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Abstract: This paper presents a fully configurable FPGA architecture for two-channel filter banks which enables rapid 

quantization error and hardware performance analysis. Lattice designs that eliminate the effects of quantization error do 

not necessarily exhibit linear phase and may result in excessive delay. This can make them ill-suited for applications 

such as digital audio. Thus, the effects of quantization on an optimized direct form FIR based filter bank are analyzed. 

This is accomplished by using a high-level, configurable architecture and parameter driven synthesis for varying 

coefficient and channel quantization, and filter types. Overall, the presented design targets high-speed optimization 

through a fully pipelined architecture that reduces complexity by uniquely multiplexing coefficients. This flexible 

architecture and its supporting tools have enabled rapid filter bank prototyping and analysis of the effects of 

quantization on performance that drastically reduces design time and cost for realization. 
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I. INTRODUCTION 

Filter banks have a variety of applications in digital 

signal processing including audio/image compression [1], 

sub band encoding [2] and adaptive systems [3]. 

Specifically, the quadrature mirror filter (QMF) is most 

commonly used to split a signal into separate bands, 

performed in the analysis bank. The simplest QMF bank 

is the two-channel filter bank, where the original signal is 

split into two bands at half the input frequency. The basic 

architecture for the two-channel filter bank, shown in Fig. 

1, was reported on in [4, 5]. Its polyphase decomposition 

and transform using noble identities (shown in Fig. 2) is 

well known for reducing the complexity of  the QMF. 

Under perfect reconstruction (PR) conditions, the two 

channels of the filter bank can be recombined via the 

synthesis bank to reproduce the original delayed signal 

with a constant gain. Perfect reconstruction and near 

perfect reconstruction two-channel filter banks can be 

achieved in a number of ways, most notably by: 

factorization, design of complementary filters, Lagrange 

multiplier approaches [6] and lattice structures [4, 7, 8]. 

   The most basic implementation uses the direct form 

of the polyphase decomposition of the QMF bank finite 

impulse response (FIR) filters. This form suffers from 

high computational complexity since the number of 

multiplications increases with filter order. To reduce 

computational complexity, dynamically distributed 

arithmetic (DDA) implementations of the FIR filters have 

been proposed that replace the summing of product terms 

during filtering with a lookup table. However, the look-

up table size increases dramatically with increased filter 

orders and is thus only efficient for low order filters. 

Field programmable gate array (FPGA) based 

architectures for DDA, direct form and a hybrid 

implementation, are reported in [9] and [10]. A variety of 

application specific integrated circuit (ASIC) lattice 

structures have been proposed with more recent designs 

and optimized implementations are reported in [11]. 

Other recent implementations are reported in [12, 13, 14]. 

 

 

International Journal of Computing and Digital Systems 
 
   

http://dx.doi.org/10.12785/ijcds/020201 

 

mailto:eraheem@uwindsor.ca
http://dx.doi.org/10.12785/ijcds/020201


54                                             A.C. Karloff and E. Abdel-Raheem: Performance Analysis… 

 

 
 

Fig. 1. Quadrature mirror filter bank 

 

 

 

Fig. 2. Polyphase decomposition of QMF bank filters H0 and G0. 

 

With the exception of some lattice realizations, which 

are not always suitable for applications that require linear 

phase and low-delay filters (e.g. [15]), the two-channel 

filter bank is susceptible to quantization error. This error 

can have a significant effect on the response of the filters 

and perfect reconstruction. Quantization error can be 

reduced by using higher bit representations of filter 

coefficients at the expense of increased resources and 

reduced performance. However, this is not always easily 

addressable for the variety of QMF bank structures that 

can be realized with different hardware optimization 

methods. Thus, one of the main challenges in 

implementing such filter banks is being able to rapidly 

evaluate the cost, performance and effects of quantization 

that result from hardware implementation. For this 

reason, a fully configurable architecture is proposed that 

automatically generates a low-complexity, high-

performance system based on reconfigurable system 

parameters that include filter order and coefficients, bit 

representation for input data, coefficients, channels and 

output. The proposed flexible VHDL model is fully 

capable of automatically synthesizing any FIR based  

two-channel filter bank using these parameters. This 

VHDL model for two-channel filter banks currently 

targets FPGA devices, but has the potential to extend to 

M-channel filter banks and ASIC implementation. 

As hardware multipliers are becoming faster and 

readily available in FPGAs, the proposed architecture 

revisits the direct form implementation with 

optimizations to reduce size and complexity compared to 

existing hardware designs. The architecture employs a 

standard cell array, fully pipelined architecture and 

reduces the number of required multipliers by exploiting 

the multi-rate nature of the filter bank as well as any 

symmetry in the filter coefficients (e.g. linear phase 

filters.) A single high-level FIR building block is used to 

implement the FIR filters in an optimized direct form. 

Multipliers share filter coefficients to take advantage of 

extra clock cycles as a result of the difference in high and 

low rate clocking schemes in both the analysis and 

synthesis banks, as well as an input folded path that 

exploits symmetric coefficients as common factors to 

delayed inputs. The result is a single, flexible architecture 

that can implement any FIR based two-channel filter  

bank  in  a  compact and high-speed design  that 

reduces the number of multiplications by up to a factor of 

four. The reduction in multipliers allows for higher order 

filters to be implemented without an excessive increase in 

memory and resources characteristic of DDA methods, 

and the fully pipelined results of these multipliers allow 

for high speed operation of high bit representations 

comparable to lattice structures and ASIC designs. This 

optimized direct form structure is later examined in 

further detail and compared  to 

alternative forms such as DDA QMF bank 

implementation [10] and its hybrid equivalent [16], as 

well as recent FPGA implementations of wavelet filters 

[17]. 

The main benefit of such a flexible, configurable 

system in terms of cost and time for implementation is 

that a wide range of different filters and levels of 

quantization can be quickly compared without having to 

spend significant time focusing on the hardware 

implementation and the performance trade-offs of each 

system. In addition, a more resource efficient 

implementation can permit greater bit representations to 

reduce the effects of quantization. This paper first 

discusses the proposed architecture and how the various 

properties of the FIR filters that compose the QMF bank 

can be exploited to form a low-complexity, high-

performance system. Next, various example filter banks 

are synthesized to demonstrate the flexibility of the 

reconfigurable system with respect to bit representation 

for filter coefficient and data quantization. Finally, results 

for quantization error and performance from various 

synthesized filter banks are presented for comparison as 

well as a complexity comparison of the proposed 

architecture and similar FPGA and hardware targeted 

implementations. 
 

II. ANALYSIS OF FILTER IMPLEMENTATION AND 

OPTIMIZATION 

A brief analysis of each filter case (even/odd order 

filters that are symmetric, anti-symmetric and non 

symmetric) for both the analysis and synthesis banks was 

performed to determine the best manner for 

implementing the desired FIR filters in hardware. The 

most common simplification is the polyphase 

decomposition of each filter, requiring N/2 multipliers for 

each filter bank [5]. Further savings can be made if 

symmetric coefficients are selected, however, the 

hardware implementation that can best exploit these 
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additional savings for every order and symmetry FIR 

filter case is not always straight forward. To address this, 

an investigation was performed to replace the polyphase 

decomposition of an FIR filter by exploiting a 

combination of extra clocks and filter symmetry while 

multiplexing filter coefficients. The result is a common 

structure that further reduces the number of required 

multipliers in both the analysis and synthesis banks for 

any order FIR filter with symmetric, anti-symmetric or 

non-symmetric coefficients. 

 

A. Non-Symmetric FIR Optimization 

Instead of decimating and interpolating filter input or 

output data to reduce the number of multipliers, the FIR 

filters are optimized by multiplexing coefficients to a 

multiplier on alternating clocks. By multiplexing even 

and odd coefficients into one multiplier, the optimized 

filter has a similar effect to the polyphase decomposition.  

The direct form block shown in Fig. 3 can be used to 

implement any FIR filter in a fully pipelined architecture 

where the partial sum (P SUM) cumulates successive 

even and odd clock outputs.  For non-symmetric 

coefficients, this structure only increases multiplier 

savings in the filter bank by a factor of two, but for 

symmetric and anti-symmetric filter coefficients, the 

savings in multipliers increases further. 

 

 
 
Fig. 3. Basic FIR cell with multiplexed coefficients and a partial sum (P 

SUM) input to cumulate successive even and odd output results. The 

basic FIR cell can be connected to pipelined adders for computing the 
sum of products. 

 

B. Optimized Direct Form Symmetric FIR 

Implementation 

When the coefficients of an FIR filter are either 

symmetric or anti-symmetric, the number of required 

multipliers can be further reduced by identifying common 

factors in the output and  reusing previous multiplier 

outputs. One or both of these methods can be employed 

depending on the order of the desired filter, and whether 

it appears in the synthesis or analysis bank. To best 

demonstrate how this is possible, the polyphase form 

must be re-expressed. Using an analysis bank filter as an 

example, instead of splitting the input signal into even 

and odd samples, filter coefficients are divided into even 

and odd coefficients with neighboring pairs assigned to a 

single multiplier as: 

 

   
  ( )      (    ) (1) 

   
  ( )        (    ) (2) 

 

where,   
  of Equation (1) denotes multiplication of the 

even coefficient of the i
th

 multiplier and   
  of Equation 

(2) denotes multiplication of the odd coefficient of the i
th

 

multiplier. Input data can be streamed directly into a 

series of pipelined multipliers such that Equation (1) is 

performed on alternating clocks with Equation (2). Note 

that Equations (1) and (2) are not performed 

simultaneously. 

On even clocks, when the even coefficients are 

multiplexed as multiplier inputs, the even result   ( ) is 

generated as the sum of products. On odd clocks, when 

the odd coefficients are multiplexed, the odd result 

  ( )is generated similarly. The result of even and odd 

outputs are summed in the partial sum block of each FIR 

cell shown in Fig. 3 and the result is generated at the 

appropriate clock depending on the position of the filter 

cell in either the analysis or synthesis bank. In this 

manner, the same multiplier architecture for the analysis 

and synthesis banks can be utilized to implement the 

optimized direct form structure, operating on the same 

input/output clock and channel half clock. Fig. 4 

demonstrates the multiplier configuration for a 7th order 

symmetric or anti-symmetric FIR filter for both an 

analysis and synthesis FIR filter. Although seemingly 

incomplete, the correct output of this multiplier 

configuration depends on redundancies in either the 

multiplier results or input folded data that will be 

discussed in the next sections. 

To determine the configuration of the multipliers for 

any order and symmetric form, an expression can be 

written for the equivalent optimized direct form. For 

example, the odd ordered, symmetric (or anti-symmetric) 

7th order filter of Fig. 4 can express even and odd clock 

outputs as: 

 

 
  ( )  

 

  
  ( )    

  ( )                 

   
  (   )    

  (   )
 (3) 

 

   ( )    
  ( )    

  ( )    
  (   )   (4) 

 

where the complete output for the analysis and synthesis 
banks is expressed as: 

  (   )    ( )    (   ) (5) 

  ( )  {
  (   )       

  ((   )  )          
 (6) 

In Equation (3) and Equation (4), the filter output is 

either a delayed and summed output of the two terms at 

half the input clock rate for the analysis bank as shown in 
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Equation (5), or an alternating switched output of the two 

terms at the normal clock rate for the synthesis bank as 

shown in Equation (6). 
 

 

 

Fig. 4. Multiplier configurations for an analysis and synthesis 7th 
order symmetric FIR filter using two multipliers. In the analysis bank, 
coefficients multiplex at the same rate as the input data and add at half 
the rate. In the synthesis bank, coefficients are multiplexed and results 
added at twice the channel rate (same as the input data). Folded paths for 
complete filter implementation are omitted. 

The outputs for an odd order symmetric filter 

generated on alternating clocks (shown in equation 3) can 

be expressed in a more general form for a Nth order filter 

as: 
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where      (   )   indicates  the  center coefficient 

index and     (     )  identifies an even or odd 

number of shared multipliers, where N indicates the filter 

length. Similarly, an even order symmetric filter can be 

described by: 
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with       and   (     ) . The anti-symmetric 

variants of these two cases simply impose a subtraction 

of multiplier sums instead of addition. The main 

observation that can be made is that the total number of 

required multipliers is equal to (   )   since 

multiplier blocks are re-used as delayed outputs. These 

redundant, delayed occurrences omitted in Fig. 4 can be 

implemented in two manners: as either delayed results to 

be summed, or delayed inputs to be added before 

multiplication by a common coefficient. The first is quite 

apparent in Equation (3) and Equation (4). The later 

becomes apparent when the expansion of the 

multiplication term is expressed as: 
 

  
  ( )    

  (   )     ( )     (   ) (11) 

 

C. Delayed Multiplier Outputs (DMO) 

The main premise behind delayed multiplier outputs is 

that for filters with symmetric coefficients, the sum of 

products of future outputs often includes some of the 

products of the current output. In this case, it is not 

necessary to compute the same product twice, but to 

simply delay the existing products to be included in later 

sums. This is shown demonstratively for the cases of 

even and odd symmetric filters in both the analysis and 

synthesis banks shown in Fig. 5. In this tabular 

representation, each row represents a new clock cycle. 

On each clock, inputs are shifted to the right. Columns 

are labeled by multipliers and delayed multiplier outputs 

are shown in bold boxes with an arrow indicating the 

source of the output. 

The problem that arises from this method is that even 

order symmetric filters in the analysis bank require that 

some of the delayed products be calculated on extra 

clocks, making it impossible to multiplex the coefficients. 
 

D. Common Coefficient (CC) 

Another way to eliminate a multiplication operation 

in a symmetric filter is by summing input values that 

share a coefficient in the output before performing 

multiplication. The multiplier expansion of Equation (11) 

can be expressed in general as: 

 

  ( )  ∑  (  ) [ (  )   (
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  (
 

 
     )]     

             
(13) 

 

 

 

Fig. 5. Summary of  DMO computations.  Multipliers  M0 and M1 
multiplex coefficients on alternating clocks. Delayed  products are 

boxed. 

 

Equations (12) and (13) show how folded input can result 

in N/4 multipliers sharing N/2 unique coefficients. Again, 

  ( ) and   ( ) are computed on alternate clock cycles 

which permits this sharing, as previously discussed for 

Equation (7) and Equation (8). Examples of this can be 

observed in Fig. 6 where some common coefficients are 

highlighted in bold boxes.  

 

 

Fig. 6. Summary of CC computations. Multipliers M0 and M1 
multiplex coefficients on alternating clocks. Terms with common 

coefficients are boxed. 
 

This is extremely effective for all cases of odd order 

filters, but further minimizing even order synthesis filters 

fails since each coefficient of the symmetric filters 

appears once in every output on every clock cycle. In this 

case, the number of multiplications is still only reduced 

by a factor of two and cannot be reduced further for even 

symmetric filters in the synthesis bank. 

 

E. Complexity Comparison 

Since the DMO and CC methods of filter implementation 

fail to further optimize a different filter, a combination of 

these two methods can be used to reduce all cases of 

symmetric filters. To determine which method to use 

predominately, the complexity of implementing each 

method must be compared. 

Since the CC method uses feedback of previous 

coefficients, N registers of the same bit width of the input 

data are required to store the feedback plus a number of 

output registers equal to: 

 

    (     )   (14) 
 

for fully pipelined computation of the sum. 

Alternatively, to implement the DMO method, results 

from the multipliers must be stored with bit width equal 

to twice the input data width and require twice as many 

of these output registers when compared to CC, 

expressed as: 

 

         (15) 
 

where Equation (14) and Equation (15) were derived 

from the multiplier structures that result from Equation 

(7) through Equation (10). As a result, it is far more 

efficient to implement the CC method, however, this does 

not mean that the DMO method cannot be used for an 

even symmetric filter in the synthesis bank. In fact, for 

this specific case, since the multiplexing of multiplier 

coefficients is achievable, the number of required delayed 

registers for the product outputs is slightly less than 

Equation (15), although still not comparable to the fully 

pipelined summation block required for implementing the 

CC method, seen in Equation (14). 

 

F. DMO and CC Architectures 

For CC, the cell shown in Fig. 3 was modified to 

include a folding path and extra adder before 

multiplication. This modification is shown in Fig. 7. The 

resulting cell can be arrayed to suit the desired filter order 

with a specific feedback path of the last cell configured 

according to the filter type being implemented. This new 

implementation can effectively replace the polyphase and 

direct form implementation as well as DDA methods 

with greater hardware savings. Fig. 8 shows the various 

foldings depending on the type of filter being 

implemented for analysis and synthesis bank filters, as 

determined by Equation (7) through Equation (10). The 

VHDL implementation of this proposed architecture can 

easily array the required number of such cells and add the 
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appropriate ending accordingly. Pipelined addition is then 

performed on the partial sum outputs.  

 

 
 
Fig. 7. Modified FIR cell and its variant. The new cell can 
accommodate both common factor feedback and multiplexed 

coefficients with a partial sum register for addition of products 

calculated on extra clocks. 

 

The dominate advantage of this architecture is that 

any bit width can be utilized for the channel data and 

parameters of the FPGA synthesizer can optimize the 

data paths, multipliers and supporting logic to suit the 

targeted device. In this regard, the effects of data 

quantization on overall resource utilization and 

performance across a number of devices is not easy to 

directly determine, but it can now be quickly evaluated 

with an overall optimized structure. 

For a more general and flexible architecture overall, 

the CC block was solely implemented. However, it 

should be noted that there are some features of the DMO 

block architecture that can be highly advantageous in 

certain PR filter bank designs. Specifically, the DMO had 

the unique feature that the same filter realization for the 

analysis block can be used for the synthesis block and 

vice versa under certain conditions. This effectively 

permits the half implementation of a filter bank that can 

perform both the functions of the analysis and synthesis 

banks with minimal supporting hardware. This is not 

investigated in further detail in this paper. 

III. FPGA IMPLEMENTATION 

The proposed architecture was implemented in 

VHDL using Xilinx ISE 10.1. Synthesis of the VHDL 

core targeted the Xilinx Virtex 5 for estimation of 

resource utilization and timing, however, it is flexible 

enough to accommodate any FPGA device with sufficient 

resources. In order to create configurable VHDL code, a 

library file was generated that contained the parameters 

of the filter bank, including bit representation, filter 

lengths, symmetries and quantized filter coefficient 

values. This library file was generated via a MATLAB 

interface, in which filters could be designed and 

converted into the appropriate fixed point representation. 

Arrangement of the filter structures shown in Fig. 8 were 

automatically generated based on filter length and 

symmetric properties. 

 

Fig. 8. Configurations of the modified FIR cell for filter bank 
implementations. 

The VHDL module was organized into the following 

structure. The top level module utilized generic 

parameters to configure the data input, channel 

input/output, and output data bus widths accordingly. The 

top level filter bank module then created four instances of 

FIR filters for the analysis and synthesis bank filters 

using filter property parameters and coefficients specified 

in the library file (generated by MATLAB). 

The next level module was the analysis FIR and 

synthesis FIR. This module instantiated and connected 

the FIR cell blocks using generic parameters and generate 

statements according to the configurations shown in Fig. 

8. Depending on the filter lengths and symmetry, various 

generic parameters were passed to FIR cell blocks and 

the DATA x and P SUM folding  were connected 

accordingly. 

Generic parameters allowed for either of the two 

structures shown in Fig. 7 to be implemented with 

positive or negative input folded data depending on 

symmetry of the filter being implemented. Finally, the 

size of multipliers and adders was determined based on 

the specified coefficient and data channel bit 

representations, and implemented according to variable 

device synthesis parameters (ideally DSP multipliers). 

 

A. Testing VHDL code 

A VHDL testbench was developed to implement the 

top level module. The testbench read input data from a 

binary file and wrote the resulting output to another 

binary file. The test data was generated via MATLAB 

where the input data was represented in the appropriate 



 A.C. Karloff and E. Abdel-Raheem: Performance Analysis…                                                                                          59 

 

signed fixed point representation. The same MATLAB 

program read the resulting output data from the VHDL 

testbench and calculated the signal to noise ratio (SNR). 

Any arbitrary input data can be specified to test the 

effects of quantization on compression or perfect 

reconstruction. 
 

B. Critical Path, Timing, and Latency 

Since the filter bank operates in a fully pipelined 

architecture, critical timing is limited by the speed of the 

most complex operation; the multiplication of a signed 

fixed point number with a constant signed fixed point 

number. In this case, the maximum speed of the filter 

bank is affected by the bit length of the values being 

multiplied and the speed of the targeted FPGA device. 

For 16 bit signed fixed point numbers, the maximum 

operating frequency of the filter bank on a Virtex 5 is 200 

MHz. For smaller bit representation, such as 12 bit signed 

fixed point, the maximum operating frequency can run as 

fast as 260 MHz. Another implication of the filter’s fully 

pipelined nature is that latency is a function of filter 

length. Exact latency depends on the order and symmetry 

of each filter. 

 

C. Quantization and Resource Utilization 

Resource utilization is a function of both the filter 

length and the desired bit representation. It should be 

noted that the odd order filters dramatically reduce the 

overall complexity, because far less FIR cells were 

required to implement the desired filters in the CC 

architecture. Since a variety of parameters exist for 

synthesis in FPGA devices, it is difficult to accurately 

predict the effects different levels of quantization will 

have on the size of implementation. Having a flexible 

architecture that inherently optimizes the general 

structure can be very useful for fine tuning the size and 

performance requirements of implementing a two-

channel filter bank for a specific application. 

 

D. Signal and Noise 

Signal to noise ratio (SNR) is independent of 

synthesis and a direct function of bit representation 

(assuming filter coefficients adhere to perfect 

reconstruction requirements.) SNR was measured using a 

ramp input to the filter bank and compared to the output 

with pertinent delay compensation as described in [6]. 

 

E. Complexity Comparison 

To demonstrate the flexibility and advantages of the 

proposed architecture, a few applications of two-channel 

filter banks were compared to recent FPGA based 

architectures in literature. Table I shows a comparison 

with the Biorthogonal 9/7 Tap filter reported on in [17]. 

For the full CDF-9/7 implementation, the proposed 

architecture reduces the number of multipliers and 

significantly improves performance of the filter at the 

expense of larger implementation for speed optimized 

synthesis on a Virtex 5 device. Table II shows a 

comparison with two DDA methods that utilize look up 

tables in place of multipliers. The proposed architecture 

reduces size and increases speed for the targeted Virtex 

device even for a low order filter realization. Savings will 

continue to increase as filter orders increase. 

 
TABLE  I:  COMPARISON WITH BIORTHOGONAL 9/7 TAP 

IMPLEMENTATION ON VIRTEX 5 DEVICE [17]. 

FEATURES CDF-9/7 [17]  PROPOSED 

MULTIPLIERS 

COEFFICIENT BITS 

SLICES (REGISTERS) 
CLOCK FREQUENCY 

RECONFIGURABLE 

16 

7 

144 
106.98 MHZ 

N 

10 

7 

749 
239.257 MHZ 

Y 

 

TABLE II: COMPARISON WITH HYBRID DDA* [16] AND DDA 

[10] WITH 4 TAP FILTERS. *EXTRAPOLATED FROM SINGLE 
FIR 

RESULTS. 

FEATURES HYBRID DDA  DDA PROPOSED 

MULTIPLIERS 
COEFFICIENT BITS 

SLICES 

(REGISTERS) 
CLOCK FREQUENCY 

RECONFIGURABLE 

0 
4 

584 

 
188  MHZ 

N 

0 
4 

364 

 
75 MHZ 

N 

4 
4 

223 

 
56.881 MHZ 

Y 

 

IV. QUANTIZATION OF PERFECT 

RECONSTRUCTION TWO-CHANNEL FILTER 

BANKS 

 

The main drawback of any variant of a direct form 

implementation or spectral factorization is that 

quantization of filter coefficients affects the perfect 

reconstruction condition. However, unlike lattice 

realizations, symmetry in filter coefficients will still 

guarantee linear phase response. The problem is being 

able to measure the effect of quantization on the filter 

bank’s perfect reconstruction and weigh the compromise 

of performance for using higher bit representations in 

hardware realization of the system. This is now fast and 

simple, since the proposed architecture can easily 

implement any FIR based filter bank for any user 

specified quantization within the capacity of the target 

FPGA device for synthesis. To demonstrate, a few 

perfect reconstruction two-channel filter banks were 

synthesized for the Virtex 5 with varying levels of 

quantization in both the channels and the filter co-

efficients. 

 

A. Example PR Two-Channel Filter Banks in [6]  

Two sets of perfect reconstruction Wilson filter 

coefficients [6] were implemented with various different 

bit representations (analysis bank input bits : channel bits 

: synthesis bank output bits) where filter coefficient 

quantization was matched to the input channel. The direct 

form complexity of the two different Wilson filters 

considered is shown in Table III. The results of each 

implementation, shown in Table IV, clearly shows the 

reduction in multipliers achievable with the proposed 
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architecture and how there is a greater reduction for odd 

order filters. In addition, the FPGA utilization in terms of 

slices is shown. Channel and output bit representation 

were selected to reduce truncation error so that the SNR 

was representative of filter quantization.  

 

TABLE III: FILTER COMPLEXITY. 

Filter Bank Filter N Total QMF Multipliers 

Example 2.1 [6] H0 

H1 

23 

25 

96 

Example 2.3 [6] H0 

H1 

16 

28 

88 

 

TABLE IV: RESULTS OF COEFFICIENT IMPLEMENTATION. 

Filter 

Bank 

MCUS # Bits SNR 

(dB) 

Max. Clock 

 

Slices 

 

Ex.2.1 

[6] 

 

26 

6:8:10 

8:12:16 

10:18:32 

39.9792 

86.0192 

121.1571 

250.815 MHZ 

242.742  MHZ 

238.960  MHZ 

1697 

2507 

3672 

 

Ex. 2.3 

[6] 

 

33 

6:8:10 

8:12:16 

10:18:32 

46.6023 

85.7358 

142.1724 

250.611 MHZ 

241.838 MHZ 

238.975 MHZ 

1735 

2667 

3985 

 

Observations can now be made regarding the 

performance and size compromise for obtaining a higher 

SNR with higher bit representations. In this particular 

case, the synthesizer targeted performance, maximizing 

the operating frequency at the expense of resources. 

Thus, as bit representation increases, so do resources 

without significantly affecting the maximum operating 

frequency. Fig. 9 and Fig. 10 show two example outputs 

from the behavioral simulation of the proposed VHDL 

filter bank architecture from Table IV. 
 

 

 
Fig. 9. Results for Example  2.1 in [6] with 8:12:16 bits used for input 
data, channel data and output data, respectively. 

 
Fig. 10. Results for Example 2.3 in [6] with 10:18:32 bits used for input 
data, channel data and output data, respectively.  

 Finally, the timing diagram generated in ISE 11.1 for 

the implementation of Example 2.3 filter bank in [6] is 

shown in Fig. 11. Here, the registers for first FIR CELL 

of the H0 synthesis filter is shown in addition to the data 

input and Y1 and Y0 outputs. The m_reg0 register holds 

the current multiplier coefficient and the results of the 

delays and summed cumulated multiplier outputs are 

present in c_sum_in and c_sum_out. 

 

V. CONCLUSION 

This paper has shown the successful design and 

implementation of a FPGA architecture for two-channel 

filter banks in VHDL. The architecture of the VHDL 

module optimizes the complexity depending on the 

length and symmetry of the filters being used for the 

analysis and synthesis banks of the filter bank. In 

addition to the multiplier optimization, the design also 

has the flexibility to implement any bit representation for 

the input data, channel data and output data. The VHDL 

module and test bench have been tested with a variety of 

different two-channel filter banks including perfect 

reconstruction, DDA implementation of 4 tap filters and a 

CFM-9/7 filter, all showing improvement in size and/or 

speed. Test results for the two perfect reconstruction 

filters in [6] were implemented with various bit 

representations, showing the great reduction of 

multipliers made possible by multiplexing coefficients to 

exploit extra clocks and filter coefficient symmetry. The 

analysis of quantization and its effects on FPGA resource 

utilization, speed and SNR were examined for different 

synthesis parameters. In addition, with minimal work, the 

current two-channel architecture can be easily adapted for 

the M-channel case using the new optimized 

implementation of FIR filters. Overall, the proposed 

structure proved not only to be an ideal implementation 

for filter banks, but a valuable tool for rapid evaluation of 

quantization. 
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