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Abstract: The 3D reconstruction of a scene from multiple images is a fundamental problem in the field of computer vision. Existing methods 

can be classified into two strategies: bottom-up or top-down. This paper presents a full system for complete 3D shape reconstruction following 

the top-down strategy. A rotary table is employed to change a camera’s viewing direction to an object on the table. This offers a cost-effective 

solution to the multi-view stereo acquisition problem without the need for using several cameras. From the acquired calibrated images of the 

object, a variational approach is developed for 3D shape reconstruction of the object. The approach works directly in 3D Euclidean space based 

on a level set formulation. A correlation criterion between the 2D images is optimized by driving the evolution of the surface using the 

corresponding Euler-Lagrange equation. Several successful experiments to evaluate the proposed system are reported.  

  Keywords: Level set methods, Multi-view stereo and 3D reconstruction. 

 

I. INTRODUCTION 

 
The 3D reconstruction of a scene from multiple images is a 
fundamental problem in the field of computer vision. There 
are many real world applications of 3D models, such as 
computer graphics, robot navigation, TV/film special effects, 
computer games, virtual reality inspection, navigation, and 
object identification. Recently it has become a very important 
and fundamental step in particular for cultural heritage digital 
archiving. The motivations are different: documentation in 
case of loss or damage, virtual tourism and museum, education 
resources, interaction without risk of damage, and so forth. 

Given a set of images of a scene captured from multiple 
calibrated cameras, the goal is to recover the unknown 3D 
structure using these images and the knowledge of the camera 
geometry. This problem is known as multi-view stereo in 
computer vision and is of great importance as it provides a 
way to infer the geometric and photometric properties of a 
scene without interfering with it. Additional advantages of 
using multi-view stereo to infer these scene properties include 
that the setup is fairly simple, the cost is relatively low and the 
process can be easily automated. 

In most applications in the field of vision-based 3D 
reconstruction [1][4], two strategies can be applied: 

• Bottom-up or data driven strategies [4][5]: These 
algorithms are based on image matching, using either 
intensity-based (direct) methods or feature-based 
methods. This class includes all techniques that compute 
correspondences across images and then recover 3D 
structure by triangulation and surface fitting. Establishing 
correspondence in this traditional way is a hard problem 
that often leads to many outliers [1]. Some disadvantages 
of this approach are that, it is computationally intensive 
and algorithmically demanding. Furthermore, views must 

often be close together (i.e., small baseline) so that 
correspondence techniques are effective. 
Correspondences must be maintained over many views 
spanning large changes in viewpoint. The modeling of 
occlusions is complicated and there is not a standardized 
and widely accepted framework for modeling occlusions 
for bottom-up methods [4][5]. There are many methods in 
literature belonging to this strategy. Refer to [1][4][27]for 
a recent review and taxonomy of algorithms. 

• Top-down or model driven strategies [21]: In this case, 
the computations are performed in three-dimensional 
scene space in order to construct the volumes or surfaces 
in the world that are consistent with the input images. 
Top-down approaches assume there is a known, bounded 
area in which the objects of interest lie. These strategies 
overcome the disadvantages of the bottom-up approach; 
they have the ability to explicitly model occlusions and 
consider multiple views. Example shere include shape 
form silhouettes [12][13], space carving [6][15][26], 
reconstruction using variational 
methods [8][17][18][28][29], volumetric graph-cuts [30] 
and continuous global optimization [6]. 

The existing approaches suffer from one or more of the 
following issues in the problem of multi-view 3D 
reconstruction: shape representation, objective function 
optimization and the initialization requirements. In this paper 
we present a complete approach addressing these issues 
following the top-down strategy due to its notable advantages 
over the bottom-up strategies. Many existing 
systems [6][15][26][30] represent a shape as a set of voxels or 
polygon meshes, which may fail with complex shapes. In 
contrast, our proposed approach uses a level set representation 
that provides several advantages over traditional object 
representations, such as its capability to model complex 
surfaces and to cope with varying object topologies [3]. In 
terms of optimization, several existing approaches iteratively 
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update the shape based on local decisions starting from an 
initial volume, such as space carving methods [6][15][26], 
which often causes the propagation of unrecoverable errors 
from one region to another. In contrast, our approach defines a 
global objective function on the whole 3D space, whose 
optimization leads naturally to the evolution to a partial 
differential equation (PDE) of the level set function. This 
evolution is efficiently solved on a discretized 3D grid using 
well-defined numerical methods [20][23]. While many 
algorithms [12][13][8][17][18][28][29] require a good 
initialization to guarantee algorithm convergence, our 
approach  tends to work starting from any initial position, and 
the reconstruction process is not sensitive to the initial level 
set function.  

Our approach is inspired by Faugeras and Keriven [8], who 
were the first to combine image matching and shape 
reconstruction in a variational framework that minimizes an 
energy functional that is written as the integral of a data 
fidelity criterion on the unknown surface. However, the 
numerical implementation is rather complicated and requires 
simplification by dropping some terms. The final result tends 
to be sensitive to where the level set function has started its 
evolution. In contrast, we start with a new, different 
formulation that models the surface to be reconstructed as a 
level set embedded in an energy functional from the 
beginning. An advantage of this formulation is that one can 
easily and in straightforward manner model any available 
information on the object shape into the energy functional. For 
example, this may allow the reconstruction of an object with 
shape variations consistent with a set of training model 
examples [24]. This can prove very useful indeed in several 
nowadays applications of computer vision and graphics that 
focus on building 3D models of a certain category of objects. 
For example, generation of realistic 3D human face models 
and facial animations can indeed exploit the earlier knowledge 
that the object looks like a human face. Another example is 
the 3D modeling of the human jaw from a sequence of intra-
oral images [25], which can make use of prior information on 
the shape of human teeth. 

In addition to the distinctive and novel aspects of our 
approach (strong, flexible shape representation and efficient 
global optimization algorithm with no special initialization 
requirement), we build a simple, yet effective 3D 
reconstruction system consisting of a rotary-table and a USB 
camera, both controlled via a desktop PC. The system uses the 
rotary table to change the camera’s viewing direction to an 
object on the table. This offers a cost-effective solution to the 
multi-view stereo acquisition problem without the need for 
using several cameras. A checkerboard calibration pattern is 
used to calibrate the camera in the very first view to recover 
the camera projective geometry and its parameters. Then the 
camera parameters are automatically updated for all the other 
views, without the need for re-calibration. The images 
acquired from the different views are used for shape modeling. 
The developed approach is successfully evaluated in several 
experiments using synthetic and real datasets, as well as using 
our own system setup. 

The rest of this paper is organized as follows. In Section II 
we describe our acquisition setup for capturing images from 
multiple views. A brief description of camera geometry and 
calibration is also given. We explain our approach for 3D 
reconstruction in Section III. The experimental results are 
reported in Section IV. This paper is concluded in Section V. 

II. SYSTEM SETUP AND CAMERA CALIBRATION 

We have developed a data acquisition setup to capture 
calibrated images from multiple views of objects. The 
hardware setup consists of a rotary table, a USB camera and a 
desktop PC. The rotary table is built from scratch using a 
stepper motor, a driver and an interface circuit to the parallel 
port of the PC. Figure 1 shows the constructed rotary table. The 
system operates as follows: The object to be reconstructed is 
placed on the rotary table. In order to obtain different 
viewpoints of the object, we simply rotate the table by a 
desired angle each time and grab an image. This is repeated for 
a number of times (typically 10-12) to cover the object from all 
views. A complete program with graphical user interface 
(GUI), written in Visual C++, is used to control the speed, 
direction and the step size of the table motion and to acquire 
the images from the USB camera. By construction, the step 

size of the table rotation can be as low as 0.1. 

Most 3D reconstruction techniques require the calibration 
of the camera, especially if quantitative measurements are 
sought. Camera calibration allows us to derive the projection 
equations linking points in our 3D world to their projections 
on the image and solve for the camera intrinsic and extrinsic 
parameters. According to the most common camera model in 
computer vision, the pinhole camera model [9], a world 3D 

point ( ,    ,    ,  1  )
T

X Y ZX and the corresponding image point 

( ,    ,     )
T

u v wx (the over-symbol ~ denotes homogeneous 

vectors) are related via 

      ,x P X    (1) 

where P  is a 3 × 4 homogeneous camera projection matrix 
which can be decomposed into [9]: 

 | ,P K R t          (2) 

where K  is the camera calibration matrix containing the 
intrinsic parameters of the camera (e.g., focal length and 
principal point), R  is an orthonormal rotation matrix and t  is 

a 3D translation vector. Both R  and t  represent the camera 

extrinsic parameters which define the camera orientation and 
position with respect to the world coordinates. The above 
formulation relies on the assumption that the map from the 
world to the image is linear projective. That is, there exists no 
significant lens distortion or it has been corrected [22].  

The procedure of calculating the camera matrix P  is called 
camera calibration [9]. Many methods are available in 
literature [9] for the determination of the camera matrix. We 
use for this sake in our system Robert’s technique [10], which 
has the advantage of high accuracy without the need of 
accurate feature extraction. This is done with the help of a 
checkerboard pattern, see Figure 2. The world coordinate 
system is chosen along the sides of the calibration pattern. At 
the initial viewpoint (first position of the table), the camera is 
initially calibrated by putting the calibration pattern on the 
table such that the world’s Y-axis coincidences with the 
rotation axis of the table (A correction procedure is carried out 
here to compensate for any possible misalignment [2]). This 

way the initial projection matrix 0P  at this first viewpoint is 

calibrated. 

At each subsequent rotation angle, we need to compute a 

new projection matrix for the new viewpoint. Recalibrating 

the camera using the calibration pattern is not needed. By 

rotating the object on the table by a specific angle  , the 

camera intrinsic parameters are expected not to change, but we 
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simply need to update the extrinsic parameters of the camera 

to reflect the new camera orientation. 
 

 

Figure 1. The rotary table is used in our work to change the camera’s viewing 
direction to an object. 

 

 

Figure 2. A checkerboard pattern is placed on the rotary table to calibrate the 
camera. The world’s Y-axis coincidences with the table rotation axis. 

The camera projection matrix at any view i is calculated as 

 
0

( )i iP P R ,   (3) 

where ( )
i

R  is a 4 4  rotation matrix around the Y-axis by 

the angle
i
 . 

A simple experiment was carried out to assess the accuracy 

of camera calibration across multiple-views. Several images of 

the pattern from various views are used to reconstruct the 

corners of the pattern squares in the 3D world coordinates. 

These 3D points are then compared to the known ground-truth 

positions of the calibration pattern squares. The root-mean-

square error is found to be about 0.1±0.04 mm across the 

various views, which indicates very high calibration accuracy. 

III. PROPOSED APPROACH 

In this paper we consider the problem of recovering the 3D 
shape of a given object from a set of 2D images taken from n  

multiple calibrated viewpoints. We assume that the object is 
made of Lambertian materials and there is texture in the 
albedo. The approach proposed in this work shares some 
fundamental points with that of [8]. The two approaches find a 

surface that minimizes an energy functional that is written as 
the integral of a data fidelity criterion on the unknown surface. 
This criterion is based on the normalized cross-correlation 
between image pairs. However ours is different in a number of 
aspects. In [8] the normalized cross-correlation between image 
pairs is done by picking a window around a point in one image 
and comparing it with its transformed window (around the 
corresponding point) in another image. This transformation is 
computed through the unknown surface, which is then taken 
locally planar. Here, we will present a better matching 
process. Instead of considering the transformations between 
image patches, we project a point on the surface to each 
visible image and then pick a window around each projected 
point. Then the matching is done by comparing each pair of 
these widows. 

The Euler-Lagrange equation that minimizes the functional 
of [8] is driven in terms of the surface, then the evolution is 
implemented via introducing later a level set formulation with 
some simplification by dropping some terms. In this work, the 
energy functional is embedded in a level-set framework from 
the beginning. An advantage of this formulation is that one 
can easily and in straightforward manner model any available 
information on the object shape into the energy functional. 
The minimization of the energy functional is done on the 
whole 3D space, leading naturally to the evolution to a partial 
differential equation (PDE) of the level set function. All the 
terms in the PDE are used to implement the evolution without 
dropping any of them. Consequently, our approach offers a 
number advantages over that of [8] and similar works, 
e.g., [17][18][29], which tend to be sensitive to the initial 
position of the surface. On the contrary, our approach tends to 
work starting from any initial position, and the final result is 
not sensitive to where the level-set function starts its 
evolution.  

In this section, we give the full details of the proposed 

approach. We start with brief review of some fundamental and 

preliminary concepts on level sets. Then we formulate our 

approach in a level-set framework, addressing the object 

visibility and evolution issues. 

A. Preliminary Concepts 

Level set methods were devised by Osher and Sethian [3] 
to implicitly model evolving interfaces in two or three 
dimensions. Level set methods have several advantages 
compared to the explicit active contours (snakes) introduced 
by Kass et al. [11] and other deformable methods that use the 
parametric representation of curves and surfaces: 

• One can perform numerical computations involving 
curves and surfaces on a fixed Cartesian grid without 
having to parameterize these objects.  

• It is conceptually straightforward to move from two to 
three and even higher dimensions (although 
computational cost is exponential in dimension). 

• Moving interfaces automatically handle the topological 
changes, which happen often and are desired in 
evolutions; they can easily merge or separate. 

• Geometric quantities are easy to calculate: surface 
normal, curvature, direction and distance to the nearest 
point on the surface. Surface motion can depend on them. 

Therefore, level set methods have received attention in 
many fields, including image processing, computer graphics, 
computer vision, fluid mechanics, and computational 
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geometry. By now, level set methods have become standard 
tools for implementing evolution PDEs.  

In an implicit formulation the interface in Ω  
n

R  is a 
non empty subset defined by [3] 

  Γ Ω; 0 ,      x x                     (4) 

where the function, ( )x , : ,
n

R R   has the following 

properties  

 

( ) 0            inside(Γ),

( ) 0            outside(Γ),

( ) 0            Γ.

for

for

for







 

 

 







x x

x x

x x

         (5) 

In three spatial dimensions the gradient of the implicit 

function ( ) x , is given by , , .  
x y z

  
 

  
  

  

 
 
 

 is 

perpendicular to the isocontours of   pointing in the direction 

of increasing  . Thus, the unit normal is ,








n  for points 

on the interface. The mean curvature of the interface is defined 

as the divergence of the normal,  . div ,






  



 
 
 

n  so 

that 0   for convex regions, 0   for concave regions and 

0   for a plane.  

Often, the interior of the interface (surface) can be 

presented as    Ω : 1 ,H  x x  where  .  H is the 

standard Heaviside function. Using this notation, the 

integration of some function f  over the interior can be given 

by  
Ω

 ( ) f H d x x . The directional derivative of the 

Heaviside function  .H  in the normal direction n  is given 

by     .  H      x n , where (.)  is the standard 

Dirac function on the real line ( ( ) /u H u    ). As such, the 

integral of the function f  over only the boundary Γ  can be 

presented by  
Ω

 ( ) ( )f d   x x x . 

B. Multi-view Stereo Level-set Formulation 

The object to be reconstructed is to be represented by a 

level set function  . We seek the zero level set of   that 

minimizes the energy functional 

     
Ω

 E dXdYdZ     Φ X  

Ω

 ( ) dXdYdZ    ,   (6) 

where    Φ X is some matching score for all points 

  3
,    ,    Ω ,X Y Z R  X  which should be minimized on 

only the object surface (boundary). The integral (6) is however 
done on the whole 3D space Ω  by introducing the term 

( )    in the integral. The second term is a smoothness 

term weighted in the functional by the regularizing parameter 
  that to be chosen a priori. One advantage of this 

formulation is that one can easily model any available 
information on the object shape into the energy functional (6); 

for example we can add a priori information to force the level 
set function to reconstruct a predefined object.  

The function  Φ X  is based on the normalized cross-

correlation and taken as  

   
, 1

, 

v
n

ij

i j

i j





Φ X Φ X                 (7) 

where 
vn is the number of visible cameras to the current 

voxel X  and the cross-correlation,  
ij

Φ X , between two 

visible cameras i and j  is given by [18]   

 
,

1 .       
, ,

            
i j

ij

i i j j

I I

I I I I


 

  



 
Φ X   (8) 

As such, similar to [8], the functional (6) works best when 
the object surface is textured. The correlation (8) is computed 

over two fixed windows in the two images ,i jI I . The window 

in the image 
iI  is taken around the pixel coordinates  ,

i i
r c  

of the projection of the scene point X  onto the image
iI via the 

projection matrix 
i

P ,  

       , , , , ,     i i

i i i i i i i

i i

u v
r c u v w

w w
   

 
 
 

π x π PX π
 
(9) 

where the inhomogenizing transformation π  (converts form 

homogenous to inhomogeneous coordinates). The quantities in 
(8) are thus given by      

 
2 2

2

2 2

, ( , ) ,

h w

i i i i i i

h w
m n

I I I r m c n I

 

                (10)   

 
2 2

2

2 2

, ( , ) ,  

h w

j j j j j j

h w
m n

I I I r m c n I

 

           (11)          

           
2 2

2 2

, ,

h w

i j i i i i

h w
m n

I I I r m c n I

 

          

                                      ( , ) ,
j j j j

I r m c n I     (12) 

where h  and w  are the height and width of the correlation 

window. We take h =5, and w =5 in all our experiments. The 

quantities iI  and jI  denote the mean values of 
iI  and jI  

respectively  

 
2

2 2

1
, ,       

h w

h

i i i i

h w
m n

I I r m c n
h w

 

  


  (13) 

  
2

2 2

1
, .       

h w

h

j j j j

h w
m n

I I r m c n
h w

 

  


 (14) 

Summation that appears in (7) is computed only for those 

points of the surface { : ( ) 0}S  X X  which are visible in 
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the two concerned images. Thus, estimating  Φ X  requires 

computing the hidden parts of the surface for all cameras. 

C. Visibility 

At each step, in order to compute the summation in (7), we 
need to compute the visibility,  . It is equivalent to the 

problem of determining which part of the surface is visible 
from a given view point (the camera center in our case). This 
is a classical problem in computer graphics. A typical 
approach to this problem is the so-called ray tracing. The idea 
is to start from each point in the domain of interest, shoot a ray 
towards the view point, and check the number of times this ray 
hits the surface. Unfortunately this intuitive algorithm turns 
out to be computationally expensive. However, it is possible to 
exploit the level-set representation of surfaces to efficiently 
solve the problem. We adopt here a level-set implementation 
of the implicit ray tracing technique that is originally reported 
in [19]. This is a one-pass algorithm that finds the line of sight 
for a given configuration of implicit surfaces in an incremental 
way. The algorithm computes another level set function  , 

which tells us the portions of   that are visible from the view 

point. More precisely,  Ω : ( ) 0 X X will be the regions 

visible from a view point v , see Figure 3. Therefore, the 

desired visibility function can be written as ( ).H   For 

more detail on implicit ray tracing, we redirect readers to [19].  

D. Evolution Equation 

Now we can rewrite (7) to reflect the visibility as: 

 
, 1

( , ) ( , )

n

ij

i j

i j

i j 




Φ X X Φ ,               (15) 

where n  is the number of all views, ( , )z X is a characteristic 

function which denotes the visibility of the voxel X  to the 

camera z  

( , ) 1    if     is  visible  to  camera  z,

( , ) 0    if     is  not  visible  to  camera  z.

z

z













X

X

X

X
(16) 

The Euler-Lagrange equation for   of the functional (6)

can be shown (after some lengthy computation) equal to   

    ,                
E

   



     


Φ Φn

 

(17) 

where   is the mean curvature. Employing an artificial time 

0t  , the evolution equation becomes 

    .
E

t


   



 
      

 
Φ Φn            (18) 

Note here, on the contrary to other approaches [8][18] we 
neither drop any terms nor approximate the other terms; all the 
terms of the resulting evolution equation are used. 

In our implementation, we use a regularized form of 

   [20] 

 
2 2

1
( )  


 

  



 .               (19) 

This regularized form     is used in (18) in place 

of     . Using this approximation, the algorithm has the 

tendency to compute a global minimizer. One of the reasons is 
that, the Euler-Lagrange equation acts only locally, on a few 

level surfaces around 0   using the original Dirac function, 

while by the regularized form, the equation acts on all level 
sets, of course stronger on the zero level set, but not only 
locally. In this way, in practice, we can obtain a global 
minimizer, independently of the position of the initial set. The 
final evolution equation is hence given by 

   .         
E

t


   


 
      

 
Φ Φn (20) 

We now turn to some implementation issues. The term 


 



Φ
Φ

X
  is given by  

, 1

 ( , ) ( , ) .

n

ij

i j

i j

i j 




  Φ X X Φ    (21) 

  

Figure 3. Illustration of visibility algorithm in 2D. The view point v is visible 

to all points in the region ( ) 0 X , the gray region, and invisible to the 

region ( ) 0 X , the white region. 

The gradient 
ij

Φ  can be computed directly from (8). 

However we will need to calculate the following derivatives: 

i
I

X
 and 

j
I

X
, which can proceed as follows. Using the chain 

rule we have  

  
 ( )

. .    

T
I
i i i i

I
i i

i

   
 

    

P X π x x X
π P X

X π x X X
(22) 

where 

( )
,

T

i i

i

I
I


 



P X

π
                (23) 

and  
2

2

1 /     0         /( ) ( / , / )
.

( , , )     0   1  /      /

i i ii i i i i

i i i i i i i

w u wu w v w

u v w w v w

 
 

  

 
 
 

π x

x
    (24) 

And two last ingredients needed,  
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.
i

i






x
P

X
 and 

1     0     0

0    1       0

0     0    1 

0     0     0






 
 
 
 
 
 
  

X

X
.  (25) 

As such, we have all pieces need to compute i
I

X
 and 

, 
j

I

X
which allows us to calculate 

ij
Φ  then .Φ   

The numerical implementation of the PDE evolving (20) is 
carried out on the discretized Cartesian grid using the semi-
implicit scheme [20][23] to satisfy the Courant-Friedrichs-
Lewy (CFL) condition [23]. By using this scheme we can 
speed up the evolution of the level set function. 

Implementation note: The background of the object can be 

segmented out from the input images beforehand. So the 

background pixels in each image can be given a specific color 

(e.g., black). A better scenario though is to mark those 

background pixels with alternating colors in the input images 

(e.g., white in one image and black in another, and so on). 

This will cause those points to have very little correlation 

among the various views (thus contributing significantly to the 

error criterion (6)). Consequently, this will softly guide the 

level set evolution to exclude from the object the 3D points 

being projected to background pixels in any of the input 

images. This scenario improves further the results of the 

approach in a straightforward manner, without the need for 

any modification in the level set evolution, and more 

importantly, without the need for taking hard decisions on 

those points, the case that may lead to unrecoverable 

reconstruction errors.  

IV. EXPERIMENTAL RESULTS 

In this section, the proposed approach is evaluated extensively 
using several experiments on different datasets. Firstly the 
approach (implemented in Matlab, but the data acquisition 
program with the GUI implemented in Visual C++), is applied 
to a synthetic dataset generated using the AutoCAD program. 
This experiment using the AutoCAD environment helps 
quantify the performance versus ground-truth results under 
varying degrees of artificial noise. Then the practical 
usefulness of the proposed approach is demonstrated through 
its application to real datasets publically available from the 
internet, as well as real datasets obtained using the system 
setup which we have constructed. 

A. Synthetic Dataset 

We apply our approach to a synthetic dataset generated 
using the AutoCAD 2007 program. We use AutoCAD 
program to simulate the developed system. As described in 
section II, the camera must be calibrated at the initial view. In 
this experiment, we accomplish this using a synthetic 
calibration pattern, see Error! Reference source not found.4.  

The captured image is then used to find 
0

P  as explained in 

Section II, from which all the other projection matrices are 
derived given the rotation angle of the object (rotary table). 
Then the setup is used to get 12 images of a horse object by 

rotating the object about the Y axis and taking an image every 
30º, see Figure 5. The proposed approach is applied to those 
images, and some rendered views of the reconstructed object 
are shown in Figure 6. Apart from some voxelization effect 
due to the numerical implementation on a discretized grid, the 
horse shape is accurately modeled. Due to our efficient shape 
representation, notice how the fine details of the horse’s legs 
and tail are correctly reconstructed. The size of volume in this 
experiment is 160×160×160 voxels, and it takes about 65 
minutes to complete on a P4 3GHz PC with 2Gbytes RAM. 
The initial level set is a sphere with radius 0.01. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Using AutoCAD to simulate our developed setup and acquire the 

image of the calibration pattern. 

To simulate non-ideal conditions in real environments, 
input images are noised by additive Gaussian noise with zero 
mean and standard deviation, σ,   that is varied from 0 to 70 in 

steps of 10. Then at each value of σ,  our approach is applied 

to the input images. To assess the quality of the reconstructed 
shape, the 3D reconstruction from the noisy images is re-
projected onto the different view directions and the silhouettes 
are obtained as illustrated in Figure 7. As an accuracy measure, 

we use the root mean square error (
RMS

E ) between those 

obtained silhouettes and the corresponding ground-truth 
(noise-free) silhouettes:  
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E
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1
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  ,  (26) 

where 
I

n  is the number of images, 
I

H  is the image height, 

I
W  is the image width, 

proj

i
I is the projected image to the i-th 

view, and 
gt

i
I  is the corresponding ground-truth noise-free 

image for the i-th view. For the sake of comparison, the same 
procedure is repeated using Faugeras and Keriven’s 

approach [8]. The plot of  
RMS

E  versus for the two 

approaches is shown in Figure 8. From this figure, one can 
notice consistently the better and robust performance of the 
proposed method over the approach in [8] versus all levels of 

noise. Up to the high noise level of 50, 
RMSE remains below 
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0.18 for our approach, while the other approach sooner 

exceeds this 
RMSE level. For noise higher than that, the input 

images hardly show the details of the horse, and accordingly 

RMSE starts to increase notably. However, as shown in Figure 

7(d) and (e), even in this case, the silhouettes of the 
reconstructed horse are recovered with rather good accuracy. 

 

 
Figure 5. Using AutoCAD to simulate our developed setup and acquire 
images from multi-views of an object. (Top) Horse. (Bottom) Some views of 
12-frame horse sequence taken using AutoCAD simulated camera. 

 
Figure 6. Some rendered views of the final reconstructed 3D model by the 

proposed approach. 

 
Note also that in our experiment with the approach in [8], care 
is taken to initialize it properly as it is sensitive to where the 
evolution has started, which is not the case with our approach.  

B. Real Datasets from the Internet 

To evaluate our approach on real objects we apply it first to 

reconstruct objects whose datasets are available on the internet. 

Each dataset contains the projection matrices of each view. 

The backgrounds of the downloaded images are segmented 

manually. 
Figure 9 shows some images of a 12-frame sequence for a 

rooster dataset obtained from the Computer Vision and Image 
Processing Lab at the University of Louisville [33]. To run our 
approach, the initial zero level set function was taken as a 
sphere, where several locations and sizes have been 
experimented with. Figure 10(a) illustrates some of those 
initial zero level sets along with the reconstructed 3D rooster 
model. The proposed approach was able to obtain very good 
reconstruction results starting from various initial level sets. 
Notice also how the rooster’s crown that has sharp and thin 
parts is accurately reconstructed. You can compare the results 
in Figure 10(a) with the results of the space carving approach 
in Figure 10(b), which showed a noisy result with missing 
parts and several floating voxels. Our results here are 
smoother and there are no floating voxels in the obtained 3D 
model. Some evolution stages are shown in Figure 11. In this 
experiment we used a volume of size 80×80×80, and  =100. 

On a P4 with speed 2.8 GHz PC with 1GBytes of RAM; it 
takes about 30 minutes to reach the final shape. 

 

 
(a)                         (b)                             (c) 

 
(d)   (e) 

Figure 7. The ground-truth (noise-free) silhouette of the first view of the horse 
sequence in (a) versus the silhouettes of the projections of the reconstructed 

shape onto the first view at different values of σ : (b) σ =0, (c) σ =50, (d) 

σ =60, (e) σ =70. 

 

 
Figure 8.

RMS
E  versus the noise standard deviation σ for the proposed 

approach and Faugeras and Keriven’s approach [8] on the horse sequence. 
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Our method is also applied to the Oxford dinosaur dataset 

[31]. Figure 12 shows some of the 36 images used. Figure 13 
shows the results of applying our method starting from 
different initial level set functions. As shown in this figure our 
approach could reconstruct the object regardless of the 
position and size of the initial level set function. The 
dinosaur’s hands, feet and tail are correctly reconstructed in 
very good details. The volume size used in this experiment is 
140×140×140 and  =100. 

 
 

Figure 9.  Some views of 12-frame rooster sequence. 

 

 

 

Figure 10. (a) Some initial level set functions (spheres shown in green) and 

the final reconstructed 3D model (shown in red) by the proposed approach. (b) 

Two rendered views of the reconstruction by the space carving technique [14] 

using the same input images. 

 

 
            Initial surface             After 2 iterations               After 4 iterations 

 

 
        After 6 iterations            After 8 iterations            After 10 iterations 

 
Figure 11. The evolution of the level set function to reconstruct the final 
surface for the experiment on the 12-frame rooster sequence. 

 

Figure 12.Some views of 36-frame dinosaur sequence. 

 
Figure 13. Several different initial level sets (spheres shown in green) and the 

final 3D surface (shown in red) for the dinosaur sequence. 

Our approach is also applied to a sequence of 24 images 
for another dinosaur [32]. Error! Reference source not 
found. shows some of these images. In Figure 14, we see the 
result of applying this method, as before, starting from 
different initializations. As shown in figure, the fine details of 
dinosaur’s fingers and tail are accurately modeled. The 
volume size used in this experiment is 100×100×100 and 
 =100. It takes about 1 hour to get the final surface in 4 

iterations. 

C. Real Datasets using Our Setup 

To evaluate the proposed approach using the developed setup, 

we apply it to some other objects. Figure 16 shows some of 12 

images of a baby toy. The background in the input images has 

been segmented out manually. Figure 16 shows some views of 

the reconstructed object. In this experiment we used a volume 

of size 80×80×80, and  =100. The approach needed four 

iterations to reach the final shape taking about 30 minutes on a 

(a) 

(b) 
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P4 with speed 2.8 GHz with 1GBytes of RAM. Another 

experiment is done on a duck toy for which, 12 images are 

taken by our setup, see Figure 17. Figure 18 shows some 

views of the reconstructed object. In this experiment we used a 

volume of size 80×80×80, and  =100. The four iterations 

needed to reach the final shape took about 20 minutes. 

 

 

 

 

 

Figure 14.Some views of 24 images of dinosaur #2 

 
Figure 14. Several initial level set functions (spheres shown in green) and 

some views of the final reconstructed 3D model (shown in red) for dinosaur 
#2. 

 
Figure 15. Some images of a 12-frame sequence of a baby toy taken by our 

setup. 

 

 
Figure 16. Some views of the final reconstructed baby toy. 

 

 
Figure 17. Some images of a 12-frame sequence of a duck toy taken by our 

setup. 

V. CONCLUSIONS 

We have presented a simple, yet effective system for complete 
multi-view 3D shape reconstruction consisting of a rotary-
table and a USB camera, both controlled via a desktop PC. 
The system offers a cost-effective solution to the multi-view 
stereo acquisition problem without the need for using several 
cameras. A variational approach has been formulated and 
developed to reconstruct the 3D object shape from the 
acquired sequence of calibrated images. In contrast to existing 
methods, this approach presents a flexible shape 
representation and an efficient optimization algorithm with no 
special initialization requirement. The object is represented as 
a level set from the first problem formulation. This also allows 
the easy incorporation of any available shape a priori 
information in the energy functional in order to guide the 
surface evolution. Our extensive experimental results have 
shown the proposed approach can successfully find the 3D 
shape regardless of the position of the initial surface. Results 
have also demonstrated that fine details of the objects have 
been correctly recovered.  

 
Figure 18. Some views of the final reconstructed duck toy. 

 

Our current efforts are directed to utilize the ease of 
incorporating prior shape information in our approach in order 
to reconstruct objects with shape variations consistent with a 
set of training model examples. This can offer a great 
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advantage when working with a specific category of objects. 
Some early implementation and results of our idea are already 
drafted in [24]. Another direction for our current research 
efforts is to address the time performance of the approach. The 
developed approach takes a small number of iterations 
(typically 4-8) to converge, but a single iteration may take 
rather a long time (about 3-12 minutes depending on the 
volume size) due to the high computational cost for the 
various approach operations (e.g., visibility calculation and 
level set evolution). One possibility to reduce this time is 
converting our shape reconstruction code from Matlab to a 
fully compiled programming language (e.g., C++). Another 
important possibility is to utilize parallel programming 
concepts to carry out computations concurrently on multi-core 
CPUs available nowadays on desktop PCs. 
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