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Abstract: Mean absolute deviation about mean and median is extended to define “MAD-comoment” similarly analogous to classical 

central moment notation of covariance. Therefore, the “MAD-comoment” is used to derive the coefficient of determination in LAD 

regression, to analyze total sum of absolute into the pure between sum of absolute and the pure within sum of absolute that provides 

the exact decomposition of Pietria index of inequality, to develop a new formula for beta coefficient in financial risk analysis that 

gives less weight at the extreme ends than least squares method for market return and to define MAD-correlation under first moment 

assumption. 
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1 Introduction 

Mean absolute deviation (MAD) offers a direct and 

robust measure of the dispersion of a random variable 

and has many applications in different fields; see, 

Bassett and Koenker (1978), Dodge (1987), Bloomfield 

and Steigler (1983), Pham-Gia and Hung (2001), Gorard 

(2005), Habib (2011) and Elamir (2012). The mean 

absolute deviation is actually more efficient than 

standard deviation in life-like situations where small 

errors will occur in observations and measurements; see, 

Tukey (1960) and Huber (1981).  

The univariate MAD about mean and median is 

extended to MAD-comoment, similarly analogous to 

classical central moment notions of covariance. The 

“MAD-comoment” introduces an easy and simple way 

to obtain the coefficient of determination in LAD 

regression, to analyze total sum of absolute into the pure 

between sum of absolute and the pure within sum of 

absolute that provides the exact decomposition of Pietra 

index of inequality, to develop a beta coefficient in 

financial risk analysis that gives less weights for market 

return at extreme ends than the least square beta 

coefficient and to yield correlation coefficient not only 

coherent with classical correlation, but also valid and 

meaningful under just first moment assumption. 

In Section 2 the representation of MAD in terms of 

covariance is presented. In Section 3 the population 

MAD-comoment analog to central moment notions and 

their sample counterparts are introduced. Applications 

of MAD-comoment to LAD regression for finding the 

coefficient of determination, partitions total sum of 

absolute into pure between and within sum of absolute, 

developing the beta coefficient in financial risk analysis 

and finding a correlation coefficient based on MAD are 

studied in Section 4. Section 5 is devoted to the 

conclusion. 

2 Representation of MAD as a covariance 

Let           be a random sample from a continuous 

distribution with, density function     , quantile 

function                 ,      , 

cumulative distribution function       , mean 

       and median         . The population 

MAD about mean and median is defined as 

 

     |   |                |   | (1) 

Let over indicator functions are 
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(2) 

Habib (2011) and Elamir (2012) used the general 

dispersion function that defined by Munoz-Perez and 

Sanchez-Gomez (1990) as 
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  ∫        

(3) 

to re-define the population MAD about mean and 

median in terms of over indicator functions as  
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  { [     (   )] }  

 

          |   |   [         ] 

(4) 

Consequently, the population MAD is re-defined as 

twice the covariance between the random variable   and 

its indicator function as 
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     (     )  

 

                        
             

(5)  

Note that  (   )      ,  (   )              , 

           and             . 

3 MAD-comoment  

Following Serfling and Xiao (2007) consider a bivariate 

random variable (         ) having cdf   with marginal 

distributions    and    means   
   

 and   
   

, medians 

    , and      and finite central moments   
   

 and  

  
   

        , the  th central comoment of      with 

respect to      is defined as  

 

   [  ]     (     (       
   

)
    

) (6) 

of course for the second order case we have simply 

  [  ]      the usual covariance. The usual correlation 

coefficient denoted       [  ]     .  

  

3.1 Population MAD-comoment 

Using the covariance representation (5) for MAD, and 

also by analogy with the central comoment given in (6) 

at    , the MAD-comoment in terms of mean is 

defined as 

 

  [  ]( 
        )     (         

   

   (  
   

))    

   [  ]( 
        )

    (         
   

   (  
   

)) 

(7) 

Here   [  ] and   [  ] need not be equal. Similarly in 

terms of median 

 
  [  ]     (         

     )  

  [  ]     (         
   

  ) 
(8) 

These are termed as MAD-comoment of      with 

respect to      and MAD-comoment of       with 

respect to     . It is readily seen that MAD-comoment is 

a translation invariant and scale equivariant, that is, 

 

 
 [  ](               )

   [  ]( 
        ) 

(9) 

For positive   and   and arbitrary   and  .  

For          , the MAD-comoment reduce to the 

MAD. On the other hand for       and      are 

independent the MAD-comoment takes the value zero. 

  

3.2 Sample MAD-comoment 

Consider a bivariate data pairs (  
   

   
   

         . 

From (7) the direct estimate of MAD-comoment using 

mean is  
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   (         ̅

   
) 

(10) 

From (8) the direct estimate of MAD-comoment using 

median is  

 

 

  ̃[  ]

 
     

 
   (         ̃

   
)          ̃[  ]

 
     

 
   (         ̃

   
) 

(11) 

In general  [  ] and  [  ] are not equal, to obtain equal 

MAD-comoment, the central MAD-comoment may be 

used  

  
   

  ̅[  ]    ̅[  ]

 
           

 
  ̃[  ]    ̃[  ]

 
 

(12) 

and 
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            ̅
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  ̅   

      
 

(13) 

Simiraly   ̃
   

 and   ̃
   

can be defined by replacing the 

sample median rather than sample mean in (13). 

Another useful form for MAD-comoment in terms of 

weighted average can be obtained as 
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 [  ]  ∑    
   

 

   

         [  ]

 ∑    
   

 

   

 

(14) 

  where    
      

  
      ̅ . 

4 Applications of MAD-comoment 

MAD-comoment has an important property for 

univariate            then 

                    ∑              

 

   

 (15) 

This is called a semi decomposition of MAD-comoment 

and can be used in obtaining the coefficient of 

determination in LAD regression.  

4.1 Coefficient of determination based on MAD-

comoment 

A nature measure in the regression of the effect of   in 

reducing the variation in  , i.e., in reducing the 

uncertainty in predicting  , is a measure of 

determination   . For least absolute deviation (LAD) 

regression 

    |    ́ | 
The coefficient of determination of LAD regression can 

easily be obtained using MAD-comoment as follows. 

  

Theorem 1  

The coefficient of determination in LAD regression 

using MAD-comoment is 

     
  

      ̂        

  

 (16) 

Proof: 

Since the actual value in LAD regression can be 

represented by   

    ̂     

By using (15) therefore 

 

 

                  

        ̂        
                 

 

This can be rewritten as 

             (17) 

                   is the total absolute 

deviation(TAD),        ̂         is the regression 

absolute deviation (RAD) and                 is the 

error absolute deviation (EAD).  

By dividing both sides by     

 

  
      ̂        

  

 
              

  

 

The explained variation (coefficient of determination) 

based on LAD regression line is 

 

     
  

      ̂        

  

 (18) 

The non-explained variation based on LAD regression 

line is 

 

       
  

              

  

 (19) 

4.1.1 Example 

The data set given in Table 1 consists of a logarithmic 

deflated growth rate ( ) of a Finish company, a time 

variable (  ), and a measure of the cyclical fluctuation 

in the aggregated funds from operations in logarithmic 

terms (  ); see, Pynnonen and Salmi (1994). 

Table 1. funds of operations and whole sale price index in years 1969-1982. 

LNQ ( ) Year (    LK3RES (  )  ̂    

11.654 1969 0.0434 11.754 -0.100 LAD Regression 

12.099 1970 0.0911 11.794 0.304  ̂                          
11.728 1971 0.0212 11.973 -0.245  

12.026 1972 0.0585 12.026 0 Semi-decomposition 

12.252 1973 0.1020 12.071 0.181         ,         ,          

12.793 1974 0.0934 12.177 0.615  

13.163 1975 -0.0931 12.493 0.669 MAD determination (explained variation)  

12.078 1976 -0.1196 12.620 -0.542     
                  

12.805 1977 -0.1945 12.805 0 Non-explained variation 

13.043 1978 -0.0620 12.745 0.297       
       

12.094 1979 0.1383 12.607 -0.513  

12.521 1980 0.0776 12.774 -0.253  

12.917 1981 0.0386 12.917 0  

13.156 1982 -0.0407 13.106 0.050l  
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The LAD regression is computed using package 

“quantreg” in R-sofware and     
  using MAD about 

median. Note that Pynnonen and Salmi (1994) used the 

measure  

 

    ∑|     ́  ̃| ∑|       |

 

   

 

   

 

as a measure of determination that is equal to      .   

4.2 MAD partitions about mean and median  

Assume there are   different groups with individuals 

in each group    ,           ,           

and         . Let      ̅ is the total deviation 

( ̅  ∑ ∑    
  

 
 
   ),  ̅   ̅ is the deviation of 

grouped mean ( ̅  ∑       
  

   
) around total mean, 

and      ̅  is the deviation of individuals around the 

grouped mean.  

By squaring and taking the summation over both   and 

  then  

  

∑∑(     ̅)
 
 

  

   

 

   

∑∑( ̅   ̅)
 

  

   

 

   

 ∑∑(     ̅ )
 

  

   

 

   

 

That is known as the partitions the total sum of 

squares, in other words, the total sum of squares (SST) 

is equal to the between sum of squares (SSB) plus the 

within sum of square (SSW), therefore 

 

            

The absolute value could be used rather than the square 

to give us     

 

|     ̅|  | ̅   ̅|  |     ̅ | 

By taking the summation over both   and   then  

 

∑∑|     ̅|

  

   

 

   

 ∑∑| ̅   ̅|

  

   

 

   

 ∑∑|     ̅ |

  

   

 

   

 

The total sum of absolute (    ∑ ∑ |     ̅|
  

   
 
   ) 

is less than or equal to the between sum of absolute 

(    ∑ ∑ | ̅   ̅|
  

   
 
   ) plus the within sum of 

absolute (    ∑ ∑ |     ̅ |
  

   
 
   ), therefore, 

 

            

 

 

This can be re-written as  

 

              

where               is the residuals and it 

could be separated to pure within-groups residuals and 

pure between-groups residuals and added to each term 

to obtain perfect MAD partitions 

 

                     
           

 This is shown in the following theorem. 

 

Theorem 2 

The MAD partitions about mean into the pure between 

sum of absolute and the pure within sum of absolute 

are    

 

 

∑∑|     ̅|

  

   

 

   

 ∑∑| ̅   ̅|
 

  

   

 

   

 ∑∑|     ̅ | 

  

   

 

   

 

(20) 

where 

 

| ̅   ̅|
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 | ̅   ̅|            ̅   ̅              ̅    ̅  

| ̅   ̅|     
 

and  

|     ̅ | 
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 |     ̅ |       ̅       ̅       ̅       ̅  

|     ̅ |     
 

Note that | ̅   ̅|
 
 is the pure between sum of 

absolute and |     ̅ | 
 is the pure within sum of 

absolute, i.e. 

     

              

Proof: 

Using the covariance representation of the mean 

absolute deviation about mean given in (5), the 

partitions can be written as     ∑ ∑ |    
  

   
 
   

 ̅|      (       ̅)    [(     ̅)   ̅]  
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   {
 ̅   ̅  ̅   ̅

      else
 

and the 

    ∑ ∑ |     ̅ |
  

   
 
    

∑     (      ̅ 
) 

     ∑ ∑    
  

   
 
    

 

    {
     ̅       ̅ 

          else
 

Let the residuals             , we have the 

following cases:   

1. If    ,    ,    , we have       

   ̅   ̅  then       ̅   ̅ ,  ̅   ̅, this 

imply      ̅   ̅ . Similarly, if    , 

   ,    , we have            ̅  

 ̅, this imply       ̅   ̅ . These residuals 

must be excluded from BSA to obtain PBSA.  

2. Similarly, if    ,    ,    , we have 

              ̅   this imply  ̅  

     ̅ . If    ,    ,    , we have 

               ̅  , this imply 

 ̅       ̅ . These residuals must be 

excluded from WSA to obtain PWSA. 

3. If    ,    ,    , we have     then 

     ̅   ̅. If    ,    ,    , we 

have     then      ̅   ̅ 

Note that the residuals are zeros when the group mean 

is between the overall mean and the individuals. 

 

Example: 

Table 2 shows MAD partitions about mean for a 

hypothetical data. Note that       , while     
             that overestimate     by 

        . On the other hand           
        that is equal to    .  

Table 2. TSA partitions into PBSA and PWSA for a hypothetical data 

 

            |     ̅|     | ̅   ̅|     |     ̅ | PBSA PWSA 

 1 1 4 2 2 0 2 0 

 ̅    2 1 5 2 3 2 3 

 3 7 1 2 3  -2 3 

2 1 10 4 9 5 9  -5 

 ̅     2 20 14 9 5 9 5 

3 1 2 4 4 0 4 0 

 ̅    2 1 5 4 1 4 1 

 3 3 3 4 1 4  -1 

Total  48 38 36 18 32 6 

 ̅           

 

 

The MAD partitions about median can be shown in the 

same manner as MAD partitions about mean in the 

following theorem.     

 

Theorem 3 

The pure partitions the total sum of absolute about 

median into the between sum of absolute and the 

within sum of absolute are 

 

 

∑∑|     ̃|

  

   

 

   

 ∑∑| ̃   ̃|
 

  

   

 

   

 ∑∑|     ̃ | 

  

   

 

   

 

(21) 

where 

| ̃   ̃|
 

 {
 | ̃   ̃|          ̃   ̃            ̃    ̃  

| ̃   ̃|     
 

and  

|     ̃ | 

 {
 |     ̃ |     ̃       ̃       ̃       ̃  

|     ̃ |     
 

 

Note that | ̃   ̃|
 
 is the pure between sum of 

absolute about median and |     ̃ | 
 is the pure 

within sum of absolute about median, i.e. 

     

                 

Example: 

Table 3 shows MAD partitions about median for a 

hypothetical data. Note that       , while     
              that overestimate     by 

         . On the other hand       
               that is equal to    .   
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Table 3. TSAM partitions into PBSA and PWSAM for a hypothetical data 

 

             |     ̃|     | ̃   ̃|     |     ̃ | PBSAM PWSAM 

 1 1 21 0.5 1.5 1 1.5 -1 

 ̃     2 13 8.5 1.5 7 1.5 7 

 3 22 0.5 1.5 2 -1.5 2 

 4 11 10.5 1.5 9 1.5 9 

 5 20 1.5 1.5 0 1.5 0 

2 1 17 4.5 4.5 0 4.5 0 

 2 24 2.5 4.5 7 -4.5 7 

 ̃     3 17 4.5 4.5 0 4.5 0 

3 1 32 10.5 13.5 3 13.5 -3 

 ̃     2 41 19.5 13.5 6 13.5 6 

 3 31 9.5 13.5 4 13.5 -4 

 4 38 16.5 13.5 3 13.5 3 

Total   89 75 42 63 26  

 ̃              

 

4.2.1 Exact decomposition of Pietra index 

The Pietra index in terms of Lorenz curve is the 

maximum vertical distance between the Lorenz curve, 

or the cumulative portion of the total income held 

below a certain income percentile, and the perfect 

equality Line, that is the 45 degree line of equal 

incomes. Therefore, the Pietra index is given by 

 

  Max.[            ]              

 ∫      (  
 

 
)   

 

 

 
MAD

  
 

 see; Lambert(1993). Therefore,  

 

  
∑ |    ̅| 

   

   ̅
 

   (     ̅)

 ̅
 

Using (20) the exact decomposition for the Pietra index 

to between and within is 

  

  
∑ ∑ |     ̅|

  

   
 
   

   ̅

 
∑ ∑ | ̅   ̅|

 

  

   
 
   

   ̅

 
∑ ∑ |     ̅ | 

  

   
 
   

   ̅
 

A similar conclusion applies to MAD about median on 

the Lorenz curve, where 

  

   
∑ |    ̃| 

   

   ̅
 

   (     ̃)

 ̅
 

is the vertical distance between the diagonal and the 

curve, occurring at the abscissa    ̃     ; see, 

Pham-Gia and Hung (2001). Using (21) the exact 

decomposition for this measure to between and within 

is 

 

   
∑ ∑ |     ̃|

  

   
 
   

   ̅

 
∑ ∑ | ̃   ̃|

 

  

   
 
   

   ̅

 
∑ ∑ |     ̃ | 

  

   
 
   

   ̅
 

 

Example: 

Table 4 shows an application of how this 

decomposition works. It can be started from wage 

distribution of labor force survey conducted on non-

Bahraini in 2008.  
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Table 4 Wage distribution according to gender for non-Bahraini in 2008 

 

Class Range (BD) # of Male (  ) # of Female     Pietra index  
1 Below 100 3760 164  (Total)=0.42  
2 100-199 765 53 between=0.07  
3 200-299 267 30 within=0.35  
4 300-399 146 26   
5 400-499 405 24 Using median   
6 500-599 183 31   (Total)=0.33  
7 600-699 81 12 between=0.04  
8 700-799 43 10 within=0.29  
9 800-899 85 8   
10 900-999 52 12   
11 1000-1199 41 9   
12 1200-1399 31 7   
13 1400-1599 27 5   
14 1600 and over 171 231   

                         Source: labor source survey 2008. 

 
The total Pietra index is      that divided to between 

0.07 and within 0.35. Also the Pietra index using 

median is      that divided to between 0.04 and within 

0.29. This shows that the most contribution to 

inequality back to within group wages much more than 

between group wages.  

4.3 Beta coefficient  

In finance, the beta (β) of a stock or portfolio is a 

number describing the correlated volatility of an asset 

in relation to the volatility of the benchmark that said 

asset is being compared to. This benchmark is 

generally the overall financial market and is often 

estimated via the use of representative indices, such as 

the S&P 500. The beta coefficient was born out of 

linear regression analysis. It is linked to a regression 

analysis of the returns of a portfolio (such as a stock 

index) in a specific period versus the returns of an 

individual asset in a specific year; see, Gardner, 

McGowan and Moeller (2010). A Beta coefficient of 1 

suggests that the stock carries the same risk as the 

overall market and will earn market return only. A 

coefficient below 1 suggests a below average risk and 

return while a coefficient higher than 1 suggests an 

above average risk and return. The regression line is 

then called the security characteristic line (SCL) 

 

            
   is the monthly total return of the stock,    is the 

monthly return of the market and    are independent 

unobservable errors obeying a zero-mean (       , 

the least square method of   is 

 

    
          

       
 

          

   (     )
 

 The simple LAD regression is found by choosing a 

pair of parameters that minimizes 

 

  |  |           [              ] (22) 

Under the condition of  |  |    ( [         
     ]    , therefore, the LAD estimate of   could 

be obtained when  [              ]    as 

 

      
∑   

 
      

∑      
 
   

 
   (         

)

   (         
)
 (23) 

and the weights are taken with respect to the fixed 

variable    as 

  

   
         ̂     ̅

  
       ̂   {

                ̃ 

              
 

Note that ∑   . The main advantage of      over 

    is that      gives less weights for the extreme 

ends of independent variable (  ). To show this from 

(23)   can be re-written as  

      ∑     

 

   

 (24) 

with LAD weights 

    
  

∑      
 
   

  

In least squares method the beta can be rewritten as  

http://en.wikipedia.org/wiki/Finance
http://en.wikipedia.org/wiki/Stock
http://en.wikipedia.org/wiki/Portfolio_(finance)
http://en.wikipedia.org/wiki/Correlation
http://en.wikipedia.org/wiki/Volatility_(finance)
http://en.wikipedia.org/wiki/Linear_regression
http://en.wikipedia.org/wiki/Security_characteristic_line
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with LS weights  

   
     ̅ 

∑       ̅    
   

 

Example: 

The data used in Table 5 are downloaded from the 

internet using Yahoo Finance website. The Table 

shows the return data for S&P500 and Coca-Cola for 

14 months. Note that the return is computed using 

(close value-opening value)/opening value. 

 
Table 5: Return of S&P500 (  ) and Coca-Cola (  ) for 14 months, weights using MAD and LS and beta coefficient using two 

methods 

 

Months                        

1 -1.45 1.11 -0.0011 -0.0256 -0.0012 -0.0285  

2 -0.99 -0.92 0.0015 -0.0256 -0.0014 0.0236           

3 -8.60 -9.22 -0.0418 -0.0256 0.3855 0.2367            

4 1.07 -2.73 0.0132 0.0256 -0.0361 -0.0701  

5 4.75 -3.29 0.0341 0.0256 -0.1123 -0.0844  

6 -0.60 4.12 0.0037 0.0256 0.0153 -0.1058  

7 -3.48 -0.92 -0.0127 -0.0256 0.0116 0.0236  

8 -6.12 -3.86 -0.0277 -0.0256 0.1069 0.0991  

9 -0.86 -1.18 0.0022 0.0256 -0.0026 -0.0302  

10 -4.40 0.55 -0.0179 -0.0256 -0.0098 -0.0141  

11 1.48 7.46 0.0155 0.0256 0.1160 0.1915  

12 3.58 6.86 0.0275 0.0256 0.1886 0.1761  

13 1.29 3.20 0.0144 0.0256 0.0462 0.0821  

14 -3.20 -0.38 -0.0111 -0.0256 0.0042 0.0097  

                       Source: http://finance.yahoo.com 

 
From Table 5 the extreme ends of    have less weight using MAD-comoment than using least square method.  

 

4.4 MAD-correlation 

Using the MAD-comoment representation of MAD in 

(7) and (8) two MAD correlation coefficients are 

 

  (         )  
     [  ]( 

        )

     [  ]  
         

 (25) 

This is the ratio of the covariance between      and the 

indicator function of     and      and its indicator 

function and 

 

  (         )  
     [  ]( 

        )

     [  ]  
         

 (26) 

This is the ratio of the covariance between      and the 

indicator function of      and      and its indicator 

function. In general, these two measures are 

asymmetrical and they are necessarily not equal. Two 

symmetric measures of MAD correlations are defined 

as 

 

    
 (         )   (         )

 
 (27) 

This is the center of two asymmetric measures. Note 

that these measures are defined under just first moment 

assumption. For more details about estimation, 

properties of these measures and comparison with 

Pearson correlation coefficient; see, Habib (2011) and 

Elamir (2012). 

 

5 Conclusion 

By analogy with the central comoment, the MAD 

about mean and median is expressed as MAD-

comoment in terms of covariance between a random 

variable and its indicator function.  

There are important applications of MAD-comoment. 

The semi-decomposition of MAD-comoment gave an 

easy and simple way to obtain the coefficient of 

determination in LAD regression. Moreover, the exact 

decomposition of Pietra index of inequality is obtained 

by partitions total sum of absolute into the pure 

http://finance.yahoo.com/
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between sum of absolute and the pure within sum of 

absolute. In financial risk analysis the beta coefficient 

is expressed in terms of MAD-comoment. The new 

formula gives less weight for extreme ends than the 

least square coefficient. Finally, MAD-correlation 

coefficients are defined under just first moment 

assumption.    
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