
 

 

 

International Journal of Computing and Digital Systems 
ISSN (2210-142X)  

Int. J. Com. Dig. Sys. 5, No.5 (Sep. 2016) 

 

 

Email: mahmoud_raafat@mentor.com, babdullah@eng.asu.edu.eg, mohamed.taher@eng.asu.edu.eg, moustafa@ieee.org  

http://journals.uob.edu.bh 

 

Towards Privacy-Preserving Driver’s Drowsiness and 

Distraction Detection: A Differential Privacy Approach 

 
Mahmoud Raafat

1
, Bassem Abdullah

2
, Mohamed Taher

2
 and Mohamed N. Moustafa

2, 3 

 
1Mentor Graphics Corporation, Cairo, Egypt 

2Department of Computer & Systems Engineering, Ain Shams University, Cairo, Egypt 
3American University in Cairo, Computer Science and Engineering, Cairo, Egypt 

 

Received 28 Apr. 2016, Revised 31 May 2016, Accepted 3 Jul. 2016, Published 1 Sep. 2016 

 

Abstract: The ubiquitous need for detecting driver’s drowsiness and distraction by using a camera mounted inside the car directed to 

driver’s face is driving significant concern about protecting driver’s identity from being discovered or exploited by hackers. In this 

paper, we present a novel technique called block Laplacian Obfuscation Mechanism (bLOM), to privatize the camera data stream by 

using differential privacy techniques introduced in database domain. We introduce a metric to measure privacy and utility for 

driver’s drowsiness and distraction algorithms. Our experimental results show that in 87% of test cases, bLOM is able to keep the 

identity of the driver private while still be able to extract facial features needed for driver’s drowsiness and distraction detection. 
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1. INTRODUCTION 

Traffic accidents occur due to many reasons. Two of 

the main causes of traffic accidents are driver drowsiness 

and distraction. According to the latest National Motor 

Vehicle Crash Causation Survey (NMVCCS) conducted 

by The U.S. National Highway Traffic Safety 

Administration (NHTSA), approximately 41% of crashes 

(more than 800,000 accidents occurred during 5 years) 

were due to recognition errors made by the driver i.e. due 

to driver’s drowsiness and distraction [1]. 

Several detection techniques have been proposed in 

the literature during the last decade for detection of both 

driver drowsiness and distraction. Many car Original 

Equipment Manufacturers (OEMs) have already 

implemented some of these techniques in their production 

cars. For example, Lexus LS 600h Driver Monitoring 

System, which was presented in 2006, uses a camera 

mounted on the top of the steering column cover and a 

series of integrated near-infra-red LEDs to track the 

movement of the driver’s head. If it determines the driver 

is looking away from the road ahead at the same time as a 

collision threat is detected, the system will sound an alert 

and briefly apply the brakes. [2]. Volvo presented a driver 

drowsiness detection system in 2007. By placing a sensor 

on the dashboard to monitor aspects such as in which 

direction the driver is looking, how open their eyes are, as 

well as their head position and angle, it is possible to 

develop precise safety systems that detect the driver’s 

state and are able to adjust the care accordingly [3]. 

Driver’s drowsiness and distraction can be detected 

using several techniques which are categorized as follows 

[4]: 

 Techniques based on visual features. 

 Techniques based on non-visual features. 

Most of the techniques based on visual features depend 

primarily on the successful detection of driver’s eyes, 

mouth or both. 

To detect whether the driver is distracted or not, most 

of proposed algorithms achieve that by detecting driver’s 

head pose and gaze estimation [4]. Detection of driver’s 

face, eyes, and nose plays a big role in determining the 

gaze direction [5]. 

On the other hand, there have been trends in 

automotive industry in the recent years towards 

interconnecting between Electronic Control Units (ECUs) 

inside the car using wired buses like (CAN, FlexRay, 

Ethernet, AVB, …) and between the ECUs and the 

outside world using wired (USB) or wireless (Bluetooth, 

Wi-Fi, 3G/4G …) communication protocols. 

http://dx.doi.org/10.12785/ijcds/050501 
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 These trends will keep increasing in the future with 

the rapid development of In Vehicle Infotainment (IVI) 

and Vehicle-to-Vehicle communication (V2V) domains. 

Therefore, we can no longer consider any ECU inside 

a car to be isolated from its neighbor ECUs and so, not 

completely isolated from the outside world. This opened 

the door for attackers to find and exploit vulnerabilities in 

car communication interfaces and gain access to the 

embedded networks inside the car [6]. Gaining access to 

the embedded networks inside the car allows the attacker 

to send and receive any type of data being exchanged 

between the ECUs. Moreover, the attacker might be able 

to update ECUs flash memories with their own malicious 

code. One of the main goals of these attacks is achieving 

privacy breach, retrieving personal information and 

sensitive data of the driver [7] [8]. One of the most 

sensitive data is the feed from sensors and stream from 

cameras used to detect driver’s drowsiness and 

distraction. Gaining access to this data may allow the 

attacker to recognize driver’s identity and puts driver’s 

privacy at risk. 

Most of the presented protection techniques against 

driver’s privacy attacks in the literature focus on 

providing protection methods over communication 

protocols. Nader et al. [9] presented an approach to 

provide privacy among drivers in V2V communication 

networks, based on the concept of group signatures. Other 

researchers like Zekeriya Erkin et al. [10] proposed a 

cryptographic privacy-preserving face recognition 

technique. They provided a solution to a two-party 

problem in which one party owns a face image and the 

other party owns a database of the face images and runs 

the matching algorithm. Their technique allows to 

efficiently hide both the biometrics and the result from the 

second party (which is the server) that performs the 

matching operation. 

 Most of car Manufacturers and tier-1 suppliers 

nowadays focus on isolation of sensitive and safety 

critical data from the compromised software and hardware 

components of infotainment and telematics systems by 

means of hardware isolation using multi-core processors 

and software isolation using hypervisors. 

In this paper, we present a novel approach to protect 

driver’s private data used in driver drowsiness and 

distraction detection techniques based on visual features 

by applying one of the differential privacy techniques. 

The general idea is to apply the Laplacian obfuscation 

method to certain frequency components of camera data 

streams in order to privatize the data before being 

processed afterwards. This method shall maintain the 

utility of the drowsiness and distraction detection 

algorithms by maintain the ability to extract driver’s head, 

eye, nose, and mouth features while preserving driver’s 

identity i.e. making it less likely for face recognition 

algorithms to succeed in recognizing driver’s identity 

from the privatized data stream. 

A. Related Work 

Differential privacy is considered a cryptographically 

motivated definition of privacy that has gained significant 

attention during the last few years. The first notion of 

differential privacy was introduced by Dwork [11] in 

2006. The goal was to allow a user dealing with statistical 

databases to retrieve useful information about a 

population while protecting the privacy of the individuals 

in the population. 

Researches based on the concepts and techniques 

proposed by Dwork and started to extend them in other 

domains other than statistical databases. Zhanglong Ji et 

al. [12] studied how to achieve differentially private 

machine learning algorithms. Jerome Le Ny, et al. [13] 

proposed differentially private filtering methods. First, 

they extended the notion of differential privacy to 

dynamic systems then they described differentially private 

mechanisms to approximate stable filters. 

Benjamin, et al [14] proposed a support vector 

machine (SVM) classifier that preserves the privacy of the 

training data. First, they proposed two mechanisms for 

differentially private SVM learning, one for learning 

under finite-dimensional feature mappings, and one for 

learning with potentially infinite-dimensional feature 

mappings. Both mechanisms operate by adding 

perturbation to the output classifier; for each they proved 

the range of perturbation parameters required in order to 

guarantee privacy, and they derived the conditions under 

which the mechanisms yield close approximations to the 

non-private SVM. Then, they defined a notion of optimal 

differential privacy as the best privacy achievable among 

all mechanisms that approximate a non-private SVM. 

They combined the results on privacy and utility of their 

mechanisms in order to derive upper bounds on the 

optimal differential privacy, which states that the level of 

privacy achieved will be at least as good as the upper 

bound. 

S. Han et al. [15] developed a distributed electric 

vehicle charging algorithm that preserves differential 

privacy using Laplace mechanism by perturbation of 

public signals with Laplace obfuscation whose magnitude 

is determined by the sensitivity of the public signal with 

respect to changes in user information. 

The literature has widely spread to develop 

differentially private data processing algorithms such as 

real-time signal processing [16], classification [17], and 

dimensionality reduction [18]. 
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Sarwate et al. [19] illustrated the generic methods used 

for differential privacy. Supposing we have a dataset D 

and we have an algorithm A that simply computes a 

function f(D) of the data, and we would like to make it 

differentially private by adding random obfuscation. They 

described four key approaches to achieve that: 

 Input Perturbation: Adding obfuscation to the data 
itself before computing the function f(D). 

 Output Perturbation: Applying obfuscation to the 
output of the function. The amount of noise 
needed to be added will depend on the sensitivity 
of the function f to the changes in its input. 

 Exponential Mechanism:  This mechanism is 
designed for cases where applying obfuscation 
directly to the output can completely destroy its 
value i.e. destroy the utility. Given an arbitrary 
range R, the exponential mechanism can be 
defined with respect to a utility function u which 
maps dataset D or output pairs to utility scores. 
[19] 

 Objective Perturbation: This approach can be 
used when dealing with classifiers suing regular 
convex optimization. Applying obfuscation to the 
objective function of the optimization problem 
shall obtain a differentially private approximation.  

2. BACKGROUND 

A. Differential privacy 

In this section, we review the preliminaries and basic 

definitions of the notion of the differential privacy. 

To understand how differential privacy in statistical 

works let’s consider two databases   and    that contain 

the exact same rows except for one entry. In that case, we 

call these two databases adjacent.  

 

Definition 1 (Adjacent databases). Two databases 

          
  and             

  are said to be adjacent if 

there exists              such that       for all    . 

 

For simplicity, let us assume   is a database that 

contains medical records of a population in a city, and    
is the same database as   but after adding a new person 

which has moved recently to the city. According to 

Definition 1,   and    are adjacent.  

Now, consider an adversary which have the capability 

of running multiple queries on the databases   and   . 
These queries retrieve the percentage of population that 

have cancer. Although this type of queries asks only for 

statistics defined over the full population, it leaks sensitive 

information about individuals as well. For example, if an 

adversary runs a query before and after a person moves in 

the city, she can determine whether that person has cancer 

or not by simply differencing the outputs of the two 

queries. This attack is known in cryptography literature as 

the “Differencing Attack”. 

Differential privacy aims to provide formal setup to 

analyze and design countermeasure mechanisms which 

guarantee that the outcome of any analysis or query on a 

database is essentially equally likely, independent of 

whether any individual joins, or refrains from joining the 

database.  

 

Definition 2 ( -Differential privacy): Consider a dataset 

  that contains a set of adjacent databases. For all 

adjacent databases   and    in   , a mechanism   

preservers  -Differential Privacy for all    
          if it holds that: 

 

                              
 

The parameter   indicates the level of privacy 

preserved: as   gets smaller a higher level of privacy is 

preserved. 

B. Laplace Mechanism 

While many mechanisms have been proposed that 

achieve differential privacy, the Laplace mechanism is 

one of the most widely used mechanisms to achieve  -

differential privacy as it is asymptotically optimal when 

    [20][21][22][23]. 

Laplace mechanism corrupts the public data by adding 

random variables drawn from Laplacian distribution as in 

[13], or by adding random variables to the output of a 

function operating on database as in [20][21]  Dwork in 

[11] proved mathematically that in order to guarantee  -

differential privacy by Laplace mechanism, random 

variables added to the output of a function   shall be 

drawn from the Laplacian distribution     
  

 
 , where    

is the global sensitivity of function  . 

 

Definition 3 (Global sensitivity): For any query       
     , the global sensitivity of   is defined as follows: 

 

   

     ‖          ‖   
                                      

 

Where           denotes that the adjacency relation 

between   and    is satisfied. 

To illustrate Laplace mechanism, consider a database 

that contain information about a population of a city and 

consider a query that can retrieve the number of females 

inside that population. Assume that the gender 

information about a person inside the population is 

sensitive information and we would like to privatize this 

information using Laplace mechanism. First, we need to 
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calculate the global sensitivity of the query. The 

maximum difference can occur between two query results 

of two adjacent databases in that case is equal to one, e.g. 

a female joins or refrains from the population. Applying 

obfuscation to query output with Laplacian distribution 

    
 

 
  shall guarantee  -differential privacy for gender 

information. 

3. DIFFERENTIALLY PRIVATE IMAGES 

A. Preliminaries 

While the notion of differential privacy was originally 

defined for databases, the definitions do not cover directly 

computer vision and image processing domain under 

consideration. For that end, we start this section by 

generalizing the notion of differential privacy to be 

suitable to image processing problems. Next, we show a 

novel mechanism to produce differentially private images 

that is still can be used to perform driver drowsiness 

detection. 

As with many image processing algorithms, it is 

useful to consider the frequency representation of an 

image.  Consider an image    , and an integer  , we can 

define the frequency representation of the image as 

obtained by the well-known Fast Fourier Transform (FFT) 

as follows: 

                               
         

 

The parameter   controls the size of the produced 2-

dimensional frequency representation of the image        

where the indecies    and   take values in the set 
         . An example of an image and its frequency 

representation after applying FFT is shown in Figure 1.  

 

 

Figure 1. Face image and its corresponding frequency components 

Now, using the notation we define the adjacency of 

two images in a manner which is inspired by the original 

database adjacency as follows: 

 

Definition 4 (Adjacent images) 

Two images            and              are said to 

be adjacent if there exists a frequency component 

                                       such 

that                                  . 

In other words, the previous definition considers the 

frequency components of an image as the entries of a 

database. Two adjacent images are then those who differ 

on only one frequency component. 

The previous definition is very restrictive in the sense 

that it allows for only one frequency component to differ 

between adjacent images. We relax the previous definition 

by considering "blocks" of frequency components. That 

is, let                denote the number of frequency 

blocks, by grouping 
  

 
 frequency components together we 

end up by an image that has     frequency component 

groups as shown in Figure 2. 

 

 
 

Figure 2. Frequency components grouped into 16 groups 

 

Therefore, it is convenient to introduce the block 

notation of an image as                 

              
 for which we can use to introduce the notion 

of "block adjacency" of images as follows: 

 

Definition 5 (Block adjacent images). Two images 

                                    are said to 

be adjacent if there exists a frequency block        
                                           
                                  . 

 

Unlike the previous definition, two images are 

considered adjacent if they differ on a block of frequency 

components of size   . Indeed when      , the notion 

block adjacency boils down to the original image 

adjacency. 
 

Definition 6 (  -Block Differential Privacy in image 

processing). Consider a dataset   that contains a set of 

block adjacent images. For all block adjacent images 

  and    in   , a mechanism M preserves ε-block 

differential privacy for all outputs   of the mechanism M 

holds that: 

                             

The parameter   indicates the level of privacy 

preserved: as   gets smaller a higher level of privacy is 

preserved. The notion of differential privacy aims to make 
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an adversary cannot tell from the output of      with 

high probability that a specific face image   corresponds 

to which person in dataset.  

B. The bLOM Algorithm and the utility-privacy tradeoff 

In this paper, we propose a mechanism that is based 

on the input perturbation approach presented in [14] and 

the Laplace mechanism in order to achieve  -block 

differential privacy for face images. The idea of bLOM 

(block Laplacian Obfuscation Mechanism) mechanism is 

to apply Laplacian obfuscation mechanism to the blocks 

of spatial frequency components of face images in order 

to privatize the data, i.e. to increase the probability that 

face recognition algorithms will fail to recognize faces 

belong to which persons face. 

There is always a trade-off between privacy and utility 

[24]. A perfect privacy preserving mechanism for face 

images might be applying a strong obfuscation technique 

to a face image that destroys all the face features inside 

the image. This mechanism will hide the identity of the 

person perfectly but it will come with a cost that all the 

useful information inside the image is lost. On the other 

hand, a poor privacy preserving mechanism may add, for 

instance, salt-and-pepper noise to a face image that will 

preserve all the face features inside the image. This 

mechanism will maintain high level of utility of the data 

but it is not efficient in preserving the privacy because 

face recognition techniques will be able to recognize the 

face in the image after applying a simple Gaussian filter to 

the image. 

C. Analysing face images in the frequency domain 

We need to analyze the role of low, mid, and high 

frequency components in the spatial frequency domain of 

a face image in order to determine which components or 

frequency band(s) we will choose to apply obfuscation to. 

The goal is to maximize the probability of successful 

detection face features while minimizing the probability 

of recognizing the identity of the person the face belongs 

to. Maheshkar  et al. already did this analysis in [25]. 

They presented the following information: Low spatial 

frequency components of a face image are related to 

illumination variation and smooth regions like cheeks and 

forehead of the face which are not important face features 

to be detected. On the other hand, high spatial frequency 

components represent detailed information of edge which 

are so crucial for detecting face features. The middle 

spatial frequency components represent primarily the 

basic structures of the face. 

The analysis done by Matthias, et al. [26] shows that 

the most critical spatial frequency band that face 

recognition algorithms depend on is the mid band, 

between 8 and 16 cycles per face. They presented results 

of discriminability measures by computing Fisher Linear 

Discriminant Analysis, Non-Parametric-Discriminant-

Analysis and Mutual Information as a function of spatial 

frequency. Class discriminability peaked at 16 cycles per 

face width. 

Based on the previous analysis, we can state the 

following: 

Applying obfuscation to low special frequency band 

will not be a good approach to privatize data. 

Applying obfuscation to the high spatial frequency 

band will not be also a very good approach, as this will 

corrupt the edge details needed to detect face features and 

will lead to low utility. 

Applying obfuscation to the mid spatial frequency 

band of a face image will be the best approach to 

maximize the indistinguishably of a person’s identity and 

minimize the cost of losing useful information i.e. 

detection of face features at the same time. 

D. Global Sensititvy 

Sensitivity of spatial frequency components is an 

essential information for the BLOM algorithm so that we 

can determine how much obfuscation is needed to be 

applied to an image in order to preserve privacy. We 

calculate global sensitivity for each spatial frequency 

component by constructing a sensitivity matrix. The 

sensitivity matrix is a matrix that contains global 

sensitivity value for each spatial frequency component 

computed for all images in the dataset. The global 

sensitivity value    for each component is the difference 

between the maximum value and minimum value of this 

component for all images in the dataset. High sensitivity 

value for a frequency component indicates that the value 

of the frequency component can vary greatly across the 

dataset, and vice versa in case of low sensitivity. This 

information is taken as one of the factors in determining 

how much noise is added to each frequency component of 

an image that we want to apply obfuscation to. A simple 

algorithm to calculate the sensitivity matrix across a 

dataset of images is illustrated as follows: 
 

Algorithm 1: Calculating sensitivity matrix for individual 

frequency components. 

For each image i in the dataset D then 

 F[x][y][i] = FFT(D[x][y][i]) 

END For 
For each frequency component f with position (x, y)         

in F then 

Sensitivity[x][y] = ||(max((F[x][y]) –   min(F[x][y])|| ; 

where F[x][y] is an array of value frequency 

component with position (x,y) over all the dataset D 

End For 

Output Sensitivity 
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In case we group the frequency components of an 

image into blocks, we need to modify the previous 

algorithm to compute the sensitivity matrix    for each 

block of frequencies instead of computing for each 

frequency individually. The modified algorithm is 

illustrated as follows: 

 

Algorithm 2: Calculating sensitivity matrix for blocks of 

frequencies 

For each image i in the dataset D then 

 F[x][y][i] = FFT(D[x][y][i]) 

END For 
For each frequency component f with position (x, y)         

in F then 

Sensitivity_f[x][y] = ||(max((F[x][y]) –    

min(F[x][y])|| ; where F[x][y] is an array of value 

frequency component with position (x,y) over all the 

dataset D 

End For 

For each block b of frequency components 

For each frequency component with position (x,y) 

inside b then 

 Sensitivity_bf[x][y] = Sensitivity_f[x][y] 

 End For 

 Sensitivity_b[b] = mean(Sensitivity_bf) 

End For 

Output Sensitivity_b 

 

E. Block Obfuscation 

To privatize an image, for each block of frequency 

components we add random variables with the same 

Laplace distribution to frequency components inside that 

block. If block size is equal to one, this means we will add 

random variable to each frequency component with a 

distinct Laplace distribution. Random variable added to 

each spatial frequency component depends on the global 

sensitivity of the block this component belongs to    and 

the parameter   , which determines the desired level of 

privacy. The algorithm of privatizing an image is 

illustrated as follows:  

 

Algorithm 3: Applying Laplacian Obfuscation to an 

image 

For each block b of spatial frequencies of an image  then 

 For each component f inside block b then 

  r = Laplace (∆b /ε) 

  f = f + r 

 END For 

END For 

4. EXPERIMENTAL RESULTS 

In this section, we evaluate the performance of the 

proposed bLOM algorithm. As we are the first to apply 

differential privacy techniques to image processing 

domains, there are no previous performance results to use 

them for comparison. We first develop metrics to measure 

utility and privacy performance specific to our case, and 

then we study the utility-privacy trade-off using extensive 

numerical experiments. We show that applying the bLOM 

algorithm to the mid-band  spatial frequencies leads to 

achieving privacy and utility in more than 87% of images 

while applying the bLOM algorithm to the low and high-

band spatial frequencies only achieved privacy and utility 

in 72%, and 65% of images. 

A. Dataset 

We used in our experiments face images from “The 

ORL Database of Faces” [27], which is a widely used 

database for testing face detection and recognition 

performance. It contains a set of face images that was 

taken April 1992 and April 1994 at AT&T Laboratories in 

Cambridge. The images were taken at different times 

varying facial expressions and details for 40 persons with 

different ages (, each one has 10 images giving a total of 

400 images. 

All images have the same specifications; 92x112 

pixels and 256 grey level per pixel. 

First, we defined the utility and privacy measures we 

will be using during the experiment. 

B. Privacy and Utility metrics 

Various definitions of privacy and utility metrics have 

been proposed in research literature of statistical 

databases. When we apply differential privacy techniques 

to new domain as in our case, we need to define new 

metrics for measuring privacy and utility specific for these 

domains. We used the performance of face features 

detection as a metric for utility and the performance of 

face recognition as the metric for distinguishability which 

in indicates the level of privacy achieved. Cascade object 

detectors in Matlab® were utilized to detect eyes and 

mouth inside a face image based on Viola-Jones 

algorithm. The success of extracting eyes and mouth 

features from a face image is the utility measure needed 

for drowsiness and distraction detection. 

To measure privacy, we used a very common 

technique in face recognition, which is Principle 

Component Analysis (PCA). We used the PCA to 

generate eignfaces for each 40 person in the dataset. For 

classification, we used Euclidian distance to find the 

closest neighbor. We defined the privacy measure in this 

case as failing to correctly recognize a person i.e. failure 

in classification of a face image in the dataset. 
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C. Experiment 1: Utility-Privacy tradeoff. 

The goal of this experiment is determining the value 

of     that will achieve maximum percentage of utility and 

privacy measures. First, we computed the sensitivity 

matrix for the dataset using the algorithm described 

previously. Figure 3 shows the sensitivity matrix 

computed for all the frequency components over the 

dataset. Note that we used fftshift function in Matlab to 

shift the zero frequency component to the center of the 

matrix. The sensitivity matrix is computed only one time 

at the beginning of the experiment, and then saved to be 

used later in the experiment during applying Laplacian 

obfuscation for each frequency component. 

 

 
 

Figure 3. Sensitivity matrix 

Then, we generated eignfaces from the 10 images of 

the 40 persons in the dataset using PCA algorithm. After 

that, we started with an arbitrary value of    and then 

looped for each image in the dataset and applied 

Laplacian obfuscation with random distribution = Laplace 

(
  

  
) to the low, mid, and high blocks of spatial frequency 

components of the image and then computed the utility 

and privacy measures for the corrupted image. After 

computing utility and privacy measures for all images in 

the dataset, we calculated the percentage of privacy and 

utility achieved across the entire database under the value 

of   and repeated this calculation for multiple values of  . 

The results in Fig 4 show that as   decreases privacy 

increase and utility decreases. This is because decreasing 

   means that more noise is added which increases privacy 

and decreases utility. We noticed that the maximum 

percentage of  utility and privacy (82%) was achieved 

after applying Laplacian obfuscation to mid-band 

frequency components which emphasizes what we have 

deduced in the previous section as  the maximum 

percentage of images achieving both utility and privacy 

only reached 72% in case of low-band  frequency 

components and 65% in case of high-band frequency 

components. 

 

  
 

Figure 4. (a) Utility vs privacy graph when obfuscation is applied to 

low-band frequency components. 
 

 

 
 

Figure 4. (b) Utility vs privacy graph when obfuscation is applied to 

mid-band frequency components. 
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Figure 4. (c) Utility vs privacy graph when obfuscation is applied to 

high-band frequency components. 

D. Experiment 2: Effect of block size 

Having noted from the previous experiment that the 

maximum percentage of privacy and utility achieved after 

applying obfuscation to mid-band frequency components, 

moved on to analyze the effect of the block size on the 

output of bLOM algorithm. 

In this experiment, we repeated the same steps done in 

experiment 1 for mid-band frequency components but we 

varied the block size used in bLOM algorithm. 

We calculated the block sensitivity matrix and applied 

Laplacian obfuscation with random distribution = Laplace 

(
  

  
) to each block of frequency components in the mid-

band. We noticed that increasing the block size starting 

with block size equal to one has led to better performance 

of bLOM algorithm, which reached 87% of privacy and 

utility with block size between five and ten as shown in 

Figure 5(a). After that point, the performance of the 

algorithm started decreasing as the block size increases. 

The percentage of utility and privacy for example reached 

a maximum of 70% when the block size was equal to 

twenty as shown in Figure. 5(b). 

 
 

Figure 5. (a) Utility vs privacy graph when obfuscation is applied to 

mid-band frequency components with block size = 10. 

 

 
  

Figure 5. (b) Utility vs privacy graph when obfuscation is applied to 
mid-band frequency components with block size = 20. 

 

E. Experiment 3: End-to-End Evaluation. 

In this experiment, we performed end-to-end 

evaluation of the bLOM algorithm we propose. We 

demonstrated how applying bLOM algorithm to a face 

image can preserve the privacy of the person and maintain 

the utility of the useful information in the image at the 

same time.  As shown in Figure 6, before applying 

Laplacian obfuscation, the identity of the person was 

recognized successfully and all his face features were 

extracted (face, eyes, nose, mouth). After applying 
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Laplacian obfuscation to the image, facial recognition 

algorithm has failed and as it identified a wrong person, 

which means that person’s identity was preserved while 

all face features were extracted successfully indicating 

that that utility remained unaffected after applying 

Laplacian obfuscation. 

 

 

Figure 6. (a) Face recognition before adding noise. 

 

 
 

Figure 6. (b) Face Features detection before adding noise. 

 

 

Figure 6. (c) Face Features detection after adding noise. 

 

 
 

Figure 6. (d) Face recognition after adding noise. 

 

 

5. CONCLUSION 

In this paper, we presented a novel approach to make 

computer vision and image processing algorithms 

differentially private. We proposed the bLOM algorithm , 

which is differential privacy technique in which we apply 

Laplacian obfuscation to images in order to privatize 

them. We showed experimentally that applying 

obfuscation to the camera data stream after tuning Laplace 

distribution parameters lead to preserving the identity of 

the driver in 87% of test cases, while also maintaining the 

ability to extract driver’s eye, and mouth features, which 

are the building blocks for driver’s drowsiness and 

distraction detection.  
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