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Abstract: We propose a consistent and asymptotically normal estimator for traffic intensity vector   of a two stage open queueing 

network model with feedback with no assumption of arrival and service time distribution. Using this estimator and its estimated 

covariance matrix ,A  a )%100(1   confidence region for traffic intensity vector is constructed. Standard bootstrap, Bayesian 

bootstrap and percentile bootstrap are applied to develop the confidence regions. Simulation study was undertaken to evaluate 

performance of the four confidence regions. The performances are assessed in terms of their coverage area percentage, average area 

and relative coverage area. Further calibration technique is used to improve the coverage area percentages of confidence regions. 

 

Keywords: Traffic intensity vector, Coverage percentage area, Relative coverage area, Relative average area, Calibration, Feedback. 

 

1  INTRODUCTION 

Consider the network model of a computer system with feedback in which a job may return to previously visited 

nodes as shown in Figure 1. 

 

                                                                                                                  

          →            p1                                          

                                                                

                                                 CPU node         p0                        I/O node 

 
 

 Figure  1. An open queueing network with feedback. 

The system consists of two nodes i.e. CPU node and I/O node with service rates 1  and 2  respectively. Arrivals 

to the CPU node occur either from the outside at the rate   or from the I/O node at rate 1 . The total arrival rate to the 

CPU node is, therefore: 

 .= 10    (1) 

After service completion at CPU node, the job proceeds to the I/O node with probability 1p  and departs from the 

system with probability 0p  where 10 1= pp  . Therefore the average  

arrival rate to I/O node is given by: 

.= 101 p  (2) 

    1      2  

http://dx.doi.org/10.12785/ijcds/070606 

http://www.uob.edu.bh/english/pages.aspx?module=pages&id=2922&SID=684
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Using equation (2) in equation (1) we get 

 100 = p   

 

01

0 =
1

=
pp





 (3) 

 

Now using equation (3) in equation (2) we have 

0

1
1 =

p

p
  (4) 

Thus the traffic intensity vector of the CPU node and I/O node is given by 













20

11

10

21  , =) , (=









p

p

p

FFF
 (5) 

where 
F

1  and 
F

2  can be interpreted as expected number of arrivals per mean service time. The condition for 

stability of the system is both are less than unity. An equivalent queueing network model without feedback shown in 

Figure 2 is given in  [1]. 

 

                                                                                                                   

                     →                                                   

                                                                                                                                                   

                                                          00 p
                     

                  101 / pp          

 

Figure  2. An equivalent queueing network without feedback. 

The service rates of the CPU and I/O node of an equivalent network in Figure 2 are 10p  and 

1

20

p

p 
 respectively. 

Let 0S  and 1S  denote the total service time required on CPU node and I/O node. Then 

10

0

1
=)(

p
SE  and 

,=)(
20

1
1

p

p
SE  the expected value of the total service time required on the CPU node and I/O node. 

 

The product form solution also applies to open network of Markovian queues with feedback and Jackson’s theorem 

states that each node behaves like an independent queue  is given in [2]. Queueing networks with arrival process that 

can depend on the state of the system and closed queueing networks with exponential servers is shown in [3]. Basic 

properties of queueing networks introduced in [4]. Open queueing networks are useful in studying the behavior of 

computer communication networks [5]. Reference [6] considered the problem of Maximum likelihood estimation for 

Jackson networks with Poisson arrival and exponential service time at each node. The problem of maximum likelihood 

estimation for the parameters in a Jackson type queueing network with the arrival at each node following renewal 

process and service time distribution being arbitrary is discussed in [7]. Reference [8] stated that the departure time 

distribution from an /// cMM  queue is identical to the interarrival time distribution ,namely , exponential with mean 

1/ ; hence all stations are independent. 

Reference [9] developed and proposed the bootstrap to estimate the sampling distribution of any statistic. For 

necessary background on bootstrap technique, we refer ([9]-[13]). Besides the standard bootstrap technique, [14]  

presented the Bayesian bootstrap technique of resampling. A nonparametric approach of intensity for a queueing system 

with distribution free inter-arrival and service times is proposed by [15]. The statistical inference of parameters in 

CPU  OI /  
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queueing network problems are rarely found in the literature and the work of related problems in the past mainly 

concentrated on only parametric statistical inference, in which the distribution of population has a known form. 

However, in practice the functional form of the distribution is seldom known. Consistent and asymptotically 

normal(CAN) estimator for intensities of two stage queueing network model with feedback with distribution-free inter-

arrival and service times is proposed in [16]. Using this estimator and its estimated variance asymptotic confidence 

interval of intensities is constructed. Also bootstrap approaches such as Standard bootstrap, Bayesian bootstrap, 

Percentile bootstrap and Bias-corrected and accelerated bootstrap are applied to develop the confidence intervals of 

intensities. Reference [17] constructed an approximate calibrated CAN, Exact- t ,Variance-stabilized Bootstrap- t , and 

some bootstrap confidence intervals for intensity parameters of a two stage open queueing network with feedback with 

distribution-free interval and service times. Calibration technique is used to construct confidence intervals for intensity 

parameters of a two-stage open queueing network with distribution-free interval and service times in [18]. Numerical 

simulation study is conducted to demonstrate performances of the calibrated confidence intervals. 

Consistent and asymptotically normal estimator for intensity parameters for a queueing network with distribution-

free inter-arrival and service times is proposed in [19]. Using this estimator and its estimated variance, asymptotic 

confidence interval for intensities is constructed. Bootstrap approaches are applied to develop the confidence intervals 

for intensity parameters. Data based recurrence relation is used to compute a sequence of response time in [20]. The 

sample means from those response times, denoted by 1̂r  and 2̂r  are used to estimate true mean response time 1r  and 

.2r  Confidence intervals for mean response times 1r  and 2r  are constructed. Various confidence intervals for mean 

response times of an open queueing network model with feedback using the calibration approach are constructed in 

[21].  Data-based recurrence relation is used to compute a sequence of response times. Sample means from those 

response times are used to estimate true mean response times. 

 

The paper is organized as follows: The calibration technique is given in section 2. Statistical inference and 

estimation of traffic intensity vector is discussed in section 3. In section 4 different confidence regions for traffic 

intensity vector are constructed.  Section 5 is devoted to evaluate the performance of four confidence regions in terms of 

simulation analysis. The performances of the confidence regions are assessed in terms of their coverage area 

percentage, average area and relative coverage area. Calibration technique is used to improve the coverage percentage 

area of confidence regions. Finally some concluding remarks are given in section 6. 

 

2  CALIBRATION TECHNIQUE 
 

The actual coverage of confidence region is rarely equal to the desired level. Hence to improve the coverage 

accuracy of confidence region we use calibration technique. First use bootstrap to estimate the true coverage of 

confidence region and the region is then adjusted by comparing with the target nominal level. The general theory of 

calibration is reviewed in [22], following ideas of ([23]- [ 26]). The bootstrap calibration technique was introduced by 

[27]. To illustrate, first find ̂  for the confidence region for   with .  Then set 













<ˆ         ,
)ˆ(1

)ˆ)((1
=

ˆ                              ,
ˆ

=
2

1

if

if








  (6) 

That is we get the point ),( 1   by linearly interpolating between 

 ˆ           )ˆ,(      (0,0)    )( ifandi  

 <ˆ           (1,1)      )ˆ,(    )( ifandii  

Therefore the calibrated confidence region for   is with 1=   . 



 

 

104       Suresh B. Pathare  and Vinayak K. Gedam:  Estimation of Traffic Intensity Vector of a Two Stage …   
 

 

http://journals.uob.edu.bh 

3.  STATISTICAL INFERENCE OF TRAFFIC INTENSITY VECTOR 

Let ),( YX  be nonnegative random variables representing the inter-arrival and service time of CPU node and 

),( ZY  be nonnegative random variables representing the inter-arrival and service time of I/O node. Once a job 

complete service at CPU node, it will proceed to I/O node for further service with probability 1p  and departs from the 

system with probability 0p  where .1= 10 pp   The successive service time at both nodes are assumed to be mutually 

independent and independent of the state of the system. Then the traffic intensity vector   of CPU and I/O node is 

defined as follows: 





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




Y

Z

X

YFFF

p

pp




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
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1

00
21    ,   =) , (=  (7) 

where X  and Y  denote the mean inter-arrival time of CPU node and I/O node respectively. Similarly Y  and Z  

denote the mean service times of CPU node and I/O node. 

 

3.1  ESTIMATION OF TRAFFIC INTENSITY VECTOR 
 

Assume that ),,,( 21 nXXX   and ),,,( 21 nYYY   are random samples drawn from X  and Y  respectively. 

We use niYX ii ,1,2=),,(   to represent inter-arrival time and service time for the 
thi  customer of CPU node. 

Similarly ),,,( 21 nYYY   and ),,,( 21 nZZZ   are random samples drawn from Y  and .Z  We use 

niZY ii ,1,2=),,(   to represent inter-arrival time and service time for the 
thi  customer of I/O node. Define X , Y  

and Z  be the sample means of X  ,Y  and Z  respectively. According to the Strong Law of Large Numbers, we know 

that X , Y  and Z  are strongly consistent estimator of ),,( ZYX  . Thus strongly consistent estimator of 
F

  is 

given by 
















Yp

Zp

X

YpFFF

1

00
21   ,  =)ˆ , ˆ(=ˆ   (8) 

The true distributions of X  ,Y  and Z  are not often known in practical queueing network models with feedback, so 

the exact distributions of 
F

  cannot be derived. Under the assumption that interarrival times and service times are 

independent, the asymptotic distributions of 
F

  can be developed as follows: 

Theorem 3.1 Suppose ).,(  m

D

m NT  Let 
km RRg :  be such that 

)).,,(,),,,(),,,((=),,( 2121221121 mnmmm uuuguuuguuuguuug   Assume kggg ,, 21  are totally 

differentiable functions then ) ),(()( MMgNTg k

D

m
   [28] where 
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Theorem 3.2 If kXXX ,,, 21   are independent and identically distributed random vectors with mean 

kR  and covariance matrix   where   is positive definite and has finite elements, then 

),0()(  k

D

n NXn   where 
D

  denotes convergence in distribution [28]. 

By Theorem 3.2 we have, 
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x  , 
2

y  and 
2

z  are variances of X ,Y  and .Z  

Now consider 
23: RRg   
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By Theorem 3.1 we have, 
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M   is transpose of .M  Let .= MMAF   Again by Theorem 3.2 we have, 
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It follows that    FFFFF
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 has a 
2  - distribution with two degrees of freedom [29]. 

If 
FA  is unknown then using the sample estimates of 

22 ,,,, YXZYX   and 
2

Z  we get estimator 
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of 
FA  as follows: 
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Theorem 3.3 If covariance matrix 
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FÂ  converges component wise in probability to 
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4 DIFFERENT CONFIDENCE REGIONS 

In this section we construct different confidence regions for traffic intensity vector. 

 

4.1   Consistent and Asymptotically Normal Confidence Region 

If 
FA  is unknown, then replace it by  

FÂ  [29]. By using Theorem 3.3, )%100(1   CAN confidence region 

(CR) for   is given by, 

    2

2,

1ˆ | =  
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4.2  Standard Bootstrap Confidence Region 

Using standard bootstrap sampling procedure we get estimator of traffic intensity vector are as follows: 
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can be computed from the bootstrap resamples. Averaging the N  bootstrap estimates we get 
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Using the estimator of 
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4.3  Bayesian Bootstrap Confidence Region 

We use Bayesian bootstrap procedure to construct confidence region for .
F

  One BB replication is generated by 

drawing 1n  uniform (0,1)  random numbers 121 ,,, nrrr  , ordering them, and calculating the gaps 

njrru jjj ,1,2,=,= 1)()(  , where 0=(0)r  and 1=)(nr . Then ),,,(= 21 nuuuu   is the vector of 

probabilities attached to the inter-arrival data nxxx ,,, 21  . Each BB replication generates a posterior probability for 

each ix . Considering all BB replications gives the BB distribution of the distribution of X  and thus of any parameter 

of this distribution (Rubin (1981)). Hence for x  (the mean of X ) in each BB replication we calculate x  as if iu  

were the probability that ixX =  that is, we calculate .=
1=

**

ii

n

i

xux   The distribution of the values of 
**

x  over all BB 

replications is the BB distribution of .x  Similarly we generate a vector of probabilities ),,,(= 21 nvvvv   and 

).,,,(= 21 nwwww   These are attached to the data values nyyy ,,, 21   and nzzz ,,, 21   respectively in a BB 

replication. We calculate ii

n

i

yvy 
1=

**

=  for y  (the mean of Y ) and ii
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Using the estimator of 
FA  as 

**~FA  we construct )%100(1   BB confidence region for traffic intensity vector 

F
  is as follows: 
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4.4   Percentile Bootstrap Confidence Region 

 

Consider 










































*

2

*

1
*

*

22

*

12
*

2*

21

*

11
*

1
ˆ

ˆ
=,,

ˆ

ˆ
=,

ˆ

ˆ
=

F

N

F

NF

NF

F
F

F

F
F














   is the bootstrap distribution of .

F
  To arrange 

**

3

*

2

*

1
  ,,  ,  ,

F

N

FFF
   we use Euclidean distance. Hence )(  ,(3),  (2),  (1),

**

3

*

2

*

1
N

F

N

FFF
   is the 

arrangement of 
**

3

*

2

*

1
  ,,  ,  ,

F

N

FFF
  . Then utilizing the 

th)100(1   percentage point of the bootstrap 

distribution, )%100(1   PB confidence region for 
F

  is given by 

   )(1 | =   NdCR j

F

j
 (12) 

where ][x  denotes the greatest integer less than or equal to .x  

 

5  SIMULATION STUDY 

A simulation study was performed to examine the performances of confidence regions constructed in equations (9) 

to (12) for traffic intensity vector .
F

  The performances of the confidence regions are assessed in terms of their 

coverage area percentage,average area and relative coverage area. Relative coverage area is defined as the ratio of 

coverage area percentage to average area of confidence region. We have simulated /1/ 4EM  to /1,/ 44

PeHE  

/1/ 4

PeHM  to /1,/ 44 EH Pe
 /1/ 44

PeHE  to /1/4 MH Pe
 and /1/ 44

PoHE  to /1/ 44

PePo HH  queueing network models, 

where :M  exponential distribution, :4E  4-stage Erlang distribution, :4

PeH  4-stage hyperexponential distribution 

and :4

PoH  4-stage hypoexponential distribution. 

The level of ) ,  ,  ,  , ( 1021 pp  are set to 0.75) , 0.25 , 15 , 1 , (0.2  so that 0.2).= , 0.8=( 21

FF   For 

0.2)= , 0.8=( 21

FF   random samples of arrival time and service time are drawn. Next 1000=N  bootstrap 

resamples each of size )5,10,20,30(=n  are drawn from the original samples, as well as 1000=N  BB replications 

are simulated for the original samples. The above simulation process is replicated 1000=N  times. We compute 

coverage area percentage, average area and relative coverage area of confidence regions. Further calibration technique 

is used to improve the coverage percentage area of confidence regions obtained in (9) to (12). Simulation results are 

shown in Tables 1 to 4. According to equations (9) to (12) we obtain the CAN, the SB, the BB and the PB confidence 

regions for traffic intensity vector 
F

  with confidence level 90%. Confidence regions for 
F

  of /1/ 4

PeHM  to 

/1/ 44 EH Pe
 model for different values of 5,10,20,30=n  is shown in Figure-3 as an example. 
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 Figure  3. Confidence Regions for 
F

  of /1/ 4

PeHM  to /1./ 44 EH Pe
 

6   CONCLUSIONS 

Different estimation approaches CAN, SB, BB and PB are applied to construct various confidence regions for .
F

  

In Tables 1 to 4 we observed that average areas decrease but both coverage area percentages and relative coverage areas 

increase with n before as well as after calibration. Also we observed that coverage area percentages are approaches to 

90 % when n increases to 30. Among all queueing network models the estimation approach  Bayesian Bootstrap has 

the greatest relative coverage area before as well as after calibration. Table 5 shows that, due to calibration technique 

maximum increase in coverage area percentage of confidence regions is 12% for /1/ 44

PoHE  to /1./ 44

PePo HH  After 

calibration relative coverage area is comparatively more than before calibration for all estimation approaches. These 

approaches are successfully and efficiently applied to practical queueing network models. Calibration technique is used 

to improve the coverage area percentages of confidence regions. 

 

Table  1. Simulation results for confidence regions of /1/ 4EM  to /1/ 44

PeHE  

Coverage Area Percentages for 0.2)= , 0.8=( 21

FF   

Estimation 

Approaches 

Before Calibration After Calibration 

5=n  10=n  20=n  30=n  5=n  10=n  20=n  30=n  

CAN 0.772 0.845 0.865 0.887 0.807 0.866 0.895 0.888 

SB 0.814 0.873 0.891 0.893 0.816 0.870 0.897 0.894 

BB 0.735 0.837 0.863 0.879 0.789 0.858 0.893 0.885 

PB 0.854 0.885 0.877 0.890 0.876 0.885 0.901 0.897 

Average Area for 0.2)= , 0.8=( 21

FF   

CAN 2.058 1.926 1.887 1.938 1.904 1.908 1.887 1.925 

SB 0.897 0.241 0.103 0.068 0.780 0.238 0.103 0.068 

BB 0.408 0.188 0.092 0.063 0.374 0.185 0.092 0.063 
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PB 0.878 0.502 0.331 0.274 0.817 0.506 0.335 0.272 

Relative Coverage Area for 0.2)= , 0.8=( 21

FF   

CAN 0.375 0.439 0.458 0.458 0.424 0.454 0.474 0.461 

SB 0.907 3.626 8.630 13.062 1.047 3.661 8.689 13.150 

BB 1.802 4.447 9.397 13.962 2.112 4.648 9.715 14.135 

PB 0.973 1.761 2.647 3.244 1.073 1.750 2.691 3.297 

 

Table  2. Simulation results for confidence regions of /1/ 4

PeHM  to /1/ 44 EH Pe
 

Coverage Area Percentages for 0.2)= , 0.8=( 21

FF   

Estimation 

Approaches 

Before Calibration After Calibration 

5=n  10=n  20=n  30=n  5=n  10=n  20=n  30=n  

CAN 0.782 0.818 0.864 0.869 0.867 0.886 0.876 0.909 

SB 0.835 0.860 0.887 0.879 0.884 0.894 0.883 0.914 

BB 0.753 0.813 0.859 0.858 0.855 0.883 0.879 0.909 

PB 0.857 0.863 0.889 0.886 0.905 0.907 0.893 0.910 

Average Area for 0.2)= , 0.8=( 21

FF   

CAN 1.949 1.896 1.887 1.900 2.023 1.890 1.896 1.900 

SB 1.648 0.245 0.105 0.068 1.008 0.239 0.106 0.068 

BB 0.399 0.187 0.092 0.062 0.417 0.186 0.093 0.062 

PB 1.016 0.518 0.344 0.281 0.898 0.511 0.349 0.280 

Relative Coverage Area for 0.2)= , 0.8=( 21

FF   

CAN 0.401 0.431 0.458 0.457 0.429 0.469 0.462 0.478 

SB 0.507 3.517 8.463 12.995 0.877 3.734 8.373 13.521 

BB 1.886 4.340 9.307 13.862 2.049 4.737 9.484 14.678 

PB 0.844 1.666 2.583 3.155 1.008 1.774 2.557 3.249 

 

Table  3. Simulation results for confidence regions of /1/ 44

PeHE  to /1/4 MH Pe
 

Coverage Area Percentages for 0.2)= , 0.8=( 21

FF   

Estimation 

Approaches 

Before Calibration After Calibration 

5=n  10=n  20=n  30=n  5=n  10=n  20=n  30=n  

CAN 0.699 0.792 0.825 0.852 0.810 0.870 0.889 0.894 

SB 0.695 0.799 0.823 0.853 0.812 0.873 0.888 0.893 

BB 0.647 0.765 0.808 0.846 0.763 0.858 0.885 0.888 

PB 0.822 0.860 0.879 0.880 0.889 0.897 0.899 0.912 

Average Area for 0.2)= , 0.8=( 21

FF   

CAN 1.587 1.768 1.837 1.843 1.652 1.733 1.817 1.858 

SB 0.325 0.179 0.092 0.062 0.342 0.175 0.091 0.062 

BB 0.250 0.157 0.087 0.059 0.261 0.154 0.085 0.059 

PB 0.432 0.323 0.228 0.187 0.443 0.312 0.228 0.188 

Relative Coverage Area for 0.2)= , 0.8=( 21

FF   

CAN 0.441 0.448 0.449 0.462 0.490 0.502 0.489 0.481 
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SB 2.141 4.462 8.931 13.869 2.375 4.989 9.721 14.398 

BB 2.589 4.859 9.328 14.382 2.919 5.567 10.376 14.942 

PB 1.904 2.666 3.848 4.718 2.009 2.873 3.945 4.858 

 

Table  4. Simulation results for confidence regions of /1/ 44

PoHE  to /1/ 44

PePo HH  

Coverage Area Percentages for 0.2)= , 0.8=( 21

FF   

Estimation 

Approaches 

Before Calibration After Calibration 

5=n  10=n  20=n  30=n  5=n  10=n  20=n  30=n  

CAN 0.752 0.838 0.866 0.863 0.842 0.88 0.901 0.895 

SB 0.751 0.842 0.866 0.861 0.848 0.885 0.907 0.898 

BB 0.685 0.811 0.855 0.855 0.805 0.875 0.896 0.892 

PB 0.821 0.869 0.886 0.872 0.899 0.898 0.904 0.914 

Average Area for 0.2)= , 0.8=( 21

FF   

CAN 1.151 1.188 1.2249 1.2446 1.1431 1.2046 1.2189 1.2296 

SB 0.2505 0.1227 0.0622 0.0418 0.2489 0.1244 0.0618 0.0414 

BB 0.1872 0.107 0.0579 0.0399 0.1861 0.1084 0.0576 0.0394 

PB 0.4312 0.3164 0.2256 0.1852 0.4356 0.3146 0.2236 0.1836 

Relative Coverage Area for 0.2)= , 0.8=( 21

FF   

CAN 0.653 0.705 0.707 0.693 0.737 0.731 0.739 0.728 

SB 2.998 6.861 13.932 20.596 3.408 7.113 14.687 21.707 

BB 3.659 7.577 14.776 21.45 4.325 8.072 15.558 22.632 

PB 1.904 2.746 3.928 4.708 2.064 2.855 4.042 4.977 

 

Table  5. Maximum percentage increase in coverage percentage area due to calibration technique for 

0.2)= , 0.8=( 21

FF   

Queueing Network Model 5=n  10=n  20=n  30=n  

/1/ 4EM  to /1/ 44

PeHE  5.4 2.1 3.0 0.7 

/1/ 4

PeHM  to /1/ 44 EH Pe
 10.2 7.0 2.0 5.1 

/1/ 44

PeHE  to /1/4 MH Pe
 11.7 9.3 7.7 4.2 

/1/ 44

PoHE  to /1/ 44

PePo HH  12.0 6.4 4.1 4.2 
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