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Abstract: In this paper, we apply the finite element method (FEM) to model and compute the capacitance and inductance per unit 

length matrices of symmetrical coupled microstrip lines with different dielectric constants and without. We mainly focus on 

modeling shielded symmetrical coupled microstrip lines and open symmetrical coupled microstrip lines, respectively. Also, we 

illustrate the meshing and the potential distribution of the transmission lines for the models. We compare some of our results with 

those obtained by other methods and found them to be in good agreement. 
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1. INTRODUCTION  

Electromagnetic propagation on multiple parallel 

transmission lines has been a very attractive area in 

computational electromagnetic in recent years.  Multiple 

parallel transmission lines have been successfully applied 

and used by designers in compact packaging, 

semiconductor device, high speed interconnecting buses, 

monolithic integrated circuits, and other applications. 

Microstrip lines are the most commonly used in all planar 

circuits despite of the frequencies ranges of the applied 

signals. Microstrip lines are the most commonly used 

transmission lines at high frequencies.  Quasi-static 

analysis of microstrip lines involves evaluating them as 

parallel plates transmission lines, supporting a pure 

“TEM” mode. Advances in microwave solid-state 

devices have stimulated interest in the integration of 

microwave circuits.  Today, microstrip transmission lines 

have attracted great attention and interest in microwave 

integrated circuit applications.  This creates the need for 

accurate modeling and simulation of microstrip 

transmission lines. 

 

The computation of capacitance and inductance of 

microstrip transmission lines is considered essential in 

designing microwave and advanced integrated circuits. 

Accurate methods for determining the capacitance and 

inductance for different geometries for microstrip lines in 

modern design techniques have become an area of 

interests to scientists and researchers [1-2]. Many 

industrial applications depend on different interrelated 

properties or natural phenomena and require multiphysics 

modeling and simulation as an efficient method to solve 

their engineering problems. Moreover, superior 

simulations of microwave integrated circuit applications 

will lead to more cost-efficiency throughout the 

development process. Several methods used for analyzing 

microstrip lines include the method of moments [3], the 

variational technique [4-5], the integral equation 

technique [6-7], the unified analytical method [8], and the 

Green functions method [9]. 

 

In this work, we consider two different models using 

FEM with different dielectric constants and without.  

Case A investigates the designing of shielded 

symmetrical coupled microstrip lines. For case B, we 

illustrate the modeling of open symmetrical coupled 

microstrip lines (two conductors between two ground 

planes). Also, we demonstrate the potential distribution 

of the transmission lines for the models and their 

meshing.  We compare some of our results with previous 

investigators and find them to be close.   

    

2. RESULTS AND DISCUSSIONS 

    The models are designed in two-dimensional (2D) 

using electrostatic environment. In the boundary 

condition of the model’s design, we use ground boundary 

which is zero potential ( 0V  ) for the shield. We use 

port condition for the conductors to force the potential or 

current to one or zero depending on the setting. Also, we 

use continuity boundary condition between the 
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conductors and the dielectric layers. The quasi-static 

models are computed in form of electromagnetic 

simulations using partial differential equations.    

    The quasi-static analysis is valid under the assumption 

that, 0
t






D
 , where D  is the electric displacement 

Thus Maxwell’s equations can be written in the following 

forms: 
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 D                      (4) 

 

0 J ,                           (5) 

 

where H is the magnetic field,    the electrical 

conductivity, E is the electric field, v  is the velocity of 

the conductor,  B is the magnetic flux density, 
eJ is an 

externally generated current density,   is the charge 

density, J  is the current density. However, the essential 

criterion for the quasi-static approximation to be valid is 

that the currents and the electromagnetic fields vary 

slowly. Using magnetic potential A  definition we get: 

B A ,                  (6) 

 and   

V
t


  



A
E ,                                                        (7) 

where V  is the electric potential. And by using the 

constitutive relation, 

 0 B Η M ,                 (8) 

where  M  is the magnetization, the Ampere’s law now 

can be rewritten as  

   1

0

eV
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 Where 0  is the permeability of vacuum. Thus, the 

continuity equation can be written as 

   

  0eV
t

  
 

        
 

A
v A J  (10) 

Equations (9) and (10) provide the system of the two 

equations for A andV . 

 

    The dimension of the coefficient capacitance matrix is 

proportional to the sum of widths of every dielectric layer 

and the parameters of all conductors.  This results in long 

computing time and large memory especially when the 

structure to be analyzed has many layers and conductors 

[10].  The short-circuit capacitances
s

ijC , defined as in 

[11]: 

1 1 ... ...s s s

i i ii i iN NQ C V C V C V                             (11) 

and the two-terminal capacitances
ijC  is defined as  

ii ii iQ C V                                                                   (12) 

( ),      ij ij i jQ C V V i j                                        (13) 

where  iQ is the charge per unit length on a conductor i ,

jV  is the potential of a conductor j , with respect to the 

ground (conductor 1N  ), iiQ is the partial charge on 

conductor i due to a voltage difference between 

conductor i and the reference (ground) conductor, 
ijQ is 

the partial charge on conductor i due to a voltage 

difference between conductors i and j  . 

To conclude the relationship between the short-circuit 

capacitances and the two-terminal capacitances as: 

1

N
s s

ij ij ii ij

j

C C C C


               (14) 

Furthermore, we use one port at a time as the input to 

evaluate the matrix entries. With the Forced Voltage 

method, the capacitance matrix entries are computed 

from the charges that result on each conductor when an 

electric potential is applied to one of them and all the 

others are set to ground. The matrix is defined as follows: 
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...
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   
   
   

        

               (15) 

 

    For example, using port 2 as the input will provide the 

entries of the second column: C12, C22, ..., CN2.  

Now, the inductance and capacitance of coupled 

transmission lines are related as: 

   
1

o o oL C 


 ,                              (16) 

where  L = inductance matrix,  
1

oC
 = the inverse 

matrix of the capacitance of the multiconductor 

transmission line when all dielectric constants are equal 

to 1,
0  permittivity of free space or vacuum,

0 

permeability of free space or vacuum. 
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The models designed with finite elements are 

unbounded (or open), meaning that the electromagnetic 

fields should extend towards infinity. This is not possible 

because it would require a very large mesh. The easiest 

approach is just to extend the simulation domain “far 

enough” that the influence of the terminating boundary 

conditions at the far end becomes negligible.  In any 

electromagnetic field analysis, the placement of far-field 

boundary is an important concern, especially when 

dealing with the finite element analysis of structures 

which are open. It is necessary to take into account the 

natural boundary of a line at infinity and the presence of 

remote objects and their potential influence on the field 

shape [12].  In our simulations for the open case, the open 

two conductors structure is surrounded by a  W H

shield, where W  is the width and H  is the thickness. 

   

A. Shielded Symmetrical Coupled Microstrip Line 

Figure 1 shows the cross section for shielded two-

strip conductors in a homogenous medium with its 

parameters: 

 
 

 

 

 

 

 

 

Figure 1.  Cross-section of shielded two-strip conductors in a 

homogenous medium 

From the model, we generate the finite elements mesh 

as in Fig. 2. Table I shows the statically properties of the 

mesh. Figure 3 shows the two-dimensional (2D) surface 

potential distribution with port 2 as input. While, the 

contour of electric potential (V) and streamline of electric 

field plots of the model are presented in the Figures 4 and 

5 respectively.  

 

 
 

Figure 2.  Mesh of shielded two-strip conductors in a homogenous 

medium 

 

 Table I.  Mesh statistics of shielded two-strip conductors in a 

homogenous medium 

 
Items Value 

Number of degrees of freedom 3019 

Total number of  mesh points 717 

Total number of elements 1288 

Triangular elements  1288 

Quadrilateral elements 0 

Boundary elements 148 

Vertex elements 12 

Minimum element quality 0.8340 

Element area ratio 0.3185 

 

 

 
 

Figure 3.  2D surface potential distribution of shielded two-strip 

conductors in a homogenous medium 

 

 
 

Figure 4.  Contour plot of shielded two-strip conductors in a 

homogenous medium 

 

 
 

Figure 5.  Streamline plot of shielded two-strip conductors in a 

homogenous medium 

 

Table II shows the finite element results for the self 

and mutual capacitance per unit length of shielded 

symmetrical coupled microstrip lines without dielectric 

constant.   The results in Table II are compared with the 
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work of previous investigations using Green function 

method [9].  They are in good agreement. 
 

 

TABLE II. VALUES OF THE CAPACITANCE COEFFICIENTS (IN 

PF/M) FOR SHIELDED SYMMETRICAL COUPLED MICROSTRIP 
LINE 

 

Capacitance Green 

Function 

Method  

FEM 

11C  70.06 70.63 

12C  -5.776 -5.901 

21C  -5.776 -5.901 

22C  70.06 70.63 

 

 

We extend the analysis to compute the self- and 

mutual inductance per unit length due to its importance 

role in the high-speed digital circuits or simultaneous 

switching noise generates disparities among local found 

potentials in different packages [13] using equation (16): 

 

           
158.4 13.2

[ ]  /
13.2 158.4

L nH m
 

  
 

                   (17) 

 

Table III shows the finite element results for the self 

and mutual capacitance per unit length of shielded 

symmetrical coupled microstrip lines with different 

dielectric constants, 3.2 , 4.3 , and 6.8 .   The results in 

Table III are show that when we increase the dielectric 

constant value the self capacitance per unit length are 

increases, while the values of the mutual capacitance per 

unit length are decreases.   

 
 

TABLE III. VALUES OF THE CAPACITANCE COEFFICIENTS (IN 
PF/M) FOR SHIELDED SYMMETRICAL COUPLED MICROSTRIP 

LINE IN DIFFERENT DILECTRIC CONSTANSTS 

 
Capacitance 3.2r   4.3r   6.8r   

11C  226.06 303.77 480.38 

12C  -18.88 -25.37 -40.13 

21C  --18.88 -25.37 -40.13 

22C  226.06 303.77 480.38 

 

 

We use this model from [9] to compare the capacitance 

per unit matrix of the model results using FEM with the 

Green functions method. Here we computed the 

inductance per unit matrix of the model, which was not 

done by the other methods. Also, we studied the model 

with different dielectric constants and we identify for the 

model the mesh, two-dimensional (2D) surface potential 

distribution, contour plot, streamline plot, and potential 

distribution of the model along the line from 

( , ) (0,0)x y  to ( , ) (10,5)x y  , which were not done 

by the other methods.  

 

Fig. 6 shows the comparison analysis of potential 

distribution of the model with and without dielectric 

substrate. It observed that the peak value of electric 

potential is approximately same as the different dielectric 

is placed in the substrate. 

 

 

Figure 6.  Potential distribution of the model with and without 
dielectric substrate 

B. Open Symmetrical Coupled Microstrip Line 

Figure 7 shows the cross section of the open 
symmetrical coupled microstrip line with its parameters. 

 

 

 

 

 

0 0( , )   

 

 
 

Figure 7.   Cross-Section of symmetrical coupled microstrip line in a 

homogeneous medium between ground planes 

 

In our simulations for this case, we surround the 

structure by a 20 5  shield. From the model, we 

generate the finite elements mesh as in Fig. 8. Table IV 

shows the statically properties of the mesh. Figure 9 

shows the two-dimensional (2D) surface potential 

distribution with port 2 as input. While, the contour of 

electric potential (V) and streamline of electric field plots 

of the model are presented in the Figures 10 and 11 

respectively.  
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Figure 8.  Mesh of symmetrical coupled microstrip line in a 

homogeneous medium between ground planes 

 
TABLE IV.  MESH STATSTICS OF SYMMETRICAL COUPLED 

MICROSTRIP LINE IN A HOMOGENEOUS MEDIUM BETWEEN 

GROUNDS PLANES 

 
Items Value 

Number of degrees of freedom 2001 

Total number of  mesh points 472 

Total number of elements 836 

Triangular elements  836 

Quadrilateral elements 0 

Boundary elements 110 

Vertex elements 12 

Minimum element quality 0.7183 

Element area ratio 0.1714 

 

 

 
 

Figure 9.   2D surface potential distribution of symmetrical coupled 

microstrip line in a homogeneous medium between ground planes 

 

 
 

Figure 10.   Contour plot of symmetrical coupled microstrip line in 

a homogeneous medium between ground planes 

 
 

Figure 11.   Streamline plot of symmetrical coupled microstrip line 

in a homogeneous medium between ground planes 

Table V shows the finite element results for the self 

and mutual capacitance per unit length of the open 

symmetrical coupled microstrip lines. The results in 

Table V are compared with the work of previous 

investigations. They are in good agreement. 

 

 
TABLE V. VALUES OF THE CAPACITANCE COEFFICIENTS (IN 

PF/M) FOR OPEN SYMMETRICAL COUPLED MICROSTRIP LINE 

 

Capacitance Ref. [3] Ref. [7] Ref. [9] FEM 

11C  62.33 63.07 63.10 63.766 

12C  -5.931 -5.866 -5.851 -5.986 

21C  -5.931 -5.866 -5.851 -5.986 

22C  62.33 63.07 63.10 63.766 

 

 

In addition, we extend the analysis to compute the 

inductance per unit matrix using equation (16): 

 

175.8 16.5
[ ]  /

16.5 175.8
L nH m

 
  
 

  (18) 

 

Table VI shows the finite element results for the self 

and mutual capacitance per unit length of open 

symmetrical coupled microstrip lines with different 

dielectric constants, 3.2 , 4.3 , and 6.8 .   The results in 

Table VI are show that when we increase the dielectric 

constant value the self capacitance per unit length are 

increases, while the values of the mutual capacitance per 

unit length are decreases.   

 
TABLE VI.  VALUES OF THE CAPACITANCE COEFFICIENTS 

(IN PF/M) FOR OPEN SYMMETRICAL COUPLED MICROSTRIP 

LINE IN DIFFERENT DILECTRIC CONSTANSTS 

 
Capacitance 3.2r   4.3r   6.8r   

11C  204.07 274.21 433.63 

12C  -19.16 -25.74 -40.71 

21C  -19.16 -25.74 -40.71 

22C  204.07 274.21 433.63 

 

 

 

This model was presented in [14] to compare the 

capacitance per unit matrix of the model results using 

FEM with the method of moments and the variational 

technique. Here we use different parameters to compare 

our capacitance per unit matrix of the model results using 

the method of moment, the integral equation technique, 

and the Green functions method. Also, we computed the 

inductance per unit matrix of the model, which was not 

done by the other methods and in [14]. In addition, we 
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studied the model with different dielectric constants and 

we identify for the model the mesh, we identify for the 

model the contour plot, streamline plot, two-dimensional 

(2D) surface potential distribution, and potential 

distribution of the model along the line from 

( , ) (0,0)x y  to ( , ) (20,5)x y   which w not done by 

the other methods. In [15] one of models was four–line 

symmetric microstrip with a two-layer substrate which is 

different from this model.  
 

 

Figure 12.  Potential distribution of the model with and without 
dielectric substrate 

3. CONCLUSION 

We have successfully presented finite element analysis 

and modeling of shielded and open symmetrical coupled 

microstrip lines with different dielectric substrate and 

without. In addition, we computed the capacitance and 

inductance matrices and identified the potential 

distribution of the models.  The results obtained 

efficiently using FEM for the capacitance agrees well 

with those found in the other methods. 
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