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Abstract:  For efficient, and knowledge based navigation, it is essential to blend mobile robot navigation details with information 

and details from navigation paths-localities. In this respect, the presented scheme was focused towards building intelligence for 

mobile robot navigation. Intelligence was achieved by considering the navigation capabilities while the mobile robot was in motion. 

The adopted learning paradigm was a five layers Neuro-Fuzzy learning architecture, with to ability to create an FIS inference for 

enhanced navigation. To capture the enormous visual and non-visual sensory data, the mobile robot platform has fully computer-

interfaced stereo vision, and reliable 3D perception system onboard the mobile platform. A Neuro-Fuzzy intelligence paradigm was 

used to learn navigation maps (SLAM) main visual features, distances, nature of localities as it travels within spaces.  Blinding 

intelligence with visual maps and non-visual sensory data, has indeed resulted in improved navigation capabilities. 
 

Keywords:  Mobile Robots, Maps Learning, Neuro-Fuzzy FIS,  Intelligent Navigation, Visual Perception, PAC.

1. INTRODUCTION 

A. Visual Navigation  

 

Figure 1.  Intelligence navigation hierarchy for the KSU-IMR project. 

    Visual information are used much more than other 
nonvisual data. Such a concept was introduced world-
wide. It was emphasized that, in order to achieve human-
like quick eye movements and image processing for 

intelligent mobile robot path planning, high speed stereo 
vision system is to be developed. Mobile robots are 
needed to understand the surroundings intelligently, Fig.1. 
There are considerable efforts to make mobile robots to 
function intelligently within unknown, unstructured 
environments with intelligent behaviors, 
[1],[2],[3],[4],[5],[6]. Kumar and Dhama in [7], described 
that a fuzzy logic controller with a set of certain rules is 
used to obtain a goal reaching task. They stated that, “a 
neural network is conceived to control robot actuator 
system by adopting feed forward back-propagation 
supervised learning strategy”.  Hani et al. [8] have 
indicated how mobile behavior can be coordinated with 
other behaviors that receive immediate reinforcement 
learnt during previous work to generate an intelligent 
reactive navigator, that can deal with unstructured and 
changing outdoor environments. They added, “system 
described uses a lifelong learning paradigm whereby it is 
able to dynamically adapt to new environments and 
update its knowledge base”,  Hani et al. [8]. Similar 
research outcomes are also found in [9],[10],[11].  In 
Petru et al. [12], a neuro-fuzzy controller for sensor-based 
mobile robot navigation in indoor environments was also 
presented. The control system consists of a hierarchy of 
robot behaviors. Sebastian in [13], also mentioned that 
“topological maps are generated on top of the grid-based 
maps, by partitioning the latter into coherent regions. By 
combining both paradigms, the approach presented here 
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gains advantages from both worlds: accuracy/consistency 
and efficiency”, Sebastian in [13].  Smith and Gelfand 
[14], Wei et al. [15], have presented a neuro-fuzzy system 
architecture serving as a behavior-based control of a 
mobile robot in unknown environments. ANN was trained 
to recognize the environment, then plan a motion.  

B. Maps Learning 

Janglová in [16], describes an approach for solving the 
motion-planning problem for mobile robots control using 
neural networks-based technique. Janglová stated “our 
method of the construction of a collision-free path for 
moving robot among obstacles is based on two neural 
networks”.  Janglová proposed a head ANN and is used to 
determine the “free” space using ultrasound range finder 
data.  The subsequent ANN “finds” a safe direction for the 
next robot section of the path in the workspace while 
avoiding nearest obstacles. Janglová used ANN 

minimization of average squared error cost function 
avg

E

Eq. (1): 

                       
2v

1j
ii

n

1n
avg

nynd
2

1

n

1
E  



                    (1) 

In terms of advanced maps building with visual 
mobile robot capabilities, a remote controlled, vision 
guided, mobile robot system is introduced by Raymond et 
al., [17]. The drive of this research work, is to describe 
exploratory research on a design of the remote controlled 
emergency stop and vision systems for an autonomous 
mobile robot. The mobile robot BEARCAT was built for 
the Association for Unmanned Vehicle Systems AUVS 
1997 competition. The robot has full speed control with 
guidance provided by a vision system and an obstacle 
avoidance system using ultrasonic sensors systems. 
Vision guidance is accomplished using (two CCD) 
cameras with zoom lenses. Camera modeling and 
distortion calibration for mobile robot vision was also 
introduced by Gang et al., [18].  In their paper they 
present an essential camera calibration technique for 
mobile robot, which is based on Pioneer II experiment 
platform. The technique includes transformation of 
coordinates system for vision system, the model and 
principle of image formation, camera distortion 
calibration. Because of  the non-linear distortion of 
camera, algorithm with optimizing operators is presented 
to improve calibration precision. 

In reference to Bonin-Font et. al. [19], they focused 
their work towards two major approaches: map-based 
navigation and mapless navigation. Map-based navigation 
has been in turn subdivided in metric map-based 
navigation and topological map based navigation. Bonin-
Font et al. [19] stated, “our outline to mapless navigation 
includes reactive techniques based on qualitative 
characteristics extraction, appearance-based localization, 
optical flow, features tracking, plane ground 
detection/tracking, etc...”.  

Atsushi et al. in [20] have developmental a high speed 
vision system for mobile robots. In their work, it was 
emphasized that, an image sensor is separately developed, 
which corresponds to the photoreceptor layer of the 
layered vision chip.  The image sensors are tentatively 
mounted on the camera head, since the resolution of the 
prototype of the layered vision chip was not sufficient.  
Head camera has an azimuth DOF for each eye and a 
common elevation DOF. Camera weight of the head is 
strictly limited, since it is mounted on a mobile robot. In 
order to satisfy both demands for the quick movements 
and light weight, the camera head is designed based upon 
a simple parallel mechanism. 

Abdul et al. [21] have introduced a hybrid approach 
for vision based self-localization of autonomous mobile 
robots. They present a hybrid approach towards self-
localization of tiny autonomous mobile robots in a known 
but highly dynamic environment.  The proposed algorithm 
is intended for two-wheeled differential drive robots 
which are equipped with a pivoted stereo vision system, 
two digital encoders, a gyro sensor, two (10g) 
accelerometers and a magnetic compass. Tracking of the 
globally estimated position is performed within the 
framework of extended Kalman filter. 

C. Fuzzy Representations of Maps 

Ho-Dong et al. in [22] have also introduced  an 
augmented reality mobile robot based vision system.   In 
their paper, they introduced a tele-presence vision system 
for monitoring of a network based mobile robot. The 
vision system was a vision part of human machine 
interface with augmented reality for the network based 
mobile robot. They synchronize head motion of human 
user and the camera motion of the mobile robot using 
visual information, user of the mobile robot can monitor 
environment of the mobile robot as eyesight of mobile 
robot.  In [23], Filliata and Meyer, stated that, “map-based 
navigation systems are categorized according to a three-
level hierarchy of localization strategies, which 
respectively call upon direct position inference, single-
hypothesis tracking, and multiplehypothesis tracking. 
They stated the advantages and drawbacks of these 
strategies”. A typical review ANN approach reported by 
Filliata and  Meyer [23]. 

 

Figure 2.  Learning maps and dynamic spaces, Araujo [24]. 
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In [24], as illustrated in Fig. 2, Araujo has presented a 
fuzzy ART neural architecture for robot map learning and 
navigation.  Araujo proposed methods that are integrated 
into a navigation architecture. Araujo [24], also stated 
that, “with the new navigation architecture the mobile 
robot is able to navigate in changing worlds, and a degree 
of optimality is maintained, associated to a shortest path 
planning approach implemented in real-time over the 
underlying global world model”. For demonstrating the 
feasibility and effectiveness of the proposed methods, a 
number of experimental results were attained for a  
(Nomad 200)  mobile robotic system. 

      Development and integration of generic components 
for a teachable vision-based mobile robot is introduced by 
Tomohiro et al. [25]. In their efforts, they presented a 
mobile robotic system for human assistance in navigation-
the robot navigates by receiving visual instructions from a 
human being and is able to replicate them autonomously. 
They described three generic components defined as the 
HOST, the VISION, and the CONTROL components as 
well as their integration in the teachable mobile robot. 
Each component is described with a peculiar feature of 
extensibility. Especially in the VISION component, there 
are two major features. The first was a correlator which 
each vision board possesses. The correlator does block-
matching between the templates and the grabbed images 
in real-time. The other is the PIM library which manages 
the visual tasks over limited parallel visual resources of 
the mobile robot. 

      Skill acquisition of a ball lifting task using a mobile 
robot with a monocular vision system was also introduced 
by Ryosuke et al. [26]. The work presents a basic 
examination of skill acquisition of a ball lifting task using 
a mobile robot with a monocular vision system. Ball 
lifting is considered as a basic practice in sports such as 
tennis or soccer. They examined the performance of a 
robot system and demonstrated that the robot performs the 
task in spite of many difficulties. The purpose is to 
develop an intelligent robot system that performs a human 
skill, they have built a basic but significant robot system 
as a first step. 

D. Kohonen’s SOM , Map Memorization 

In reference to navigation maps memorization, there 
are a number of research outcomes, in this sense. The 
main objectives, are to let the mobile robot remembers the 
routes, locations, in addition to different information 
related to the spaces it moves through. 

In [27], Vlassis et al., motioned in their paper, “present 
a method for building robot maps by using a Kohonen’s 
self-organizing artificial neural network, and describe how 
path planning can be subsequently performed on such a 
map. We show that our method can also be applicable in 
cases of a pre-existent CAD of the environment”. 

 

Stereo vision-based autonomous mobile robot was 
given by Changhan et al. [28].  In their research, they 
proposed a technique to give more autonomy to a mobile 
robot by providing vision sensors. The proposed 
autonomous mobile robot consists of vision, decision, and 
moving systems. The vision system is based on the stereo 
technology, which needs correspondence between a set of 
identical points in the left and the right images. Though 
mean square difference is generally used for the measure 
of correspondence, it is prone to various types of error 
caused by:  shades, color change, and repetitive texture, to 
name a few.  Edge of object is first extracted from the 
Laplacian of Gaussian (LoG) filtered image and post-
treatment is performed to eliminate remaining high-
frequency noise. 

 

Figure 3. Learning maps and dynamic spaces, Thrun [29]. 

In reference to [29], Thrun reported and described an 
approach that integrates both paradigms: grid-based and 
topoIogica1. Thrun stated that, “Grid-based maps are 
learned using artificial neural networks and naive 
Bayesian integration, as referred to in Fig. 3. Topological 
maps are generated on top of the grid-based maps, by 
partitioning the latter into coherent regions. By combining 
both paradigms, the approach presented here gains 
advantages from both worlds: accuracy/consistency and 
efficiency. Their paper gives results for autonomous 
exploration, mapping and operation of a mobile robot in 
populated multi-room environments”. Intelligent real time 
control of mobile robot based on image processing was 
also given by Nima et al. [30].  In this research a control 
scheme has been proposed for the first time to control a 
mobile robot using fuzzy control and image processing 
approaches in two cascaded loops. Nima et al. [30] also 
reported that, “the image processing approach is used to 
estimate the traveled trajectory and configuration-defined 
as velocity and azimuth- of the mobile robot using special 
landmarks. Having appropriate feedbacks, the fuzzy 
controller is used to control the mobile robot at the desired 
configuration while traveling to the destination point”. 
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E. Research Contribution, and Paper Outline 

    This research structure is highlighting a number of 

issues related to use of Neuro-Fuzzy learning for 

improving navigation tasks (mobile robot within 

hazardous localities). This includes the usage of 

navigation maps and SLAM updates, maps learning, 

hence to use enormous routes information for improved 

navigation. This involves also the use of a five layers 

neural network for achieving the learning scheme. In this 

respect, this article has been organized into FIVE main 

sections. In section (i), we introduced the concept of 

navigation maps learning. Different approaches have 

been summarized in this respect. Section (ii) presents the 

essentials of optimal route search used for mobile robots 

navigation systems, this includes occupancy grids, 

optimal route search. In section (iii), SLAM system, and 

other related routines are also presented. Hence, Section 

(iv) presents few important issues related to the adopted 

and used learning paradigm, which is the Neuro-fuzzy.  

Section (v) presents the experimentations space, and few 

related results. Finally in Section (vi), we draw few 

conclusions remarks. 

2. OPTIMAL MAPS SEARCH    

A. KSU-IMR Layout and Hierarchy 

The mobile robot system is intended to achieve the 
following foremost tasks. First is entirely related to 
building vision system. Second is associated with building 
navigation intelligence. Third is related to housing a 
hybrid system integrating a visually maneuvering system 
with defined intelligence capabilities. Maps and grids are 
used to build the mobile intelligence. The KSU-IMR was 
achieved while incorporating the FOUR MAIN 
interrelated functionalities, Fig.1. A decision based 
Neuro-fuzzy employed architecture has to be trained with 
mobile routes training patterns.  It is a five layers system. 
It learns the navigation behavior, as in reference to some 
learned and trained patterns. Training patterns are 
therefore generated via grids and maps generated during 
navigation experimentation. 

B. Mobile Robot Optimal Path Search.   

    For generating the most suitable maps, (SLAM 
learning), in this section we shall place more focus on the 

underlying theorem behind the adopted search. For 

choosing mobile optimal path, the known  search 
algorithm was adopted. Along mobile motion, the search 
algorithm passes through mapping graph, it then surveys 
for the best path of a lowest known cost, while updating a 
sorted priority queue of different path divisions.  In its 
basic principle, in a continuous search till a final goal is 
found, during a traversing of a mobile detected map, a 
section of a path being traversed would be given a higher 
cost than another encountered path segment. It leaves the 
higher-cost path segment and continues to search for 

lower-cost path sections.  relies on the concept of 

(best-first search and finds a least-cost path) from an 
assumed mobile robot initial posture to the mobile goal 
posture. 

Denoting  as “Distance-Plus-Cost heuristic” 

function,  uses  to decide the direction in which 

the search visits mobile posture in a tree. DPC is a 
summation of two parts.  (i): A path-cost function. This is 
a cost from an initial mobile robot posture to the present 

posture, .  (ii): A "heuristic estimate" for the distance 

to the mobile desired posture, as named by .  The 

 term of the  function must show an admissible 

heuristic.  It not essential to overestimate the distance to 

the goal. Using  in mobile robot routing,  the function

 is characterized by a straight-line distance to a 

ending mobile goal. If heuristic  satisfies an 

additional condition  for every edge 

 of the graph (where  denotes the length of that 

edge),  in this respect,  is known to be consistent. For 

such a case,  can assume an effect implementation,  i.e.  

no node needs to be processed more than once, and  is 
equivalent to running Dijkstra's algorithm, with a reduced 
cost: 

                                     (2)   

    A main concern of the search, is related to time 

complexity. This is totally in dependency on the heuristic 

search. This can also be seen as an exponential expanding 

of mobile robot number of nodes, while storing 

information about for the shortest path.  Since there is 

only a single goal posture the mobile must move to, the 

heuristic function  is to satisfy the following 

condition: 

                                             (3) 

 

     In Eq. (3),  is defined as the optimal heuristic, 

the exact cost to get from  posture to the final mobile 

target position. Equation (3) can be interrupted as 

follows:  Heuristic error in  should not propagate 

faster than the logarithm of the , the BEST 

heuristic”, which computes an accurate distance from 

robot initial posture  to a targeted posture. In 

summary,  relies on the backward costs, and forward 

costs, i.e. “estimates of”.  In its nature, it can be 

mentioned that,  is optimal with admissible heuristics. 

B. Occupancy Grids: Mapping Techniques 

     Practically, an occupancy grid splits a space where the 

mobile robot to move into small discrete grids.  It then 

assigns each grid location a numerical value. Such 

numerical value is associated with the probability that the 

*A
*A

*A

 xf
*A  xf

 xg

 xh

 xh  xf

*A

 xh

 xh

      yhy,xdxh 

 y,x d

 xh
*A

*A

        yhxhy,xdy,xd 

*A

 xh

      xhlogOxhxh ** 

 xh*

x

 xh

 xh*

 x
*A

*A



 

 

 Int. J. Com. Dig. Sys. 7, No.1, 23-34 (Jan-2018)                        27 

 

http://journals.uob.edu.bh 

location is occupied or not by an obstacle. Before mobile 

robot starts a manoeuvre,  all assigned grid values are set 

to a medial value. Hence, the mobile robot sensing 

instrumentations supply uncertainty regions (physical 

readings) where an obstacle is expected to be detected. 

Grid localities within these defined regions of 

ambiguities, have therefore, their assigned values 

increased. 

     On the contrary, localities within a sensing pathway, 

more precisely the ones between the mobile robot and 

localities in the sensing path between the robot and the 

obstacle, will be assigned reduced probabilities. For 

constructing occupancy grid, the sensing tool (used visual 

sensing) has to be correctly modelled. In this context, 

Murray and James in [31] have been indicated that, 

“experiments with sub-pixel interpolation indicate that 

the Triclops stereo vision module produces results with 

standard deviations well below one pixel”.  In order to 

reduce the sensing computational time, and for real-time 

considerations, sub-pixel interpolation have not been 

used within such stereo algorithm. We can still 

approximate a model for the mobile robot stereo vision 

by the adopting an approximated relation: 

 

     For           (4) 

    Otherwise 

 

      In Eq. (4), we defined a relation of navigation image 

disparity to depth as: 

                                                               (5) 

      In Eq. (5),  is the baseline between the two cameras, 

whereas is the disparity. We need to shift from one 
dimensional vision to two dimensional. This is done via 
stereo triangulation technique. For each individual pixel, 
resulting from the pair of cameras, stereo triangulation is 
therefore a result of intersection of the lines of sight. The 
stereo triangulation technique is used to create a two 
dimensional position of an obstacle in front of the mobile 
robot. This is based on a particular pixel (i) over an 
image of a reference camera and resulting a disparity 
result d from stereo matching. 

     Further analysis of lines of sight for centres of two 
pixels shows there is an error bound, this is as a result of 
“diamond” shape around a position. It resembles an 
elliptical area used as a model byMurray and James, as  
in [31]. In reference to the geometry of triangulation 
Guilherme and Avinash [32], it is needed to evaluate (for 
a given pixel and disparity), a region of uncertainty. For a 
trapezoidal region of uncertainty, associated corners are 
evaluated by calculating the area , where , 

hence calculating . Here  is an image 

plane coordinate alongside the rows of an image, in 
addition, is the camera focal length. Hence, an 

unoccupied area, for which an obstacle should not 
appear, is in fact a triangular as shaped by the robot’s 
posture, and the closest two corners of the trapezoid. 

3. MOBILE ROBOT SLAM SYSTEM 

    We shall denote a state of mobile robot as .  

While manoeuvring, dynamical motion of a mobile robot 

can be modelled by linear discrete-time state transition 

equation.  This is expressed by state equation of Eq. (6): 

                                                                                              

                     (6) 

 

In Eq. (6)  is the state transition matrix,  is 

the control inputs, and  is the uncorrelated mobile 

dynamics noise errors, as expressed with zero mean and 

covariance . We shall also name locality of an i
th

 

feature (landmark),  by  . Hence, defining a state 

transition matrix of an i
th

 observed feature is expressed 

as: 

    

                                                    (7) 

     

we shall let the number of features (landmarks) of a size 

 vector, as they are stationary features. A vector of all 

 landmarks is: 

                                  
            (8) 

 

    Extending state vector to contain also state 

vectors of the localities visual features.  This is also 

denoted by:                                                                           

                      
      (9) 

 

     This leads to the following entire mobile robot and 

features state transition model: 
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    In Eq. (10),   is an  identity matrix.  In 

addition, matrix  is the dim(pi) null vector. 
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Mobile Robot Motion Predication Phase:  

   In reference to mobile robot body allocated frames, and 

for the case of  as a vector of coordinates of an i
th

 

defined landmark. There are  landmarks.  As state 

vector, this is defined by: 

                       . 
     
For the POWERROB (KSU-IMR project) mobile robot 

system, it is equipped with  measurement, i.e. 

differential drive in which are the right and left angular 

displacement of the respective wheels are known or 

measured.  For instance, if the mobile robot wheels rates 

are considered constant during one sampling period, we 

can decide on the mobile motion kinematics geometric 

models.  This is further expressed as: 

                                                                     

                  (11) 

    In Eq. (11),  are representing the linear and 

angular displacement of the mobile robot. In terms of 

mobile physical parameters, they are also expressed by: 

 

                                  

               
(12) 

 

MAP Model Updating layer: While building a MAP,  this 

entirely dependent on voxels.  However, this needs  to 

updated the state of each voxel by adopting 

  a credibility value. In this sense, such a 

credibility measure defines a degree to trust a given  

observation  of the voxel  calculated based on 

the stereo pair taken at a time instant .  Such a map 

update is computed based on time index consideration, 

i.e.  for a defined  time ,  and for  an updated occupancy 

observation  , the corresponding voxel (state)  is 

updated by: 

                                                                             

                        (13) 

 

 is depending on a number of time varying terms. 

This dependency does include determined voxel 

neighborhood homogeneity, quantity of preceding 

measurements, the period of last observation.   Already 

occupied voxel is not likely to be found in an otherwise 

empty environment. Therefore, measurements 

demonstrating homogeneous sections, are further 

expected to be (credible) and we don't want to trust the 

very first measurements and over aged measurement at a 

point too much. If  is designated as 

neighbourhood HOMOGENEITY of an observation, 

hence  is found through a use of a set of  

voxel within neighbourhood of .  It is useful to only 

view directly neighbouring voxels. To achieve such a 

theme, Eq. (13) expresses , the homogeneity of an 

observation at a voxel  at a time instant . 

 

                                         (14) 

 

Furthermore,  in Eq. (14) is a credibility measure, 

and expressed in terms of homogeneity of observation

. This is defined by the following relation: 

                                                                     

                              (15) 

 

    In Eq. (15), the term  is representing counts of 

preceding observations.  is evaluated for  , the 

voxels, where such calculations continuous over the time 

. Furthermore, in Eq. (15),  is the time of last 

observation, as evaluated for the voxel , and  is 

representing a constant for scaling. Meta information 

(previous observations age, prior observations counts), 

are important data to be updated, such updates are stored 

in each voxel. For experimentation purposes, we shall 

show the laboratory ground used for building the map. 

Furthermore, we shall indicate to the representation of 

the states of voxels in a 3D scene for similar analysis of 

laboratory ground. 
 

B. Monte Carlo Localization Layer 

     Within is research, we have used the Stereo vision 

based Monte Carlo Localization (MCL) as a primary 

layer for the localization parameters estimation. In 

sampling-based methods, we represent the density 

 by a set of  random samples or particles 

  drawn from it.  We are able to 

achieve this, due to the essential duality between the 

samples and the density from which they are generated. 

From the samples we can always approximately 

reconstruct the density, e.g. using a histogram or a kernel 

based density estimation technique. The goal is then to 

recursively compute at each time step  the set of 
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samples  that is drawn from .  It is known 

alternatively as the bootstrap filter Gordon et. al. [4], the 

Monte-Carlo filter, [5], or the Condensation algorithm 

Isard and Blake [8]. These methods are generically 

known as particle filters, and an overview and discussion 

of their properties can be found in Doucet [3]. In analogy 

with the formal filtering problem, the algorithm proceeds 

in two phases. 

 (i) Prediction Phase:  In the first phase we start from the 

set  of particles  computed in previous iteration, and 

apply the motion model to each particle  by 

sampling from density  :  (i) for each 

particle : draw one sample  from  

. A new set   is obtained that 

approximates a random sample from the predictive 

density . The prime in  indicates that we 

have not yet incorporated any sensor measurement at 

time ,  and to draw an approximately random sample 

from the exact predictive probability distribution function 

,  we use motion model and the set of 

particles  in order to build  an empirical predictive 

density function of: 

                                                                                  

                           (16) 

 

      In Eq. (16), we describe a blended density 

approximation to . This is combining one 

equally weighted mixture component  

per sample .   

(ii) Update Phase:  In the second phase we take into 

account  the measurement , and weight each of the 

samples in  by the weight , i.e. the 

likelihood of   given . We then obtain  by 

resampling from this weighted set: (ii) for : 

draw one   sample   from  . 

    The resampling selects with higher probability samples 

s0i k that have a high likelihood associated with them, 

and in doing so a new set  is obtained that 

approximates a random sample from . An 

algorithm to perform this resampling process efficiently 

in  time is given by Carpenter et al. [2]. 

   After the update phase, the steps (i) and (ii) are 

repeated recursively. To initialize the filter, we start at 

time  with a random sample  from the 

prior .  Over such a second phase, it is needed to 

use the mobile measurement model to acquire a sample 

 from the subsequent terms . Instead we 

shall be using definition of (15), hence to sample from 

the empirical posterior density: 

 

                             (17) 

 
    The coding for the Monte Carlo Localization was 
achieved using C

++   
layer, with linked libraries for on-

board execution. 

 

Figure 4.  The built KSU-IMR five layers NF learning paradigm. It 

learns traversed maps main features. Inputs: (visual maps features).  

Output: (navigation decisions). 

 

4. LEARNING PARADIGM SYNTHESIS 

    KSU-IMR stands for King Saud University Intelligent 
Mobile Robot. KSU-IMR uses a Neuro-Fuzzy system to 
learn the navigation maps. The final building block for the 
proposed navigation scheme is the learning paradigm. The 
synthesis of the Neuro-Fuzzy architecture, was based on 
using five layers, where each layer is implementing a 
typical fuzzy function. That was achieved while relying 
on five layers Neuro-Fuzzy learning structure, as 
illustrated in Fig. 4. Such an architecture requires a set of 
learning patterns. Various learning patterns were gathered 
from navigation maps. This is represented in terms of 
locations (visual maps), distances from obstacles (meters), 
and the nature of navigation maps. Eq. (18), is a typical 
linguistic fuzzy relation of a system.  The fuzzy rules are 
consisting of the typical (if-then) statements. Number of 
inputs-outputs to the NF system, are decided by the 
complexity of the learning system. It consists of rules of 
the following form, y(k), Ai1 ..  Parameters are the fuzzy 
variables: 

Ri : if  y(k)  is  Ai1   and  y(k–1)  is  Ai2    

and,…, y(k– n+1)  is  Ain  and  u(k) is Bi1 and  u(k–1)  is  Bi2  and,…, 

u(k–m+1)  is  Bim  then  y(k+1)  is  Ci                                              (18) 
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     A complexity of the KSU-IMR Neuro-fuzzy mobile 

robot decision making layout has already been shown in 

Fig. 1.  In reference to Al-Mutib et al. [33],  NF has  been 

used for making the most valid navigation decisions. This 

is determined upon the learned occupancy maps and 

optimal navigation paths, which came as results of using 

the SLAM routine. Learning patterns, for the NF system, 

are generated by letting the mobile robot move in space 

with obstacles around. Using the mobile stereo vision and 

space map already computed for using SLAM, data are 

gathered, with a description of the obstacles (e.g. table, 

chair, …), and a description of needed behaviors 

according. A quite large number of rules can therefore be 

written using the SLAM and generated map of navigation. 

NF has the ability of generating auto-rules, as based on 

numerical patterns of data. Initial memberships were 

defined, hence updated in shapes while receiving 

information, and during training phase. 

 

 

 
(i) 
 

 

 
 

(ii) 

 
(iii) 

 
(iv) 

Figure 5.  Important Step:  Creation of learning patterns. (i): Stereo 

images (the disparity map) acquired from a mobile robot during indoor 
navigation. (ii): Navigation floor. (iii): Zones and regions within the 

entire navigation building. (iv): Creation of training patterns, in terms of 

distances, and other related information and data about the navigation 
decisions. Navigation decisions are based on mobile posture within a 

learned map. 

 

 
Figure 6.   Dynamic navigation patterns, are to be accounted for by NF 

learning, due to dynamic nature of navigation environments. 
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     There are two sets of data. The first for training,  and 

the other one is for testing. The data sets consisted of four 

input-four output variables,  Fig. 5, and Fig. 6: 

 
TABLE 1:  Definition of Fuzzy Inference System. 

 Fuzzy Input Parameters  Fuzzy Output Parameters 

1 Input #1 Mobile Robot 
Zones  localities 

Situation #1 Alarm Rising 

2 Input #2 Mobile Robot Area  

localities 

Situation #2 Related to 

Localities 

3 Input #3 Zones Localities 
Inference (Actions) 

Situation #3 Visual Focus 
& Defocus 

4 Input #4 Zones Behaviours Situation #4 Visual Gazing 

and DeGazing 

 

    Typical inputs to learning system are summarized as 

follows: First stimuli {Zone environmental 

identification}:   This stimuli is representing few 

knowledge about where the mobile system is navigating.  

This is defined in terms of zones. Within this study, 

environmental map of navigation where the mobile robot 

is to navigate was  divided into five main zones.  This is 

defined in terms of the following input sets: 

 
{Zone#1,  Zone#2,  Zone#3,  Zone#4,  Zone#5, …….Zone#k} 

 

second stimuli {area of navigation}: 

This stimuli is dedicated towards the definition areas of 

navigation. Of a particular interest within a navigation 

environment is the area of mobile navigation.  This tells 

where the mobile robot is navigating at a particular 

moment of time.   An area of navigation is  also defined 

within a particular zone. There are a number of areas of 

navigations. This could be a corridor or a hall or even any 

area within the defined zones, as defined below by the 

following input sets: 

 
{Obstacles in Area#1:  Main_Lab_floor,      Obstacles in Area#2:  

Out_Corridor,  Obstacles in Area#3:  Main_Building_Entry,                      

Obstacles in Area#4:  Main_Building_Entry,    Obstacles in Area#4:  
Far_Left_Corrdior …… Area#m} 

 

third stimuli {zone mobile related procedures}: 

Within a particular zone  or area,  it is needed to let the 

mobile robot acting with particular actions.  Examples 

are:    
 

{Procedure#_1: Rotate_Around,   Procedure#_2: Move_Twice,    
Procedure#_3: Scene_Video_Recordings  …  … Procedure#_H:  …..} 

 

    Fourth stimuli {behaviour in hazardous}: This stimuli 

is a crucial   input.  It defines situations when the mobile 

robot is detecting any hazardous activating.  It takes the 

appropriate actions, in reference to the define hazardous 

situation. This stimuli do represent particular behaviours 

of the mobile robot, at particular locations within areas of 

navigations. Example of which, when the mobile robot 

within {zone #1,  area #1},  then it is expected to have 

much  (gazing actions)  within this regional of interests, 

or it should track a scene and servo around it  …  and so 

forth ….. depending on how we define various 

behaviours for each zone and area within a navigation 

plan. 

 
{Behaviour#1:  Gazing_Around,    Behaviour#2:   Toxic _Detection,     

Behaviour#3:   Visually_Tracking,   Behaviour#4:  Focus_In_Out,       
Behaviour#5: Fire_Detection,     Behaviour#n:  } 

 

   All the above defined situation, and the fined 

appropriate actions have already been presented in Fig. 6. 

 
 

 
 

Figure 7.   Iterative Closest Point (ICP) localization algorithm. 
 

 

5.  RESULTS AND EXPERIMENTATIONS 

A.  (ICP) Based Localization 

    The flow chart for the employed Iterative Closest Point 

(ICP) localization algorithm details are presented here, as 

depicted in Fig. 7. A grid-based mapping approach was 

selected for the implementation of SLAM algorithm. 

Grid-resolution for the evidence map was tested with 

(500mm), (100mm), and (200mm) resolutions.  The size 

of the map currently stands at (900mm
2
). Mapping 

updates and initializations are restricted to the area under 

observation, which roughly was set to be (15m
2
). 

   For map accuracy in terms of detection of small-sized 

obstacles and gradient floors, we have developed a 

customized algorithm and verify it over a number of 

experimentation trials. The implemented mapping 

module can detect a loop and propagate errors in 

previous poses. The grid-map cells store both the height 

data about the environment and also the certainty 

measure about the existence of an obstacle. The certainty 

is a function of two elements i.e. the amount of time an 

obstacle is observed within a cell and secondly the 

number of points returned by the sensor that lie within 

each cell. An example of a confidence map generated of 

obstacles in the environment (including loop detection 

routine) is represented in Fig. 5. Darker grid-cells 
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represent a high probability of presence of an obstacle. 

Lighter shades represent an opposite hypothesis. Each 

observation is added to the map as a Bayesian update. 

 

B.  Map Accumulation Algorithm 

    The criteria for adding an observation to the built map 

can be defined as follows: A Bayesian update will either 

increase or decrease the probability of presence of an 

obstacle within a cell, as in Eq. (17). This probability 

depends upon following factors: (i) Presence of points 

lying in the cell within the current observation. (ii) 

Consecutive number of observations for which a 

minimum number of obstacle points can be associated to 

a grid-cell. Such a mechanism handles fast moving 

dynamic obstacles. (a) All cells occluded by obstacles are 

not updated.  For this purpose only the 66
o
  FOV in front 

of camera is considered for map updates. (b) The obstacle 

height data is only used for loop-closure detection. For 

obstacle detection, a combination of obstacle height and 

their persistence over multiple observations is employed. 

 

C. Learning Path Features, SLAM Maps  

    In reality, quite large of trails were successfully 

conducted experimentally within complex indoor 

obstacle scenarios for path-planning using the developed 

version of the Fast SLAM. The mobile robot has 

successfully reached its target (x,y) location using the 

planned paths in an autonomous approach.  Furthermore, 

we have submitted a set of goals to our system, hence the 

system plans path in sections for each of the goal. 

    Once an obstacle scenario is significantly changed so 

much,  in such a way that it affects the planned path,  

algorithm is used to re-plan the path to the goal. The 

planning and re-planning delays are less than a time of a 

second long, so there exists no issue for performance 

degradation within path-planning module. Specifically, 

some of the path planning examples and runs, can be 

grasped in Fig. 8.  In this respect, in Fig. 8 we show how 

a typical built intensive-features are gathered, and 

decisions of mobile navigation can extracted.  

Furthermore, in Fig. 9, we show how the features of 

navigation maps have been used to enhance the 

movement of the mobile robot, despite of its current 

location. (i): Maps, and extracting the details of 

environmental information. (ii): Typical used and 

resulting navigation decisions, to target manoeuvring 

(mobile robot path planning). The mobile robot performs 

various operations, depending on the area, region, and 

zone of navigation. 
 

  

                            (i)                                                       (ii) 

 

Figure. 8. (i) Maps generated while mobile robot in navigation phase 

(direct perception).  (ii) Further details of the navigation maps data. 
Data are then used as further training patterns for the Neuro-fuzzy 

training patterns.  Al-Mutib et. al. [33]. 

 
 

 
(i) 

 

 
(ii) 

Figure. 9.  Features of navigation maps have been used to enhance the 

movement of the mobile robot, despite of its current location. 
(i): Maps, and extracting the details of environmental information.     

(ii):  Typical used and resulting navigation decisions, to target 

manoeuvring (mobile robot path planning). The mobile robot performs 

various operations, depending on the area, region, and zone of 

navigation. 

*A
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5. CONCLUSION 

Combining mobile robot localities - maps details  
with visual data gathered through a stereo vision system 
have been presented. Initially, real-time stereo-vision 
with SLAM technique were employed for navigation 
purposes, hence navigation training patterns (features) 
were generated. Consequently, a five layers Neuro-fuzzy 
system was adopted to learn navigation maps features. 
From hierarchy point view, the mobile robot navigation 
system is compromising of three fundamental layers. 
Within the top layer, computing and intelligence coding 
is located. Stereo vision related tools and routines are 
located within the mid-level, i.e. (localization, mapping, 
maps updates, path planning, and search). At the lower 
layer, navigation loops and wheels servo loops are 
located. It was found that, integrating a learning 
paradigm with such navigation data details, has resulted 
in extremely valuable mobile behaviours and choices that 
made the mobile robot intelligently navigating even at 
difficult localities. Due to enormous sensory and 
environmental information to be dealt with, we have 
reduced the dimensionally and size of such 
environmental patterns (sensory data) using PCA. The 
employed PCA based NF learning was achieved while 
learning SLAM and maps details. Reduced 
dimensionality of environmental information are then 
used as inputs to the  Neuro-fuzzy. Samples of Neuro-
fuzzy inputs: (navigation zones, areas,.. and behaviours 
related to particular zones).   
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