
Int. J. Com. Dig. Sys. 3, No. 1, 21-27(2014) 21

© 2014UOB SPC, University of Bahrain

Protecting FPGA-based Partially Reconfigurable Embedded

Systems and IP Cores from Remote Update

1
Tran Thanh,

2
Tran Hoang Vu,

3
Nguyen Van Cuong,

4
Pham Ngoc Nam

1,2,4School of Electronics and Telecommunications, Ha Noi University of Science and Technology, Ha Noi, Viet Nam.
3Faculty of Electronics and Telecommunications, Da Nang University of Technology, Da Nang, Viet Nam.

E-mail address: thanh.tran@hust.edu.vn, vu.tranhoang@ hust.edu.vn, nvcuong2000@gmail.com, nam.phamngoc@

hust.edu.vn.

Received 10 Sep 2013, Revised 4 Oct 2013, Accepted 13 Nov 2013, Published 1 Jan 2014

Abstract: Intellectual Property (IP) core remote update via the Internet is an advantage of FPGA-based devices. Whereby the system
designer or user can change or renew a part of his equipment. However, the problem of communication in an untrusted environment
can lead to significant damage: The risks for the IP cores of designers or damaging devices or losing the properties of the user. There
have been already many proposals to overcome these problems, for example, using symmetric encryption techniques for bitstream,

bitstream version to prevent replay attacks. This paper presents a framework, which include a protocol and authentication and
encryption algorithms for protecting IP cores and partially reconfigurable embedded systems based on FPGA. Experimental results
and analysis show that the proposed technique reduces resource overhead, increase the flexibility of the system, and it is robust
against attacks.

Keywords:Partial reconfigurable, Bitstream security, Secure update.

I. INTRODUCTION

Remote update of the FPGA-based hardware system
has changed the way to design, manufacture and distribute
electrical products. Thanks to reconfiguration ability and
reuseable IP cores, functions of the devices can be
continually improved or completely changed in their life-
cycle. However, most of the reconfigurations by remote
update via the Internet, which has the most risk of attacks,
for example, IP core cloning and reverse engineering or
system destroying. The question of how to secure such
updates against malicious interference may easily be
answered: much existing cryptographic authentication
protocol to protect the confidentiality and integrity of the
transmission, such as transmission of IP cores from a
server to a computer in the field. In fact, the secure remote
update for the FPGA can be done relatively easily if the
FPGA is a peripheral device of system, and the update of
its bitstream can be handled entirely by software running
on the system's main processor. In contrast, as not easily
the FPGA with running applications on it updates itself
without support of the processor from outside.

Consider, for example, an application scenario where a
user has an IPTV (Internet Protocol Television) set-top-
box (STB) connected to the service provider over the

Internet. The central processing unit of the STB is a
system on a FPGA chip which consists of an embedded
microprocessor and a runtime reconfigurable hardware
accelerator. The microprocessor is in charge of handling
application software and user interface while the hardware
accelerator is in charge of decoding video and audio
streams. If the user wants to upgrade the video decoder to
the latest version he/she can request the new bitstream for
the decoder from the service provider. The new bitstream
then will be downloaded to the STB and reconfigure the
video hardware decoder without affecting the
microprocessor and the audio hardware decoder. The
downloading and reconfiguration of the new bitstream is
taken care of by an application software running on the
microprocessor. The bitstream should be compressed at
the service provider side in order to save transmission
bandwidth and storage space at both service provider and
user sides. In addition, it should be encrypted to avoid
intellectual property stealing and other attacks like
spoofing and replay [1]. The management and encryption
of the bitstream will incur an overhead at the service
provider side while the decompression and decryption of
the bitstream will incur an overhead at the user side.

To protect updating of these systems, F. Devic, L.
Torres, and B. Badrignans [2] proposed a secure remote
update with a number only ever use once ("nonce") to

International Journal of Computing and Digital Systems

22 T. Thanh, T. H. Vu, N. V. Cuong, P. N. Nam: Protecting FPGA-based Partially…

prevent man-in-the-middle attackers, which had an old
bitstream version to downgrade the system impossibly. In
[3], the authors presented a protocol that the replay attacks
have been prevented. Partially reconfigurable FPGAs are
an advantage of a system with many modules, where the
modules can be designed for remote installing or
upgrading independently without affecting the other ones,
which are operating [4]. This flexibility allows the
modules to renew its features or to fix security holes.
Kean [5] and Bossuet [6] highlighted vulnerability of
volatile FPGAs to IP piracy and reverse engineering, and
proposed bitstream encryption as a countermeasure.
Drimer [1] more recently examined a wide range of attack
mechanisms and countermeasures. A more general review
of security challenges facing embedded systems can be
found in [7]. Adi [8] proposed a system based on the use
of public and secret-key cryptography. In [9], Yuan
summarized current IP protection goals and proposed
various solutions. So far, it has few studied on the secure
remote update of a partially reconfigurable system. Work
in the next sections, we present a scheme for safely and
flexibly remote updating of this system. This solution
does not require the FPGA vendor to add any hard-wired
circuits, and therefore, it can be done with existing
volatile FPGAs.

The rest of the paper is organized as follows. Section 2
describes our framework. Section 3 describes an
algorithm of the protocol in the FPGA side. The security
analysis is presented in Section 4. Experimental results are
shown in Secsion 5, and conclusions are drawn in Section
6.

II. THE FRAMEWORK

The structure of the framework is given in Fig. 1.
Some components are part of the service provider side;
others belong to the end-user side. These components are
explained in more detail in the next subsections.

A. Components at the service provider side

The Bitstream/Software Repository consists of FPGA
bistreams which are used to reconfigure the runtime
reconfigurable hardware and softwares which can be
installed and run on the embedded microprocessor at the
user system. High level information (meta-data) is added
for each bitstream. The meta-data consists of information
about the version, the size of the bitstream, the target
FPGA device and the resource requirements (e.g. flash
memory, Block RAM…).

The User Profile Database stores information about all
registered users including user system ID, version and ID
of bitstream and software, etc. Based on the user profile,
the service provider can send notification to the user
whenever new updates are available.

The Server Update Manager (SuM) is in charge of
bitstream and software updating management. Its
functions include managing the bitstream/software
repository, notifying new updates to the user, initiating
communication session with the user side, guaranteeing a
secure transmission of bitstreams to the user. Depending
on the security protocol supported by the end user system,

the SuM can select an appropriate protocol to
communicate with the user system via the Client Update
Manager (CuM). The flexibility in protocol selection
allows the service provider to support a wide range of
clients with different capability. Our framework therefore
can use a standard cryptographic protocol as in [10] or a
special protocol as in [2]. The SuM supports two modes of
remote bitstream reconfiguration: on-line mode and off-
line mode. In on-line mode, the reconfiguration is done
during bitstream transmission and hence requires less
temporary storage space at the end user system. In off-
line mode, the reconfiguration only starts when the
bitstream has been completely downloaded and stored in
the memory of the end user system. The off-line mode
therefore requires extra memory space at the end system.

The Encryption/Authentication Engine is in charge of
encrypting and authenticating the bitstream. Similar to the
protocol selection, depending on the algorithm supported
by the end user system, the engine can select an
appropriate encryption/authentication algorithm.

B. Components at the user side

At the user side, components drawn in dotted line are
optional components. The system may have or may not
have an operating system (OS). It may have a built-in
hardware decryptor in which case a software decryptor
may not be needed. For example, Xilinx Virtex devices
have a built-in bitstream decryptor. Virtex-II and Virtex-II
Pro support Triple-DES with a 56-bit key while Virtex-4
to Virtex-7 support AES with a 256-bit key. However, this
feature is not available when using partial reconfiguration
and therefore user logic decryptor or software decryptor is
needed. In our framework, the decryptor, authenticator
and decompressor can be built-in either software to save
hardware resources or hardware to accelerate
configuration.

Figure 1. The framework structure

The CuM is responsible for managing the download
and reconfiguration of the bitstream. It takes care of
communicating with the service provider and maintains
information about the profile of the end user system. The
profile contains information about the system/FPGA ID,
bitstream version, decryption algorithm (i.e. DES,
AES…), authentication algorithm (i.e. SHA-1, SHA-2…),

T. Thanh, T. H. Vu, N. V. Cuong, P. N. Nam.: Protecting FPGA-based Partially… 23

decompression algorithm and available resources. Table I
shows an example of user system profile.

III. SECURITY REMOTE UPDATE PROTOCOL

A. Assumptions

Our protocol defines an interactive exchange between
the SuM of service provider side, the entity in charge of
distribu- ting new bitstreams to FPGA-based systems in
the field, and the CuM of user side, the receiving end,
implemented in theuser logic (UL) of each FPGA. This
protocol is improved from Drimer’s one [3] and applied
within the framework had proposed in [11]. The
framework for our proposed protocol is shown in the Fig.
1.

TABLE I. AN EXAMPLE OF USER SYSTEM PROFILE

System/FPGA ID STB_123456A

Bitstream version Ver 2.0

Decryption AES-256

Authentication SHA-512

Decompression BitMask

H264 video bitstream size 0.6MB

Data flash 16 MB, used 10MB

DRAM 128 MB

We assume that the FPGA-based systems are exposed
to malicious environments where physical but non-
invasive attacks are feasible. FPGA is considered as a
trusted zone. The side channel, invasive and power
analysis attacks are not considered in this work.

We require a unique, non-secret, FPGA identifier F,
which is used by the authentication process to ensure that
messages can’t be forwarded to other FPGAs. We also
assume that, in the FPGA side, the message authentication
function is implemented in the FPGA's user logic. The
block decoding and decompression functions can be built
in hardware or software.

B. The protocol

The secure remote update protocol consists of two
algorithms for two sides of a system: Algorithm 1 for the
FPGA side and Algorithm 2 for the service provider side.
In this paper, we focus discussion on algorithm on the
FPGA side, the Algorithm 1, that runs on the more
constrained device.

Parameters used in the proposed protocol have been
stored in the user profile database of Service provider and
FPGA and are listed below:

Constants:

KPiUL: Keys shared with SuM

F: FPGA (or System) ID

Variables:

Pi: Reconfiguration Partitions ID

VPi: Version ID of operating partial bitstreams

Lmax: Length of maximum partial bitstream of
partition Pi

AE: Algorithmused for encryption

AC: Algorithm used for compression

VPiNVM: Version ID of NVM bitstream

NNVM: NVM counter value

LPiU: Length of uploaded partial bitstream

NPiLS: Partial bitstream license

VPiU: Version ID of uploaded bitstream

NUS: Nonce generated by SuM

Fe, Pe, Ve:Expected value of F, Pi,VPi

Nmax: Upper bound for NNVM

PB: Partial bitstream file in compression

Mx: MACs values

Algorithm 1: FPGA side

1: VPiNVM := VPi

2: Receive(C, Fe, Pi, VPie, LPiU, Nmax, NUS, M0)

3: if LPiU Lmax then goto 32

4: if C ≠ “GetStatus” thengoto 2

5: ReadNVM(NVNM)

6: S := [M0 = MAC(C, Fe, Pi, VPie, LPiU, Nmax, NUS)] 

(VPie = VPi)  (Fe = F)  (NNVM< Nmax)

7: ifSthen

8: NNVM:= NNVM + 1

9: WriteNVM(NVNM)

10: end if

11: MK:= MAC(F, Pi, VPi, KPiUL)

12: MLS:= MAC(F, Pi, VPi,NPiLS)

13: M1 := MAC(“RespondStatus”, F, Pi, VPi, Lmax, NNVM,
AE, AC, MK, MLS, M0)

14: Send(“RespondStatus”, F, Pi, VPi, Lmax, NNVM, AE,
AC, MK, MLS, M1)

15: IfSthen goto 2

16: Receive(C, M2)

17: ifM2 ≠ MAC(C, M1) then goto 2

18: if C = “Update” then

19: Receive(PB, M3)

20: end if

21: If M3 ≠ MAC(PB, M2) then goto 2

22: Receive(“UpdateFinal”, VPiU, M4)

23: if M4 ≠ MAC(“UpdateFinal”, VPiU, M3) then goto 2

24: Decrypt()

25: Decompress()

26: ReconfCtr()

27: VPiNVM := VPi

28: M5 = MAC(“UpdateConfirm”, VPiNVM, M4)

29: Send(“UpdateConfirm”, VPiNVM, M5)

30: if C= “Abort” then goto 2

31: UpUserprofile(F, Pi, VPi, Lmax, NNVM, AE, AC)

32: Warn(“Resize your partial reconfigurable partition”)

24 T. Thanh, T. H. Vu, N. V. Cuong, P. N. Nam: Protecting FPGA-based Partially…

The Fig. 2 focuses on communications between the

service provider side and the FPGA side. It explains how
the process mechanism can verify the genuineness of
pararameters to increment securely these non volatile
values in view to a future update.

Each protocol session starts with an initial
"GetStatus" message from the SuM and a
"RespondStatus" response from the FPGA. In the
"GetStatus" and "RespondStatus" messages, two sides
exchanged necessary parameters for a secure update
session,for example, numbers that are only ever use once
(“nonces”), FPGA identifier F, bitstream version V,
license number N, etc. After that, these parameters are
indirectly transformed secretly into the message
authentication code (MAC) during an update session.
This ensured that each side verifies the freshness of any
next data received in a simple way without having to
repeat the old data of previous transaction.

(“GetUpdate”, Fe, Pi, VPie, LPiU, Nmax, NSuM, M0)

(“ResUpdate”, F, Pi, VPi, Lmax, NCuM, AE, AC, MK, MLS, M1)

(“Update”, M2), (PB, M3) and (“UpFinish”, VPiU, M4)

Service provider side
(SuM)

FPGA side
(CuM)

FPGA side
(CuM)

Verify that C, M0 is valid if invalid restart the loop.
Verify that LPiU is valid if invalid finish the loop.

Verify that C, M2 is valid if invalid
restart the loop.

Decrypt()

Decompress()

Reconf-Ctr()

(“UpConfirm”, VPiNVM , M5)

 [Remote Update]

Service provider side
(SuM)

Loop

Verify that M3 is valid if invalid
restart the loop.

Receive(PB)

Verify that C, VPiU, M4 is valid if invalid
restart the loop.

Update User profile

Verify that KPiUL, NPiLS, M1,F, Pi, V, LPiU is valid
if invalid restart the loop.

Get Fe, VPie, KPiUL, NPiLS, Nmax

Generate NSuM

Verify that M5 is valid if
invalid restart the loop.

Update User profile

Figure 2. The secure protocol diagram for remote update

The nonce NUS generated by the SuM must be an
unpredictable random number and also has not an
opportunity to repeat. This prevents attackers from
replaying the data of the previous session. The nonce
NNVM generated by the CuM is a monotonic counter
maintained in the non-volatile memory (NVM). To
protect this counter against attempts overflow itself, and

beyond the capacity storage of the NVM, the CuM will
only increase it when authorized to do so by the SuM.
For this reason, the SuM includes "GetStatus" message
an upper bound Nmax. In Algorithm 1, the protocol
cannot proceed past the "RespondStatus" message unless
the NVM counter is increased.

The initial exchange ensures that both sides agree the
values of the parameters (F, V, P, L, N). CuM will not
continue beyond the "RespondStatus" message unless
these values are matched. This ensures that an attacker
cannot reuse the "GetStatus" message for one particular
FPGA (or a module) to update any other.

The parameters of the system, including the secret
key are used as an input data to generate the message
authentication code (MAC). The MACs values (M0, M2,
M3, M4, M5) ensure the freshness and continuity of the
transaction between the two sides in one session. An
attacker cannot generate any message that has not been
issued by the SuM or the CuM because all transactions of
the protocol are authenticated. After each successful
session, the value of the parameters is updated and stored
in the user profile database for new updates in future.

IV. SECURITY ANALYSIS

A. Confidentiality and authenticity

We assumed that at the FPGA side, a decryptor and
an authenticator are implemented by hardware or
embedded software. Thus, the partial bitstreams, which
are transferred via the Internet, are always encrypted to
resist attacks by using cloning and reverse engineering.
The proposed protocol ensures the secure remote update
for partially reconfigurable FPGA-based system. In the
protocol, Algorithms 1 and 2 are used to protect the
FPGA against replay attacks and maintain the freshness
of the messages in a session. However, the protocol does
not preventan attack of loading old bitstreams from NVM
to FPGA. Research to protect NVM is beyond the goal of
this article.

As analyzed above, the parameters of Algorithms 1
and 2 are used to calculate MAC known as M0. Then M0
is used again as a parameter to calculate MAC named as
M1. The process repeats several times until the end of the
session. Thus, the parameters will influence values of
calculating MACs during the session. The MACs are
applied throughout the update process to prevent man-in-
the-middle attackers to replay old bitstream or malicious
code. We proposed a method in which uses a SHA hash
function to calculate MAC with a secret key, KPiUL,
because of the above features. The key is included into
SHA input data.

KPiULneeds to be used in the proposed protocol to
encrypt and decrypt the partial bitstreams, and also to
authenticate the messages. Keys are the secret
parameters, which are exchanged between the two sides
only through a separate secure scheme such as a Trusted
Authority. To verify the keys between the two sides, the
hash function is used, which will convert the contents of
the key and other parameters to MAC. The MAC, a
confidential content of the key, is sent instead of

T. Thanh, T. H. Vu, N. V. Cuong, P. N. Nam.: Protecting FPGA-based Partially… 25

transferring the key through the Internet. As shown in
algorithm 2, when K_OK is true, the two sideshave the
same keyKPiUL.

In the protocol, the license of the partial bitstream,
NPiLS, is also considered as the second secret key and is
included to calculate MAC, which makes the protocol
more safety.

B. Parameter sizes

The nonce NUS should be large enough to make the
creation of a dictionary of responses that can be replayed
impractical. S. Drimer et.al.[1] referred that the use of an
uniform distributed 64-bit word for NUS will ensure that
an attacker who wants to perform 103 queries per second
must spend a lot times upto many decades to findits
matching value.

The proposed protocolusedKPiUL of 256-bit length for
AES encryption algorithm. The AES algorithm has been
still considered safety, and in practice, it means that data
encrypted with the AES algorithm has not been broken.
The 256-bit key length of AES algorithm is enough to
protect information classified as secret. Further details of
AES can be found in FIPS-197 [2].

MAC values (M0, M1, M2, M3,M4, M5) are generated
by a SHA-512 algorithm with 512-bit length. The MACs
provide an equal generous safe margin to brute-force
upload attempts. Further details of SHA can be found in
FIPS-180 [3].

Other parameters’ sizes (F, P, V, etc.) depend on the
application.

V. EXPERIMENTAL PROTOTYPE SYSTEM

A. System setup

To test the proposed framework, we have built a
prototype system which consists of a reconfigurable
embedded platform based on Xilinx Virtex-6
XC6VLX240T-1FFG1156 FPGA ML605 board and a
laptop which plays the role of the service provider (Fig.
3). The ML605 board and the laptop are connected via a
TCP/IP connection.

On the Virtex-6 FPGA chip, we embedded a
MicroBlaze soft-core microprocessor using Xilinx
Embedded Development Kit (EDK) ver. 14.1
software.EDK toolset allows designers to easily create
platforms based on either MicroBlaze or PowerPC-405
processor. EDK offers a variety of peripherals (UARTs,
counter, Ethernet, memory controller, general-purpose
I/O and so on) and a one-connection solution based on
the structure of the IBM CoreConnect bus [4]. The GNU
compiler tool [5] of the MicroBlaze and PowerPC-405
has been used in the software flows. The source code for
applications can be written in high level languages such
as C and C + +.

For our current prototype system, we use a Xilkernel
kernel. We implemented a TCP/IP stack on the
MicroBlaze to provide an Ethernet connection between
the FPGA platform and the laptop. For bitstream security,
we implemented an AES-256 Decryptor and a SHA-512

authenticator in hardware. The detail implementation of
the MicroBlaze system and applications will be explained
in detail in the next subsections.

Figure 3. The prototype system

B. Porting MicroBlaze and TCP/IP stack

As mentioned above, we used EDK software to
implement MicroBlaze processor. We selected different
parameters and components for MicroBlaze with the
Base System Builder tool [6]. For our prototype platform,
the following parameters and components are shown in
Table II. To implement the TCP/IP stack, we used
Lightweight IP (lwIP), an open source TCP/IP
networking stack for embedded systems. Xilinx EDK
provides lwIP software customized to run on Xilinx
embedded systems containing either a PowerPCor a
MicroBlaze processor.

TABLE II. PARAMETERS AND COMPONENT FOR MICROBLAZE

Parameter/Component Value

Working frequency 100 MHz

I cache 32 KB

D cache 64 KB

Ethernet Controller Tri-mode EMAC

Serial interface RS232_UART lite

DRAM controller MCB_DDR3

C. Implementation of AES-256 and SHA-512

An encryption system can prevent cloning and
bitstream reverse engineering, but cannot prevent
erroneous or malicious bitstream. In essence, encryption
protects the contents of the bitstream independently with
the device (from cloning, reverse engineering, etc.) while
authentication ensures the confidentiality and integrity of
the bitstream.

There are several authentication methods such as
using bitstream encryption algorithms, message
authentication code (MAC) or the hash functions. Among
these, hash function SHA (Secure Hash Function) is the
most widely used.

26 T. Thanh, T. H. Vu, N. V. Cuong, P. N. Nam: Protecting FPGA-based Partially…

There have been a number of work that implement

different bitstream encryption/authentication algorithms
on embedded systems including MicroBlaze-based
systems [7][8]. These algorithms include IDEA, DES,
3DES, Blowfish, AES-128, RC4, MD5, SHA-1 and
SHA-256. To the best of our knowledge, no MicroBlaze
implementation report has been found in literature for
AES-256 and SHA-512, the most secure algorithms to
date. Therefore, we decided to implement the two
algorithms in both software running on MicroBlaze and
hardware in order to compare and analyze the efficiency
of the implementations.

The AES-256 algorithm consists of two parts: the
AES controller and the AES decryptor. The SHA-512
algorithm consists of the SHA controller and the SHA-
512 authenticator. Detail description of the algorithms
can be found in [2] and in [3]. The AES controller is to
receive the encrypted data from the Ethernet interface,
group the data in 128 bit-packets and send the packets to
the AES decryptor. The AES decryptor performs the
decryption of the input data. Similarly, the SHA
controller reads the data from the memory, groups data in
1024-bit packets and sends the packets to the SHA-512
authenticator. For software implementation, we used the
open source code for AES-256 and SHA-512 from [19]
and [20], respectively and ported them on MicroBlaze
with some modification. However, we did not try to
optimize the code, which will be the subject for future
work. Table III summarizes the results of software
implementation for AES-256 and SHA-512 algorithms in
terms of size and speed.

For hardware implementation, we use AES-256 IP
coresprovided by Xilinx and VHDL code for SHA-512
from [21]. The hardware implementation results in terms
of hardware resource utilization and speed are shown in
Table IV and Table V, respectively.

We can see that the speed of our software
implementation is the same order of magnitude as that in
[7] for AES-128 and SHA-256 running on MicroBlaze on
Virtex-II Pro FPGA device. Although software
implementation is two orders of magnitude slower than
the hardware implementation, it does not consume any
extra FPGA hardware resource while the hardware
implementation takes up 23.36% of the Spartan-6 LX45

FPGA chip (Shown in Table VI). The overhead in terms of
memory of software decryptor and authenticator is quite
small compared to the size of flash memory and DRAM
in most nowadays embedded systems. With the
throughput as in Table III, it takes several minutes to
update the bitstream for Xilinx Virtex-6 XC6VLX240T
FPGA, which we believe is acceptable since an update
only happens from time to time.

TABLE III. AES-256 AND SHA-512 SOFTWARE IMPLEMENTATION

RESULTS ON VIRTEX-6 (XC6VLX240T)

Algorithm LOC in C
Throughput

(Kbps)

Size in memory

(KB)

AES-256 488 105.5 128

SHA-512 500 185.4 138

TABLE IV. HARDWARE UTILIZATION OF AES-256 AND SHA-512 ON

VIRTEX-6 (XC6VLX240T)

Module Registers (%) LUTs (%) Slice (%)

AES-256 3,096 1 3,751 2.48 1,293 3.43

SHA-512 2,246 0.75 2,299 1.52 843 2.24

Overall 5,342 1.75 6,040 4.00 2,136 5.67

TABLE V. PERFORMANCE OF HARDWARE AES-256 AND SHA-512 ON

VIRTEX-6 (XC6VLX240T)

Algorithm Throughput (Mbps)

AES-256 21.3

SHA-512 43.7

TABLE VI. HARDWARE UTILIZATION OF AES-256 AND SHA-512 ON

SPARTAN-6 (XC6SLX45)

Module Registers (%) LUTs (%) Slice (%)

AES-256 757 1.37 1,516 5.52 724 10.61

SHA-512 1,177 2.13 2,052 7.47 870 12.75

Overall 1,934 3.50 3,568 13.19 1,594 23.36

VI. CONCLUSIONS

This paper presentsascheme for protecting the
FPGA-based partially reconfigurable embedded systems
of end users and IP cores of FPGA vendors. It maintains
the confidentiality, integrity and freshness of the IP cores
which are transferred over the Internet. TheAES-256
algorithmensures the prevention ofbitstream cloning and
reverse engineering attacks, and the SHA-512 ensures the
prevention replay attacks. In addition, the proposed
protocol recommends using a compression algorithm to
solve the problem of lack memory on FPGAs and
bandwidth in the Internet. Our solution does not require
additional hard-wire on the FPGA, so it can be applied to
all current SRAM-based FPGA.

REFERENCES

[1] S. Drimer, “Volatile FPGA design security – a survey,” Journal of

Engineering, Computer Laboratory, University of Cambridge,
Version 0.96, pp. 1–51, 2008.

[2] F. Devic, L. Torres, and B. Badrignans, “Secure Protocol

Implementation for Remote Bitstream Update Preventing Replay
Attacks on FPGA,” 2010 International Conference on Field

Programmable Logic and Applications, pp. 179–182, Aug. 2010.

[3] S. Drimer, “A protocol for secure remote updates of FPGA
configurations,” Lecture Notes in Computer Science, vol. 5453,

pp. 50–61, 2009.

[4] D. Koch and C. Beckhoff, “Advanced partial run-time

reconfiguration on Spartan-6 FPGAs,” Field-Programmable
Technology (FPT), 2010 International Conference on, pp. 361 –

364, 2010.

[5] T. Kean, “Secure Configuration of Field Programmable Gate
Arrays,” Proceedings of the 11th International Conference on

Field-Programmable Logic and Applications, pp. 142–151, 2001.

[6] L. Bossuet, G. Gogniat, and W. Burleson, “Dynamically
configurable security for SRAM FPGA bitstreams,” Parallel and

Distributed Processing Symposium, 2004. Proceedings. 18th
International, 2004.

T. Thanh, T. H. Vu, N. V. Cuong, P. N. Nam.: Protecting FPGA-based Partially… 27

[7] S. Ravi, A. Raghunathan, and P. Kocher, “Security in Embedded

Systems : Design Challenges,” vol. 3, no. 3, pp. 461–491, 2004.

[8] W. Adi and R. Ernst, “VLSI design exchange with intellectual
property protection in FPGA environment using both secret and

public-key cryptography,” Emerging VLSI Technologies and
Architectures, 2006. IEEE Computer Society Annual Symposium

on, vol. 00, pp. 24–32, 2006.

[9] L. Yuan, G. Qu, L. Ghout, and A. Bouridane, “VLSI Design IP

Protection: Solutions, New Challenges, and Opportunities,” First
NASA/ESA Conference on Adaptive Hardware and Systems

(AHS’06), pp. 469–476, 2006.

[10] A. Braeken, J. Genoe, S. Kubera, N. Mentens, A. Touhafi, I.
Verbauwhede, Y. Verbelen, J. Vliegen, and K. Wouters, “Secure

remote reconfiguration of an FPGA-based embedded system,” 6th
International Workshop on Reconfigurable Communication-

Centric Systems-on-Chip (ReCoSoC), pp. 1–6, Jun. 2011.

[11] T. Thanh, P. N. Nam, T. H. Vu and N. V. Cuong, “A framework
for secure remote updating of bitstream on runtime reconfigurable

embedded platforms,” 2012 Fourth International Conference on
Communications and Electronics (ICCE), pp. 471–476, Aug.

2012.

[12] NIST., “Announcing the Advanced Encryption Standard (AES),”
National Institute of Standards and Technology (NIST).

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf ,2001.

[13] NIST., “Secure Hash Standard (SHS),” National Institute of
Standards and Technology (NIST). http://

csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf , March,
2012.

[14] Xilinx_Inc., “Microblaze processor reference guide,” Reference

manual, vol. 081,
http://www.xilinx.com/support/documentation/sw_man, 2006.

[15] Xilinx_Inc., “Embedded System Tools Reference Manual,” EDK,
vol. 111, http://www.xilinx.com/support/documentation/sw_man,

2012.

[16] Xilinx_Inc., “EDK Concepts, Tools and Techniques,” A Hands-
On Guide to Effective Embedded System Design, vol. 683,

http://www.xilinx.com/support/documentation/sw_manuals/xilinx
14_1/edk_ctt.pdf, 2012.

[17] Y. Hori, A. Satoh, H. Sakane, and K. Toda, “Bitstream Encryption

and Authentication with AES-GCM in Dynamically
Reconfigurable Systems,” Field Programmable Logic and

Applications, 2008. FPL 2008. International Conference on, pp.
23–28, 2008.

[18] I. Gonzalez, F.J. Gomez-Arribas, “Ciphering algorithms in

MicroBlaze-based embedded systems,” Computers and Digital
Techniques, IEEE Proceedings -, vol. 153, no. 2, pp. 87–92, 2006.

Tran Thanh is a Ph.D. student in
Electrical Engineering in ESRC
laboratory of Hanoi University of
Science and Technology (Vietnam),
where he has been since 2010. He has

a B. Eng. degree in Electronics and
Telecommunications from Da Nang
University of Technology and a
M.Sc. degree from the University of
Danang (Vietnam) in 2008,
respectively. He works at The Vietnam
Research Institute of Electronics,

Informatics and Automation. His research is in reconfigurable

computing, reconfigurable embedded systems and FPGA
security.

Tran Hoang Vu is a Ph.D. student in
Electrical Engineering of Hanoi
University of Science and Technology
(Vietnam), where he has been since

2010. He received B. Eng. degree in
Electronics and Telecommunications
from Da Nang University of
Technology and M.Sc. degree from the
University of Danang (Vietnam) in
2004 and 2008, respectively. From
2004 until now he has been working

atDanang College of Technology-The University of Danang,

Vietnam. His research interests include Reducing power
consumption of Data Center Networks, reconfigurable
embedded systems and low-power embedded system design.

Nguyen Van Cuong received B. Sc.
degree In Solid State Electronics from
Hue University of Science (Vietnam) in

1987. He was awarded a Ph.D. degree
in Electrical Engineering from Uni. BW
Munich, Germany in 2000. From 2000
until now he has been working at
Danang University of Science and
Technology, Vietnam. His main
disciplinary focus is on embedded
systems and energy–aware VLSI

system design.

Pham Ngoc Nam received B. Eng.
degree In electronics and
Telecommunications from Hanoi
University of Science and Technology
(Vietnam) and M.Sc. degree in
Artificial Intelligence from K.U.

Leuven (Belgium) in 1997 and 1999,
respectively. He was awarded a Ph.D.
degree in Electrical Engineering from
K.U.Leuven in 2004. From 2004 until

now he has been working at Hanoi University of Science and
Technology, Vietnam. His research interests include
reconfigurable embedded systems and low-power embedded
system design.

