF 

GA

M 
0.003 0.049 

0.22

5 
1.117 0.000 0.011 

0.03

4 
0.189 0.000 0.005 

0.02

1 
0.123 0.000 0.003 

0.00

9 
0.049 

TR

N 
0.010 0.056 

0.22

2 
1.150 0.001 0.010 

0.04

2 
0.175 0.000 0.005 

0.02

0 
0.098 0.000 0.027 

0.01

1 
0.052 

FE

M 
0.001 0.124 

0.64

8 

12.31

9 
0.000 0.045 

0.52

7 
8.075 0.000 0.033 

0.41

3 

11.32

8 
0.000 0.033 

0.29

6 
9.699 

RE

M 
2.188 1.635 

0.63

0 
7.723 2.191 2.163 

2.20

4 
0.420 2.155 2.840 

4.14

9 
1.782 2.288 3.991 

8.17

9 

11.87

9 

ZIP 0.202 0.088 
0.31

4 
4.663 0.105 0.054 

0.24

6 
4.186 0.112 0.055 

0.23

9 
4.027 0.108 0.055 

0.23

8 
4.059 

SSELF 

GA

M 
0.001 0.049 

0.22

3 
1.110 0.000 0.011 

0.03

5 
0.190 0.000 0.005 

0.02

1 
0.122 0.000 0.003 

0.00

9 
0.049 

TR

N 
0.004 0.047 

0.21

3 
1.145 0.000 0.010 

0.04

2 
0.175 0.000 0.005 

0.02

0 
0.098 0.000 0.027 

0.01

1 
0.052 

FE

M 
0.000 0.060 

0.36

4 
3.831 0.000 0.018 

0.15

6 
2.118 0.000 0.011 

0.12

3 
2.810 0.000 0.009 

0.08

7 
2.549 

RE

M 
0.113 0.504 

0.30

2 

12.66

1 
0.155 0.645 

1.06

1 
0.616 0.231 0.871 

2.04

9 
1.258 0.299 1.255 

3.92

5 
8.173 

ZIP 0.065 0.059 
0.48

0 
8.416 0.027 0.042 

0.36

3 
7.792 0.022 0.043 

0.35

3 
7.453 0.025 0.043 

0.34

3 
7.720 

LELF 

GA

M 
0.003 0.046 

0.21

0 
1.119 0.000 0.011 

0.03

4 
0.196 0.000 0.005 

0.02

1 
0.120 0.000 0.003 

0.00

9 
0.049 

TR

N 
0.009 0.051 

0.20

4 
1.153 0.001 0.010 

0.04

2 
0.181 0.000 0.005 

0.02

0 
0.098 0.000 0.027 

0.01

1 
0.052 

FE

M 
0.001 0.062 

0.20

7 

14.13

3 
0.000 0.023 

0.09

5 

13.05

5 
0.000 0.013 

0.05

3 

12.15

7 
0.000 0.011 

0.04

8 

11.64

8 

RE

M 
0.923 0.660 

0.21

6 

20.63

4 
0.906 0.782 

0.76

6 
1.842 0.913 1.095 

1.32

5 
0.453 0.840 1.371 

2.18

5 
2.596 

ZIP 0.165 0.068 
0.43

5 
9.267 0.085 0.050 

0.33

3 
8.230 0.090 0.051 

0.31

9 
7.942 0.086 0.051 

0.31

5 

7.980 
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GELF 

GA

M 
0.001 0.047 

0.22

3 
1.115 0.000 0.011 

0.03

5 
0.190 0.000 0.005 

0.02

1 
0.122 0.000 0.003 

0.00

9 
0.049 

TR

N 
0.002 0.044 

0.21

0 
1.144 0.000 0.009 

0.04

2 
0.176 0.000 0.005 

0.02

0 
0.098 0.000 0.027 

0.01

1 
0.052 

FE

M 
0.000 0.052 

0.32

1 
3.273 0.000 0.014 

0.13

4 
2.654 0.000 0.009 

0.11

4 
2.000 0.000 0.007 

0.09

1 
1.617 

RE

M 
0.001 0.147 

0.18

5 

15.02

0 
0.001 0.203 

0.59

9 
0.708 0.002 0.254 

1.06

9 
1.007 0.002 0.327 

1.81

3 
6.418 

ZIP 0.021 0.046 
0.58

0 

11.07

5 
0.005 0.036 

0.42

8 
9.673 0.003 0.038 

0.40

9 
9.533 0.002 0.037 

0.40

2 
9.533 

 

4. DATA ANALYSES 

Count models are extensively used in many applications, and the present work has identified three distinctive data 
sets; (I) Singapore Auto data extracted from insurance Data, an R package that provides automobile accident frequency; 
(II) number of deaths of women on daily basis derived from Bohning [4]; (III) collision losses from private passenger 
United Kingdom automobile insurance policies derived from McCullagh and Nelder [2]. 

The size of the above three data sets are quite varying as to be 7483, 366, and 129 and interestingly the low counts of  
0’s  and 1’s is also  highly dispersed as 99.5%, 1.4% and 8.53%  respectively.  Further, the  maximum frequency of II is 
14 as compared to  434 in III; data set III is quite inquisitive  in terms of frequency variation such as  20.16% are less 
than 11 (excluding 0s and 1s), 48.84% are  between 11 and 100 and 22.48%  values are more than 100. Figure 1 depicts 
these data distributions.  

Table 2 presents the empirical results of the procedures comprising twenty schemes of five priors and four loss 
functions. This includes a bootstrap (500 samples of original size) estimation of parameter and corresponding standard 
error of the estimators. When n is large (data set I), both GAM and TRN have less standard errors (SE) though bootstrap 
estimates differ but not in a larger extent. Their original estimates are stable across all four loss functions. FEM and REM 
also not much varied but a slight higher point estimates are visible in ZIP model but with lesser SE.  

In the case of data set II which has a moderate n, TRN is quite consistent across four loss functions in terms of its SE 
but estimates are similar with GAM. Similar pattern of SE is visible among FEM and REM models whereas estimates 
due to the latter model are quite comparable with other priors, which may not be the case for FEM. A compromising 
estimates and SE are due to ZIP that lies between the least (TRN) and GAM that has higher estimated values. 

A more dispersed but less sized data set (III) has revealed that three prior schemes (GAM, TRN, and ZIP) are 
consistent across the loss functions; ZIP has least SE but estimates are uniformly higher than GAM and TRN. FEM and 
REM are too far from such consistency though they have less SE compared to other models. This observation indicates a 
slightly less compatible with simulation findings with data set III, which may be due to its dispersion; on the other hand, 
other two data sets are quite comparable with the observations made through simulation results.  

Nevertheless, a consolidated finding of results listed below may be helpful to compare the approaches; 

• LELF has the least bootstrap error followed by SELF under Gamma prior.  

• GELF and SSELF can be a choice other than the usual SELF in the case of Truncated Normal prior. 

• LELF and SSELF can be an alternate loss functions to SELF while Gamma or ZIP priors are used. 

• In case of GELF,TRN has smaller error followed by ZIP and Gamma 

• FEM and REM have different bootstrap error when loss functions differ. 
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Figure 1. Histogram of three data sets considered for the data analysis of Bayesian model with five priors and four loss functions 

 

TABLE 2. POINT ESTIMATES OF ORIGINAL (EST) AND BOOTSTRAP (B.EST) SAMPLES TOGETHER WITH BOOTSTRAP 

STANDARD ERRORS (B.SE) FOR THE THREE DATA SETS. RESULTS ARE PRESENTED 

 FOR FOUR DIFFERENT LOSS FUNCTIONS 

Data 

GAM TRN REM FEM ZIP 

Est B.Est B.SE Est B.Est B.SE Est B.Est B.SE Est B.Est B.SE Est B.Est B.SE 

SELF  

I 0.07 0.12 0.05 0.07 0.16 0.09 0.09 0.09 0.09 0.05 0.04 0.05 0.14 0.32 0.05 

II 6.37 6.42 0.49 4.99 4.73 0.06 8.39 7.94 0.73 6.17 6.10 0.54 6.38 6.16 0.37 

III 72.79 75.24 25.50 72.78 71.62 6.65 94.75 116.51 48.75 27.82 39.19 14.97 75.76 71.87 29.01 

SSELF  

I 0.06 0.01 0.01 0.07 0.03 0.06 0.0004 0.001 0.001 0.05 0.01 0.01 0.12 0.01 0.01 

II 6.36 6.03 0.49 4.99 4.66 0.09 0.08 0.54 0.23 6.16 4.92 0.54 6.37 5.67 0.37 

III 72.77 75.11 25.50 72.75 71.59 6.65 10.49 49.99 18.26 25.73 29.48 13.16 75.75 71.71 29.01 

LELF  

I 0.07 0.11 0.05 0.07 0.15 0.09 0.08 0.05 0.06 0.05 0.04 0.05 0.14 0.22 0.04 

II 6.33 5.48 0.42 4.99 4.47 0.15 2.26 1.59 0.11 6.11 4.04 0.42 6.34 4.98 0.29 

III 71.84 70.53 24.29 71.87 70.67 6.66 5.13 8.51 3.59 19.79 9.51 3.82 74.75 66.31 27.19 

GELF  

I 0.07 0.01 0.01 0.07 0.03 0.06 0.01 0.002 0.002 0.05 0.01 0.01 0.13 0.01 0.02 

II 6.36 6.25 0.49 4.99 4.71 0.07 2.49 2.61 0.45 6.16 5.60 0.53 6.37 5.95 0.37 

III 72.78 75.01 25.50 72.77 71.60 6.65 34.04 21.95 11.15 26.33 22.62 11.59 75.74 71.59 28.05 
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5. CONCLUSION 

The study on the estimation of Poisson mean with emphasis on lower values of θ including zeroes is the crux of the 
study as rare events constitute integral part of many real time situations. The study has exploited frequentist criterion for 
evaluating four competing Bayesian estimates under five priors. The study has brought out the features of different 
Bayesian estimators and the need for a careful choice of unknowns that are part of the loss functions.  

Choice of a loss function can be beyond the predominant squared error loss and associated point estimate for Poisson 
parameter. For small n and θ, GELF may be appropriate with possible priors could be Gamma, Truncated normal or Zero 
inflated Poisson whereas SSELF is an option with the same prior distribution for small samples and for any θ. GELF and 
LELF may be suitable with GAM and TRN priors and for a moderate sized sample (say 50 to 100) and θ is small. 
However, as θ increases, SELF with TRN could be chosen for moderate n. GELF with ZIP is considered to be a cautious 
choice for all θ; whereas FEM and REM require more careful and in-depth study even when n is large. 

The comparison has pointed out that with a proper choice of loss function is more important in obtaining better 
estimates of parameter especially in the case of modeling rare events using Poisson distribution. The study through 
frequentist evaluations has emphasized to stepping away from the usual squared error loss function and considering other 
loss functions in a decision making process under Bayesian modeling. However, a possible limitation could be in 
choosing more pragmatic priors that may largely depend on the problem at hand and the researchers’ perspective of the 
same. This work also provides few prior specifications other than conjugate model to work once a decision on 
appropriate loss function has been made with regard to the given problem environment. 
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