
Int. J. Net. Tech. Sys. 2, No. 1, 9-15 (2014) 9

© 2014 UOB SPC, University of Bahrain

Energy Saving for OpenFlow Switch on the NetFPGA

platform Using Multi-Frequency

Tran Hoang Vu

*
, Tran Thanh, Vu Quang Trong,

 Nguyen Huu Thanh,

 Pham Ngoc Nam

School of Electronics and Telecommunications, Hanoi University of Science and Techonogy, Viet Nam

E-mail: vu.tranhoang@hust.edu.vn

Received: 15 Aug. 2013, Revised: 20 Oct. 2013, Accepted: 22 Oct. 2013, Published: 1 Jan. 2014

Abstract: Improving energy efficiency in switch is becoming an increasingly important research topic. In this paper, we

present the lesson gained by experimenting with a power management mechanism aimed at reducing the power

consumption. One solution for this problem is to control intelligently the power consumption of switches used in data

centers. This paper proposes an extension to OpenFlow switches to support different power saving modes. The

extension includes defining new messages in Openflow standard and designing a Clock Controller (CC) on the

hardware of switch based on NetFPGA platform to implement a frequency driver of the switch under various ranges of

traffic loads. Experimental results demonstrate an excellent energy saving according to different working modes. Our

results show that all the functions of the Clock Controller of the designed system are valid, and the designed system is

feasible for the switch to save energy.

Keywords: Openflow Switch, NetFPGA, Power control, Data Center Network, Green networking.

I. INTRODUCTION

One consequence of the growth in Internet and

network equipment is the increase of power consumption.

It is calculated that Internet power consumption seizes

approximately 1% − 4% of total electricity consumption

in countries with broadband Internet [1]. Among all kinds

of network devices (excluding PCs), switches and routers

represent most of power consumption of the Internet [2]

[1]. Although current link utilization averages 30% and

peaks 45% [3], switches and routers always use up their

capacity (24 hours a day, 7 days a week) [4]. This results

enormous energy waste and brings the opportunity for

substantial energy conservation.

Therefore, the issue of network energy efficiency is

receiving considerable attention [5], [6], [7], [8], and some

novel hardware devices enabling different power states

are promising [9]. In [10] and [11] we proposed a

framework called
1

ECODANE (Reducing Energy

Consumption in Data Center Networks based on Traffic

1
 Part of the work in this paper is done within the scope of the

ECODANE research project which is co-sponsored by the Ministry of
Science and Technology (Vietnam) and the Federal Ministry of

Education and Research (Germany).

Engineering) which focuses on optimizing power

consumption of network components by designing an

intelligent network control system that dynamically adapts

the set of active network components corresponding to the

total traffic going through the data center. The

experimental results in [10] and [11] have shown that by

disabling unused links (i.e. ports) and switches, an energy

saving of 25% to 40% can be achieved. In [12] we design

an OpenFlow Switch Controller (OSC) which receives

control messages from the OpenFlow controller and

controls switches and links. The design of OSC can be

used as a block in OpenFlow compliant switches. Our

prototype OSC can be used together with a NetFPGA

based OpenFlow switch [13] for power aware networking

research. Such a framework, however, requires the use of

a more flexible and configurable network architecture

such as Software-Defined Networking (SDN), in which

the OpenFlow is one of the technologies widely used.

There have been attempts to extend the current

commercial switches to support OpenFlow protocols [14]

[15] or to build a complete OpenFlow switch for research

purposes [13]. However, these switches do not have

power aware functionalities. In this paper, we propose an

extension to OpenFlow switches to support different

power saving modes. These modes are likely energy

International Journal of Computing and Network Technology

10 T. H. Vu et. al. : Energy Saving for OpenFlow Switch on the NetFPGA platform Using …

saving for switch when input traffic changes. The main

contributions of our work are the following:

 We extend the OpenFlow protocols to include new
message which enables the OpenFlow controller to
control switches to work at different frequencies.

 We design a Clock Controller(CC) which receives
control messages from the OpenFlow controller
and reduce the frequency adapted on traffic
throughput the switch to save energy.

The rest of the paper is organized as follows. Section 2

presents the related work. The design of a Clock

Controller is described in Section 3. Section 4 describes

new messages which we propose to add to OpenFlow

standard to support power management functionalities.

Section 5 describes Experimental results. Conclusions are

drawn in section 6.

II. RELATED WORK

 This Section presents an overview of related
technology, standard and framework used in next
Sections.

A. Openflow

OpenFlow protocol is an open and standardized
protocol for the network controller communicating with
the switch [16]. In a classical router or switch, the fast
packet forwarding (data path) and the high level routing
decisions (control path) occur on the same device. An
OpenFlow Switch separates these two functions. The data
path portion still resides on the switch, while high-level
routing decisions are moved to a separate controller (Fig.
1). The OpenFlow Switch and Controller communicate
via the OpenFlow protocol, which defines messages, such
as packet-received, send-packet-out, modify-forwarding-
table, and get-stats.

Figure 1. OpenFlow Switch.

B. NetFPGA System

An Openflow Switch currently has two main parts
which are Software on a Linux OS, and Hardware on a
NetFPGA-1G Board.

 The first part contains interface and driver for
Openflow Switch. We can obtain this part from
head website [16]. The software connects directly
to Controller over a sercure channel with its own
Openflow protocol. All routing infomation are

exchanged on this line. There is no data-flow
carried or mixed with control-flow.

Figure 2. Diagram of the NetFPGA system.

 The second part is a NetFPGA-1G board
containing a FPGA using Xilinx Virtex-II Pro 50
and a Gigabit Ethernet using Broadcom
BCM5464 PHY [17]. This part gets routing
infomation from software, update routing table
and forward all packets from inputs to output.

C. Power Consumption Profiling of NetFPGA

In fig.3 describes the functional blocks of the
Openflow switch on NetFPGA platform.

BCM5464

SR

(Ethernet

Controller)

FPGA

Eth 1

Eth 2

Eth 3

Eth 4

NF2 Register

Group

CPCI Bus

Controller

UDP Register

Master

Input

Arbiter
VLAN

remover

Watchdog

Lookup

VLAN

adder

Output

Queues

Custom

Block

MAC RX-TX256kb BufferSRAM Ctrl 4Mb Buffer

NF2_MDIO

User Data Path

NF2_DMA

CPU Queues

Device ID

Figure 3. Block diagram of Openflow Switch on NetFPGA

We use PCIEXT-64UB board [18] to measure the
power consumption of each block. The measurements we
have used:

 Measurement of the total energy consumption of
the switch, when not configured FPGA and not
have any Ethernet port is connected. The result is
that the static power consumption Switch. Pstatic
≈ 4797 mW

 Measurement of the total energy consumption of
the switches, when all four ports operate with a
bandwidth of around 1Gbps. This is the largest
energy consumption of the switch when operating

normally. Pmax ≈ 11600 mW

 Disconnect each switch's Ethernet port and the
measured power consumption per port. Peth ≈
1013 mW / port

We intervene in FPGA hardware code to disable /
enable of block and a measurement energy for each
block.

 T. H. Vu et. al. : Energy Saving for OpenFlow Switch on the NetFPGA platform Using … 11

TABLE 1: RESULTS MEASUREMENT EACH BLOCKS POWER OF OPENFLOW

SWITCH

Components P (mW)

Static Power 4 797

4 Ethernet ports 4 050

NF2Core 2 733

Total 11 580

The results of our measurement are quite close to
some of the results published in the paper [19]. Based on
these results, we propose some solutions to reduce the
energy consumption of the NF2CORE block. The
solution is presented in section III and IV.

III. HARDWARE DESIGN OF CLOCK CONTROLLER

In this Section, we describe the design of CC (Fig.5)
in the Openflow switch's hardware based on NetFPGA
platform. First, we present a method to scale down
frequency. Then we set out the model and design of CC.
The content presented in this section, we give a solution
for energy research for the new-generation switches.

A. Method to scale down Frequency

As the paper [20], Switch power consumption is
calculated as below formula:

P(f) = PC(f) + KPE(f) +NIEp(f) + RIEr(f) + R0Et(f) (1)

where f is the NETFPGA clock frequency;

According to the formula (1), we can easily see how
the power interrelates with the operating frequency. To
save the power, we proposed that the operating frequency
should be reduced to: f/2, f/4, f/8, f/16, f/32, f/64

As we can see, the cpci_clk has its own value which
equals to a half of the core_clk. Therefore, a way of
dividing switch operating frequency by 2 can be done
much easily by using cpci_clk instead of core_clk. To
implement this, we use a multiplexer (available in
OpenFlow source code):

Figure 4. Dividing frequency by 2.

This method, however, only is applied in case of
frequency is divided by 2. In other cases, we can not
divide frequencies deeper because the clock related to
divided-by-n frequency is unavailable (n is a power of 2
but larger than 2). To achieve lower frequency levels, we
have to build a new frequency dividing module. This
module gets clock pulse which is cpci_clk (f/2), so we
only have to divide frequencies by up to 32, satisfy 32*2
= 64. After dividing, resulted frequency is pushed to all
modules which are using the core_clk_int.

By dint of queues between system interfaces, we can
keep whole system to run properly even frequency is set
at lower levels.

Nf2_core

User data path

Clock
controller

Nf2_top

core_clk

cpci_clk

CPCI

Input queue

Clock
divider

Output queue

 Figure 5. Switch‟s dividing frequency diagram.

B. Building Clock Controller on Hardware.

This session describes Clock Controller Module‟s
Design which receives a controlling signal from
processing center and execute this signal. To carry out,
we need to know the received signal‟s in/out direction
which is transported from center via NOX, and the
processing approach inside Switch „s processing center.

The information coming to User Data Path clock has
two types which have the separate approaching ways:

 Control signals coming from NOX: They are
updated in Register Master, after that, at each
clock pulse, the register value is shifted into a
successor register according to pipeline diagram.
Control signals then come to minor blocks where
they can be read/written depending on block
functions and be cycled back to Register Master,
diverted to NOX. Based on that, NOX can
analyze the system responders.

 Data packets coming from Ethernet gates: They
are transported through a specific link in series of
queues belonging to multi blocks in User Data
Path. The processed data packets will be diverted
to other Ethernet gates.

UDP Reg Master

Input
Arbiter

REG_CLK

VLAN
Remover

Watchdog

Lookup
VLAN
Adder

Output
Queues

User data path

Clock
Controller

REG_CLK

REG_CLK

REG_CLK

REG_CLK

Packet
processing

From
Ethernet/

DMA

To
Ethernet/

DMA

Register IO
 over PCI

Register bus

Packet bus

Connect to
Clock Divider

Packet
processing

Packet
processing

Packet
processing

Packet
processing

 Figure 6. Clock Controller location in User Data Path

 As described in Fig.6, these controlling signals come
form NOX to Switch are transport through Register Bus
via different packets. Therefore, inserting a self-defined
controlling block is completely possible to catch up these
data packets and process controlling demands properly.

12 T. H. Vu et. al. : Energy Saving for OpenFlow Switch on the NetFPGA platform Using …

Clock

ControllerRegister bus in

Master clock

Register bus out

Control signals out

Figure 7. Describing Clock Controller signals

As mentioned before, we have developed a
controlling module named Clock Controller which reads
the messages from NOX and controls output clock
according to the received information. The Clock
Controller consists of the following inputs and outputs:

 Master Clock: main clock signal from
NF2_CORE which provides clock pulse to all
modules.

 Register Bus In: receives control signals from the
previous module.

 Register Bus Out: forwards control signals to the
next module.

 Control Signals Out: puts signals to control the
clock frequency divider.

Inside the Clock controller module, we create a
register that saves control demands in each clock cycle.
According to value stored this register, Clock Controller
module can give an appropriated divided frequencies. We
will introduce signal construction send to Clock
Controller module in the next session.

IV. EXTEND OPENFLOW STANDARD

In this Section, we present about particular parts of
extending the Openflow protocol messages to control
operating frequency of Switch with a definition of new
operating mode of switch and their parameters.

OpenFlow messages sent between Controller and
OpenFlow switches for managing, controlling them
through OpenFlow channel. Each Openflow message
begins with the OpenFlow header [16]:

struct ofp_header {

 uint_8 version;

 uint_8 type;

 uint_16 length;

 uint_32 xid;

};

The Switch receives instructions from the OpenFlow
controller to control the working mode of itself. These
instructions include:

 OFPT_SWITCH_MOD message:

Type of message: Controller to Switch

Length: 32 Bytes

Functions: Change operating mode of Switch

Structure:

struct ofp_switch_mod {

 struct ofp_header header;

 uint8_t switch_mode;

 uint8_t pad[3];

};

TABLE II: OFPT_SWITCH_MOD MESSAGE

Opflow

header
Datapath ID Switch State Option Pad

8bytes 8 bytes 1bytes 4bytes 3bytes

F - - - - M2 M1 M0

7 0

Reserved ModeFlag
Figure 8. Switch state field structure

A value „1‟ in the flag bit will instruct the Switch to

change its state. The MODE field indicates the working

frequency of switch. Table III describes some available

frequency levels according to three bits {M2, M1, M0}

of switch_state in OFPT_SWITCH_MOD message.

Switch runs normally at 125MHz with M2M1M0 = “000”.

When increasing value of that field, controller can tell

switch to run at lower frequencies. We could scale down

the frequency to 3.90625 MHz and could not go further

because of system failure.

TABLE III: AVAILABLE FREQUENCY OF SWITCH

Mode M2 M1 M0 Frequency of

Switch MHz

Factor

0 0 0 0 125 1

1 0 0 1 62.5 1/2

2 0 1 0 31.25 1/4

3 0 1 1 15.625 1/8

4 1 0 0 7.8125 1/16

5 1 0 1 3.90625 1/32

6 1 1 0 Not available(N/A) N/A

7 1 1 1 N/A N/A

Algorithm flowchart in Fig.9 below illustrates the
process of receiving and processing Openflow Switch
control messages. In fact, when we implement this
module NF2_Core, openflow switch can not response to
nox controller if it run at frequency lower than
3.90625MHz.

Begin

Handshake with
NOX

Receive
Message

Flag = 1?

Y

Y

OK? End

Y

N

Mode < 6?𝐹 =
125

2𝑚𝑜𝑑𝑒
 MHz

N

N

Figure 9. Communicating flow chart between the NOX and Switch

 T. H. Vu et. al. : Energy Saving for OpenFlow Switch on the NetFPGA platform Using … 13

V. EXPERIMENTAL RESULTS

In order to test our design, we have built a hardware
test-bed including a NOX Controller, and an OpenFlow
Switch based on NetFPGA-1G Board (Fig. 10).

The NOX controller version 1.0.0 is implemented on
a host PC running Ubuntu version 10.10. OpenFlow
switch version 1.0.0.4 based on NetFPGA version 3.0.1
which is developed by Stanford [16] is used.

We also use PC1 and PC2 are connected port C0 and
C1 on Switch to generate packets on links. PC3 and PC4
are connected to port C2 and C3 and use timestamp field
in header of TCP packets to determine bandwidth of
switch.

An Oscilloscope and a Power Measure Board are
used to read ADC value at test-point 3.3V and 5.0V via
PCIEXT-64UB and then display, and calculate power
consumed.

NOX
Controller

Openflow
Switch

PC1
(Packet-generator)

PCIEXT-64UB
(Measure power

consumption)

PC2
(Packet-generator)

PC3
(Measure

Bandwidth)

PC4
(Measure

Bandwidth)

Figure 10. Testbed for power consumption measurement

Figure 11. The experimental setup with NetFPGA switch, an extender

board, NOX controller and host PCs

Experimental results show that NOX could control the
switch with new message, and switch could run at lower
frequencies.

Firstly, we measure the power consumption of
routing module on Switch which part we changed input
frequency – Nf2core with defined modes above. Results
of this measurement are described on Fig.12. In normal
mode 0, Nf2core needs about 2.694W, while it only
needs 1.347W when running at mode 1. The higher mode
we set, the more energy saved.

After that, we run switch at bandwidth of 1Gbps per
port and only change frequency. In this test, we not only

get power consumption of switch but we also gain an
important parameter of switch, that is through put could
be processed in and out of switch. The results is showed
in Table IV and Table V. Interestingly, only at the
frequency lower than 31.25MHz could the switch not be
able to forward any packages, that means we can put
switch to a state in which switch just sleep.

Figure 12. Power consumption of FPGA chip depends on frequency.

TABLE IV: SUMMARY OF NETFPGA POWER MODE

Mode Frequency of

Switch (MHz)

Factor Power of

Swich

P(mW)

Power

saved

(mW)

0 125 1 11576 0

1 62.5 1/2 10228 1348

2 31.25 1/4 9872 1701

3 15.625 1/8 9554 2022

4 7.8125 1/16 9271 2305

5 3.90625 1/32 8965 2611

Figure 13. Power consumption of whole NetFPGA board at multiple

frequencies

TABLE V: MULTI FREQ AND THROUGHPUT

Mode Frequency (MHz) Throughput max (Mbps)

0 125 910

1 62.5 125

2 31.25 8.4

3 15.625 0

4 7.8125 0

5 3.90625 0

In conclusion, our switch can save about 95% of
power consumption of routing module when running at
lowest frequency mode. In total, if using this clock
controller, switch can save about 22.5% energy
(2611mW of 11576mW).

14 T. H. Vu et. al. : Energy Saving for OpenFlow Switch on the NetFPGA platform Using …

VI. CONCLUSION

In this paper, we have successfully built a Clock
Controller in OpenFlow switch to scale down frequency
of the switch in order to save energy in data centers. This
solution somewhat reduces the power consumption in
data centers. At the same time, we also create the new
control messages, as well as in actual building is a perfect
model for testing the deeper study of hardware.
Moreover, the design of the Clock Controller block can
be used as a reference design for power management
block in commercial OpenFlow compliant switches.

Based on the results obtained in this paper, in the
future we are going to propose the energy-saving modes
for the OpenFlow switch are Low-power mode and Sleep
mode.

REFERENCES

[1] J. Baliga, K. Hinton, and R. Tucker, “Energy consumption of the
internet,” in Proceedings of COIN-ACOFT 2007

[2] M. Gupta and S. Singh, “Greening of the internet,” in Proc. of
ACM SIGCOMM, 2003.

[3] http://arstechnica.com/old/content/2008/09/what-exaflood-net-
backbone-shows-no-signs-ofosteoporosis.ars, 2008.

[4] J. Chabarek, J. Sommers, P. Barford, C. Estan, D. Tsiang, and S.
Wright, “Power awareness in network design and routing,” in
Proc. of IEEE INFOCOM, 2008.

[5] M. Gupta and S. Singh, “Greening of the internet,” in Proceedings
of the 2003 conference on Applications, technologies,
architectures, and protocols for computer communications,
SIGCOMM ‟03, (New York, NY, USA), pp. 19–26, ACM, 2003.

[6] S. Nedevschi, L. Popa, G. Iannaccone, S. Ratnasamy, and D.
Wetherall, “Reducing network energy consumption via sleeping
and rate-adaptation,” in Proceedings of NSDI, USA, 2008.

[7] P. Barford, J. Chabarek, C. Estan, J. Sommers, D. Tsiang, and S.
Wright, “Power awareness in network design and routing,” in
Proc. of IEEE INFOCOM 2008, Phoenix, USA, April 2008, 2008

[8] P. Mahadevan, P. Sharma, S. Banerjee, and P. Ranganathan, “A
power benchmarking framework for network devices,” in
Proceedings of the 8th International IFIP-TC 6 Networking
Conference, NETWORKING ‟09, (Berlin, Heidelberg), pp. 795–
808, Springer-Verlag, 2009.

[9] “Ciscoenergywise,http://www.cisco.com/,”
[10] Truong Thu Huong, Pham Ngoc Nam, Nguyen Huu Thanh,

Daniel Schlosser, Michael Jarschel, Rastin Pries, "ECODANE –

Reducing Energy Consumption in Data Center Networks based on

Traffic Engineering" (poster), in the Proceedings of 11th

Würzburg Workshop on IP: Joint ITG and Euro-NF Workshop

"Visions of Future Generation Networks" (EuroView2011),

August 1st - 2nd 2011, Würzburg, Germany

[11] Nguyen Huu Thanh, Pham Ngoc Nam, Truong Thu Huong,

Nguyen Tai Hung, Luong Kim Doanh and Rastin Pries, "Enabling

Experiments for Energy-Efficient Data Center Networks on

OpenFlow-based Platform", in the Proceedings of the 4th

International Conference on Communications and Electronics

2012 (ICCE 2012), pp. 239-244, August 1st - 3rd 2012, Hue,

Vietnam.

[12] Tran Hoang Vu, Pham Ngoc Nam, T.Thanh, L.T. Hung, L.A.Van,
Ng. D. Linh, T.D. Thien, N.H.Thanh, “Power Aware OpenFlow
Switch Extension for Energy Saving in Data Centers” In
Proceeding of the 2012 International Conference on Advanced
Technologies for Communications (ATC 2012), pp. 309-313.
Hanoi, Vietnam

[13] “Netfpga gigabit router.” [Online]. Available: www.netfpga.org

[14] [Online]. Available: http://www.hp.com/networking/
[15] [Online]. Available: http://www-03.ibm.com/systems/networking/
 switches/rack/g8264/

[16] http://www.openflow.org/documents/openflow-spec-v1.1.0.pdf
[17] https://github.com/NetFPGA/netfpga/wiki/Guide
[18] http://ultraviewcorp.com/displayproduct.php?part_id=4&sub_id=2
[19] V. Sivaraman, A. Vishwanath, Z. Zhao, and C. Russel, “Profiling

per-packet and per-byte power consumption in the NetFPGA
gigabit router,” IEEE INFOCOM Workshopon Green
Communications and Networking (GCN), 2011.

[20] Lombardo.A, Panarello. C, Reforgiato. D, Schembra. G, “Power
control and management in the NetFPGA Gigabit Router” Conf.
FutureNetw, Berlin, p.1-8, July,2012

Tran Hoang Vu is a Ph.D. student

in Electrical Engineering of Hanoi

University of Science and

Technology (Vietnam), where he

has been since 2010. He received B.

Eng. degree in Electronics and

Telecommunications from Da Nang

University of Technology and M.Sc.

degree from the University of

Danang (Vietnam) in 2004 and

2008, respectively. From 2004 until

now he has been working at

Danang College of Technology-The University of Danang,

Vietnam. His research interests include Reducing power

consumption of Data Center Networks, reconfigurable

embeddedsystems and low-power embedded system design.

Tran Thanh is a Ph.D. student in

Electrical Engineering in ESRC

laboratory of Hanoi University of

Science and Technology (Vietnam),

where he has been since 2010. He

has a B. Eng. degree in Electronics

and Telecommunications from Da

Nang University of Technology and

a M.Sc. degree from the University

of Danang (Vietnam) in 2008,

respectively. He works at The

Vietnam Research Institute of

Electronics, Informatics and Automation. His research is in

reconfigurable computing, reconfigurable embedded systems

and FPGA security.

Vu Quang Trong received B. Eng.

Degree In electronics and

Telecommunications from Hanoi

University of Science and

Technology (Vietnam) in 2013.

Since 2010 he has been working at

the Embedded System and

Reconfigurable Computing Lab,

HUST. His research interests

include Reducing power

consumption of Data Center

Networks, reconfigurable embedded systems and low-power

embedded system design.

http://arstechnica.com/old/content/2008/09/what-exaflood-net-
http://www.hp.com/networking/
http://www.openflow.org/documents/openflow-spec-v1.1.0.pdf
https://github.com/NetFPGA/netfpga/wiki/Guide
http://ultraviewcorp.com/displayproduct.php?part_id=4&sub_id=2
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6279685

 T. H. Vu et. al. : Energy Saving for OpenFlow Switch on the NetFPGA platform Using … 15

Nguyen Huu Thanh received B.S and

M.Sc in Electrical Engineering from

Hanoi University of Science and

Technology, Vietnam in 1993 and 1995,

respectively. In 2002, he received his

PhD with summa cum laude in

Computer Science from the University

of Federal Armed Forces Munich

(Germany). From 2002 to 2004 he has

been with the Fraunhofer Institute for

Open Communication Systems

(FOKUS) in Berlin, Germany. From 2004 Nguyen Huu Thanh

is associate professor in the School of Electronics and

Telecommunications, HUST. His research interests include

radio resource management in 4G systems, QoS/QoE, the

Future Internet, energy-efficient networking and software-

defined networking.

Pham Ngoc Nam received B. Eng.

degree In electronics and

Telecommunications from Hanoi

University of Science and Technology

(Vietnam) and M.Sc. degree in

Artificial Intelligence from K.U. Leuven

(Belgium) in 1997 and 1999,

respectively. He was awarded a Ph.D.

degree in Electrical Engineering from

K.U.Leuven in 2004. From 2004 until

now he has been working at Hanoi

University of Science and Technology, Vietnam. His research

interests include reconfigurable embedded systems and low-

power embedded system design.

