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Abstract: Cognitive Radio Network (CRN) is an intelligent wireless communication system that aims to achieve efficient spectrum 

utilization through monitoring spectrum status, continuously. Spectrum utilization can be accomplished by sharing of spectrum holes 

from primary users (PUs) or primary service providers (PSPs) to secondary users (SUs). 

In spectrum sharing process, (PSPs) or spectrum-sellers sell unused spectrum to secondary service providers (SSPs) or spectrum 

buyers according to specified price. In this paper, pricing issue will be investigated with two different market models, namely, 

market-equilibrium and Bertrand competitive market. In market-equilibrium, pricing depends on the balance between spectrum 

demand and spectrum supply. It is solved in a simplified manner that reduces computational process. In Bertrand competitive market, 

PSPs try to accomplish the highest payoff regarding others by manipulating in price. Genetic algorithm (GA) will be proposed with 

Bertrand competitive to reduce and optimize average pricing charged to SSP for more spectrum selling comparing with round-robin 

algorithm. 
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1. INTRODUCTION 

In Cognitive Radio Network (CRN), spectrum 
shared between licensed and unlicensed users to 
improve spectrum utilization [1]. Sharing process gives 
a chance to PSPs to gain some revenue by selling 
unused spectrum holes to SUs [2-7]. Selling and buying 
spectrum creates a spectrum-trading market. In any type 
of spectrum trading market, pricing issue based on the 
incentive of PUs to gain profit and requisitioning of 
SUs to use shared spectrum. 

Actually, the spectrum-trading market has three 
different types, namely, market equilibrium, 
cooperative and competitive market.  Market 
equilibrium, pricing depends on required spectrum by 
SSPs, which is satisfied by spectrum supply from PSPs. 
In cooperative pricing scheme, PSPs cooperate for 
maximum total profit. In competitive pricing scheme,  

 

 

each PSPs plays strategy which maximizes its 
individual profit [5]. 

In fact, shared spectrum is modeled using game 
theory [8, 9] or by other approaches like price theory or 
joint strategy (price theory and game theory).  

Game theory was described with three main 
elements, namely, players or agents, strategy played and 
the payoff or utility gained from playing certain 
strategy. The player may play more than one strategy 
according to which strategy can achieve better payoff. 
The fundamentals of game theory were described in 
details in [10, 11] 

Actually, game theory has four categories, namely, 
non-cooperative or competitive games, cooperative 
games, auction games and stochastic games [12]. The 
non-cooperative game, players make decisions 
independently. It has many types of Bertrand games 
[13] in which PSPs decide prices simultaneously. Any 
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SU will buy spectrum from PSP who sells spectrum 
with the lowest price, then highest profit will be gained. 
Cooperative games [14], coalitions of players have joint 
strategies to gain mutual benefits likes Bargaining game 
[15] in which cooperation is enforceable by an outside 
party (e.g. a judge and police). In auction game, likes 
Stackelberg game, the strategy chosen by the leader can 
be observed by followers and then they adapt their 
decisions accordingly. Stochastic games are dynamic, 
competitive game with probabilistic strategy played by 
one or more players. The game is played in a sequence 
of stages. 

A special type of games will be introduced in this 
paper called Supermodular games [15] which have the 
property of convergence to Nash equilibrium. The basic 
idea of this game depends on the selection of one player 
that takes an action with higher value; the others want 
to do the same. Consequently, with multiple PSPs, the 
Supermodular game will be competitive. In literature 
[16], authors demonstrate solving competitive market 
under penalty constraints of payoff function, and 
demand from SSPs. In this paper, market-equilibrium 
pricing scheme will be considered as an extension of 
our work in the literature [16]. 

In detail, the main contributions of this paper will be 
described as follows: 

 An analytic solution for Market-equilibrium 
pricing scheme, and then evaluating Nash point 
through numerical results. 

 Solving Competitive pricing model considered for 
spectrum trading and substitutability using GA to 
optimize pricing strategy selection with respect to 
all PSPs in the network. 

 Extensive analysis of system results for Bertrand 
competitive and equilibrium market. 

The rest of paper is organized as follows: Sect. 2 
discusses market-equilibrium scheme and 
understanding Nash equilibrium. Sect. 3 investigates the 
basics and the properties of Supermodular game and 
Bertrand competition theory. System model will be 
presented in Sect. 4 The solution of spectrum price 
problem will be investigated in Sect. 5. Simulation 
results will be introduced in Sect. 6. Finally, 
conclusions will be made in Sect. 7. 

 

2. ANALYTIC SOLUTION FOR MARKET-

EQUILIBRIUM PRICING SCHEME  

Actually, in spectrum trading market, Each PSP is 
not aware of the situation of others in the network. 
Pricing process depends on providing the supply to 
market according to the demand from SUs. In this 
market, spectral efficiency (bits/sec/Hz) will be 
considered due to its impact. The spectrum demand of 

SUs is effected by modulation type, signal to Noise 
ratio (SNR) in allocated spectrum and price that is 
offered by PSPs. Spectral efficiency depends on SNR or 
channel quality. Spectral efficiency is evaluated by 
[17]: 

              

Where,

    
   

               
and    is SNR and        is 

target bit error rate (BER).

Considering utility gained by SUs from spectrum 
sharing process, which is given by [18]: 

      ∑        
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         ∑             ∑        
 
    

Where                     is a set of shared 

spectrum from PSPs,    
   

 is spectral efficiency of 

wireless transmission by SUs using frequency    ,     is 
price offered by PSPs for spectrum frequency    and 
   is spectrum substitutability (     ) which is also 
used with Supermodular game model. 

The profit that is gained by PSPs due to sharing 

process consists of revenue and cost where (Profit = 

revenue - cost). Revenue that is gained from PUs 

connected to PSP   and revenue from sharing process 

with SUs that equals to (            ). Cost due to 

QoS degradation of PUs is (       
   

    
         

  
   

therefore, the total profit is donated by [18]: 

      

            

       
   

 

                        
   

 
      

  
  

Where    ,    are constant parameters,   
   

 is 

required bandwidth for each PU,    is available 
spectrum for each PSP  ,    is the number of PUs which 

are attached to PSP   and    
   

 is spectral efficiency for 

PSP  . 

To solve this market and evaluate equilibrium 
status, the demand, and the supply functions are 
evaluated by differentiating the utility and the profit 
functions, respectively with respect to    as follows: 

      

    
 

      

    
  

This leads to: 
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  

          
  

  
 
      

   
 

   

      
 
    



Where       and       are the demand and the 
supply functions, respectively. 

                     is price vector offered by 
PSP in spectrum trading process. 

Then, from Eq.5 with Eq.6 and solving them simply 
for     then, 
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

3. SUPERMODULAR GAME BASICS AND BERTRAND 

COMPETITION 

Supermodular games are an interesting type of 
games that are exhibited as strategic complementarity; 
this means that when one player takes higher action, the 
others wants to do the same. It is based on a rich 
mathematical foundation of lattice theory and 
comparative statics [19]. 

The strategy space of every player is partially 
ordered set and the utility of playing higher strategy 
increases when the opponents also play higher strategy. 
In the following, the fundamentals of Supermodular 
games will be introduced. Then Bertrand competition 
will be investigated. 

A. Supermodular Game  

Suppose      is real valued function in lattice X, 
and    is subset of X. If      then    is upper the 
bound of    . If      then    is lower bound of   . 
Then,    is greatest or (least) element in    , 
respectively. If set of upper or (lower) bound of     has 

least or (greatest) element, then we have least upper or 
(greatest lower) bound of   , respectively. Noting that, 
least upper called supremum or joint (    ):=max ( 
     ), and greatest lower called infimum or meet 
(    ):=min (      ).  If two elements   and    of 
partially ordered set X have joint and meet, then X is 
lattice and    is sublattice of X.  

If                                   
 , Therefore,      is supermodular function, hence if 
we have game (N, S,    :    {1,…,N}), it will have the 
following properties [11]: 

    is compact subset of   ; 

     is upper semi continuous in (        ;and 

      has increasing difference in (        . 

Suppose that X and T are partially ordered sets and 
       is real valued function on subset S (strategy set) 
of X   T, if                                 
means that the gain to choose higher action a    is 
increasing when t is higher (         that is called 
increasing difference property or supermodularity. 

The player tries to take higher action. The others try 
to do the same. By other words, increasing one 
component of player n’s strategy set does not decrease 
the marginal profit of the other component in the same 
strategy. 

If the function        is twice continuously 

differentiable in open interval [ ̅, ] in    lattice, then 
necessary and sufficient condition of function   having 

supermodularity is 
        

      
         where 

{           } are players of the game.  

By applying Topkis’ theorem [17], it shows that 
each player’s best response function is increasing with 
the actions of other players. 

Suppose (S, u) is Supermodular game, and let 
                     

            is the best 

response of player   given other player’s strategies 
      and            is utility of player. Then the the 

the           has greatest and least element            , 
            which represent largest and smallest Nash in 

pure strategies, respectively. If      
     ,  then 

         
              and          

              .  

 

B. Bertrand Competition 

Bertrand game is a competitive game, which 
describes interaction among spectrum sellers that set 
price and spectrum buyers. The game depends on 
substitutability among spectrum available from PSPs 
and freedom degree of SSP to freely switch through this 
spectrum [20]. Substitutability depends on the 

Figure 1. Spectrum sharing model. 
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homogeneity of shared spectrum from different PSPs. 
SSPs buy available spectrum that was provided with a 
lower price. 

 

4. SYSTEM MODEL 

Let us assume that CR system have N of PSPs such 
that each PSP     {     }  has spectrum size    and 
service    of PUs. Each PSP satisfies its own PUs 
spectrum’s requirements and sells unused chunks of 
spectrum to SSPs or SUs (spectrum buyer) as shown in 
Fig.1. Selling and buying process creates spectrum-
trading market. In competition market, PSPs do not 
cooperate and each is aware about strategies of the 
others. In Bertrand model, best response of PSP    can 
be computed in terms of the price. Bertrand game 
model is applied on price competition among PSPs to 
obtain the Nash equilibrium pricing.  

Distributed [5, 21] algorithms and round-robin 
optimization [22] are used before to optimize different 
problems. In Distributed pricing algorithm, PSP uses its 
own information (the demand from SSP and price of the 
previous iteration) to adjust the price for next iteration. 
Round robin depends on the least upper elements in 
strategy which represent optimizing limits then, search 
for the optimal value of price that gives the best 
response to the utility function. A genetic algorithm 
which is described in [23, 24] will be presented to 
obtain optimum strategy selection, in which PSP wants 
to maximize its individual payoff depending on the 
spectrum demand of SSP. 

 

5. SOLUTIONS OF SPECTRUM PRICE PROBLEM 

A. Spectrum demand 

Assuming single SSP has spectrum demand, which 
is denoted by [18]: 

                   ∑       



Where    is market capacity of spectrum size   ,   
is price vector offered by 
PSP,                       is equivalent to PSP 
strategy,    is price per spectrum unit    or strategy and 
  is substitutability coefficient that shows how SSP can 
freely switch among available spectrum         . 
Therefore, if    , SSP can’t switch through free 
spectrums otherwise spectrum from more than one PSP 
can be completely substituted. 

 

B. Payoff  function or utility function 

Payoff function describes gain from chosen certain 
strategy. In competitive Bertrand model, profit depends 

on single decision variable (price). The demand 
function is given as follows [18]: 

                               
   

 
           

  
  

Where    is penalty coefficient,    is cost per 

spectrum unit and   
   

 is required bandwidth for each 

PU. Therefore, second term in Eq.10 represents 
required bandwidth minus allocated spectrum for each 
PU attached to PSP that is yield to spare spectrum for 
sharing. 

Proposition: The game with utility function in Eq.10 
is Supermodular game. 

Proof: assume the price is restricted for each PSP, 
the          is twice differentiable and the strategy 
(price) is single decision variable in Bertrand game and 
has supermodularity property. 

The first-order derivative of Eq.10 is denoted by, 

     
  (    ∑   

   

)    
   (  

   
 

  

  
)    

(    
  

  
)

  



Moreover, the second derivative is described by, 

          

        
   

      

  
   

This means that increasing on a component of 
strategy does not decrease profit of the other 
components. Applying Supermodular game on Bertrand 
competition leads to largest and smallest Nash 
equilibrium for iterated strategies, which are non-
decreasing functions.  

Mathematically, Nash equilibrium is obtained by 

equalizing first derivative with zero (i.e.  
         

   
   ) 

and this leads to Eq. 11.  

If Eq.11 solved for    , therefore, the best response 
that satisfies PSP profit is obtained using, 

                            
                    



By substituting     
  into Eq.10 to give maximum 

profit. The best response is evaluated by, 

                        
              

For     , it has strategy set    and     is strategy of 
player i’s opponents,            is joint strategy vector 



 

 

 Int. J. Com. Dig. Sys. 5, No.5, 395-402 (Sep. 2016)                        399 

 

 

http://journals.uob.edu.bh 

that refers to feasible strategy set of player   given other 
strategies of the opponents is expressed as 
                      . 

C. Genetic algorithm 

Genetic algorithm [23, 24] is used to optimize profit 
function as fitness function according to the upper limit 
of the price that is obtained from demand function. The 
algorithm produces multiple generations of price 
vectors for each PSP, and it is terminated when the 
price is less than price limit that is evaluated. This 
creates some equilibrium in Bertrand market and 
prevents one of PSP to be dominant if its price is less 
than chosen limit of demand. Moreover, the algorithm 
reduces the abrupt change in price that is offered by 
PSPs. In the following, proposed GA will be introduced 
to show how does it work. 

a. Initializing objective function with random sets 
(chromosomes) of strategies (genes) such that 
overall sets represent the population.  

b. Note: the population of strategy set is ranked 
by price bounds that previously defined the 
demand function. 

c. Substitute with a value of price strategy 
(chromosome) in the profit function (objective 
function). 

d. Use roulette wheel selection to choose the 
fittest strategy that gives a higher value for 
profit function. 

e. Apply crossover process mate strategy set 
according to crossover probability that defines 
the location of crossover. 

f. Random position of strategy set (gene) is 
randomly changed using the probability of 
mutation. 

g. Crossover and mutation (reproduction) 
produce a new generation of price strategy 
(offspring).  

h. New strategy sets are undergoing steps 3, 4, 5. 

i. At each iteration  , produced strategies are 
compared with the previous in iteration     
and check if they are in predefined range of 
price bounds. If there is no more change in 
produced price strategies, algorithm is 
terminated. Otherwise, algorithm is continued. 

Note: a solution that is obtained is considered best 
strategy profile according to the role of “survival 
for strongest”. Moreover, it is constrained with 
price bound (upper bound) that is obtained by 
solving demand equation that defines marginal 
profit of PSP. 

6. SIMULATION RESULTS 

Considering equilibrium-market system with two 
PSPs, each has 16 PUs (i.e. K=         ), total 
frequency spectrum W= [20, 20] MHZ,        
     ,         ,channel quality for primary user is 
10 dB, channel quality of SUs varies between 9 to 22 
dB and substitutability      . 

Note that parameters will be changed for next 
section of Bertrand competitive scenario.  

Fig.2 shows the relation between two prices, where 
P1 is price of      and P2 is price of     . When P1 
increases P2 also increases. The same thing occurs for 
different values of    as shown in Fig.3. 

In Fig.4, the evaluation of Nash value points to the 
demand of spectrum from SSP equals to the spectrum 
supply from PSP. The intersection between demand 
function and supply represents market equilibrium point 
(Nash point). It may be no market equilibrium if there is 
no intersection between the demand and the supply 

functions for another values of   
   

.Note that supply is 

increasing function in price while demand is decreasing 
function in pricing as shown in Fig.5.  

Considering competitive market system with two 
PSPs, each has 10 PUs (i.e.        and, total 
spectrum of each PSP is B= [200, 300] MHZ. Let 
spectrum requirements of PUs from their PSPs are 

Figure 2. price variation. 

Figure 3. Price variation at different values of 𝑒. 
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    = [20, 30]MHZ, spectrum capacity market for each 
PSP is  a=[200, 300]MHZ, the penalty term is  =[1, 3], 
d= 0.1, 1, and the cost per spectrum unit is c=[2, 4] . 

Genetic algorithm optimizes profit function as a 
fitness function in price such that the average in fitness 
function (profit) is not less price limit to prevent more 
price reducing among PSPs. It reduces average pricing 
by 27% comparing with [13] as shown Fig.6. In 
addition, substitutability among spectrum, d from 0.3 to 
0.8 for PSP1 and PSP2 has impact on price 
convergence such that average lower price for small 
value of e.  

With increasing substitutability with convergent 
values for each PSP as shown in Fig.7, PSP1 and PSP2 
produce more spectrum availability for SSP to switch 
among free spectrum. Prices converge better than 
introduced in Fig.6 for the same iterations. PSP has no 
chance to reduce its price to gain more profit. Price is 
not constant for all iterations but it changes with fixed 
value of interval for each iteration due to the demand of 
changing and profit competition. Then, from two 

pricing system, market-equilibrium reach stability faster 
than non-cooperative but the non-cooperative market is 
more practical than market-equilibrium.  

7. CONCLUSIONS 

In this paper, the cognitive radio of market-

equilibrium analytically resolved for obtaining Nash 

equilibrium. Moreover, Bertrand competition spectrum 

sharing market has been considered in which multiple 

PSPs shares unused spectra for SSPs. The effects of 

spectrum demand of SSP and profit gained in 

competition market have been considered using a 

genetic algorithm to provide optimized profit gained by 

choosing best individuals for each generation of price 

evaluated then natural selection for the best individual 

is returned to profit function which gives optimum 

profit with respect to the market. Taking upper limit for 

pricing, spectrum substitutability influences which lead 

to price variations. 

 

Figure 6. Price versus iteration for two PSP. 

Figure 7. Substitutability effect.  

Figure 4. Demand and supply functions. 

Figure 5. demand function. 
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