

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 8, No.4 (July-2019)

Email: hhamdi@ju.edu.sa, sabrine3amri@gmail.com, eibrahmi@taibahu.edu.sa

 http://journals.uob.edu.bh

Managing Performance Interference Effects for Intelligent

and Efficient Virtual Machines Placement based on GWO

Approach in Cloud

Hedi HAMDI

1
, Sabrine AMRI

2
and Zaki Brahmi

3

1 Jouf university Sekaka, Kingdom of Saudi Arabia

2University of Monteral Montral, QC H3T 1J4, Canada
3Taibah University Al-Ola, Kingdom of Saudi Arabia

Received 22 Feb. 2019, Revised 6 May 2019, Accepted 28 May 2019, Published 1 July 2019

Abstract: Cloud computing paradigm has been a trend in the computational world. Thus, many service providers today are

competing to enhance their features to attract more customers as they are offering them a bunch of features through a pay-as-you-go

pricing model. However, despite their huge fame, cloud environments still suffer from some issues that are being studied by

researchers from various perspectives. One of the controversial cloud issues nowadays is interference among virtual machines (VMs)

sharing the same hardware platform called also physical machine (PM). This problem occurs due to contention on shared resources

(e.g. CPU, disk, memory, network I/O, etc.) between co-hosted VMs which results in a performance degradation. The co-hosting of

VMs on the same PM, emerges from the ambition of server consolidation that cloud providers aim to reach in order to improve

power efficiency and optimize resource utilization. Furthermore, the Virtual Machine Placement (VMP) is one of the most

challenging problems in cloud environments management and it is being studied from various perspectives. Therefore, the key factor

of successful server consolidation is to minimize performance interference among co-located VMs. In this paper, we are going to

review two closely related research lines (i.e. the inter-VM interference detection and/or prediction and the interference-aware virtual

machine placement in cloud computing environments), give a comparative study between the reviewed approaches for each of them

and propose our Swarm intelligence-based metaheuristic, named Grey Wolf Optimizer (GWO) approach, for interference aware

Virtual Machine Placement Problem (VMPP).

Keywords: Cloud Computing, Virtual Machine (VM), Physical Machine (PM), VM Placement (VMP), Server Consolidation,

Resource Utilization, Performance Interference, SLA violation, Grey Wolf Optimizer (GWO), Swarm Intelligence metaheuristic

1. INTRODUCTION

Virtual machines placement (VMP) in cloud data centers,

is strictly considered among the NP-hard [1]

multidimensional [2] problems similar to bin packing

problems [3], where objects with a given area must be

packed into a finite number of bins such that the

minimum number of bins is used. Moreover, VMP are

multi-objective problems. Thereby, aiming to reduce

power consumption and resource wastage (i.e. through

virtualization and server consolidation) in data centers,

results in the birth of new challenges that must be

seriously considered in order to define efficient VMP

solutions. In other words, we must be aware of the

multidimensional aspect of the virtual machines

placement problem (VMPP). Hence, while trying to

optimize energy consumption by provisioning multiple

VMs on the Same PM and put as much as possible idle

PMs on a power saving mode, we should not forget about

resource usage balancing within each PM and resource

contention between co-hosted VMs. Which results in a

severe VMs performance degradation called also

performance interference, and consequently violates the

Service Level Agreement (SLA). The main challenge

then, is how to combine a set of goals which are

sometimes contradictory: 1) minimize used resources but

2) maximize resource balance of the server hosting

multiple VMs and 3) minimize power consumption by

collocating VMs on the same PM but 4) minimize inter-

VMs interference threshold. Performance interference is

a performance degradation [4] due to lack of effective

performance isolation among co-hosted VMs [5]. In that

case, the performance of one VM can still be affected by

the behavior of another adversely one, both sharing same

http://dx.doi.org/10.12785/ijcds/080401

318 Hamdi, Amri, et. al.: Managing performance interference effects for Intelligent …

http://journals.uob.edu.bh

systems physical resources. Moreover, studies on

Amazon EC22 have shown that, disk I/O bandwidth can

vary by 50% [6], and network I/O bandwidth of medium

instances can vary by 66% [7], due to the contention on

shared resources. In some cases, VM interference caused

by resource contention may even lead a virtual machine

to stop responding [8], [9], [10], [11]. Therefore, VM

interference problem should be well considered when

allocating VMs across PMs. This is why we insist on the

fact that, the key factor of successful VM placement is to

minimize performance interference among co-located

VMs [12]. Many studies [13], [14], [15], [16], [17], [18],

[19], [20], [21], have addressed this problem, some have

tried to propose different but sometimes similar solutions

to detect and calculate what they called a performance

interference problem, while others [22], [23], [24], [25],

[26], [27], have tried to propose approaches VMP taking

into account the interference between co-located VMs.

However, most of them are proposing solutions that seem

to be tighten to a specific level of VMP problem

dimension and do not treat the problem from all its

perspectives. In a previous work [28] we examined two

closely related research axes (the detection we examined

two closely related research axes (the detection and / or

prediction of interferences between VMs, as well as the

placement of interference-sensitive virtual machines in

cloud computing environments), we proposed

taxonomies and comparative studies of the current

achievements in each of them. In this paper, a Swarm

intelligence-based metaheuristic Grey Wolf Optimizer

(GWO) approach for interference-aware Virtual Machine

Placement Problem (VMPP).

The rest of the paper is organized as follows. In section

2, we review the revealing interference detection and/or

prediction approaches without considering any virtual

machines placement solutions. Section 3 presents

revealing works using interference-aware models to

define virtual machines placement approaches. In Section

4, we present the Grey Wolf Optimizer (GWO)

Approach. Section 5 introduces our proposed approach:

Interference-Aware VMP based on Grey Wolf Optimizer

(GWO) Approach. In Section 6, we give and discuss the

experimental study. In Section 7, we provide the

conclusions.

2. MANAGING INTER-VM PERFORMANCE

INTERFERENCE

Performance interference is the contention and fight
between co-hosted VMs over the storage and
computational resources (i.e. Disk I/O,CPU, Memory,
Network I/O, etc.) provided by the hosting PM. It can be
considered as the mismatch [6] between the resource
supply, provided by the hosting PM, and the resource
demand, of co-located VMs (i.e. whether the resource
demand can be satisfied by the resource supply).

A. Proposed inter-VM interference taxonomy

Fig.1 presents our taxonomy of inter-VM interference
detection techniques. Thereby, we meta-model the studied
works detailed in next section based on: (1) the studied
level metric (i.e. VM, PM or application level), and (2)
the adopted approach to identify it (i.e. learning based or
queuing based approach).

B. Comparative study

We propose a comparison between the existing

approaches that outline the most the performance

interference issue among VMs based on the following

criteria.

1) Comparison criteria: We emphasize distinct criteria

that we adopted during our comparative study between

the existing approaches. Those criteria come out to sculpt

a better understanding of the similarities and mismatches

between the proposed literature approaches upon

performance interference issue.

 Framework name (F.N): indicates the name that
authors choose to attribute to their proposed
framework.

 Target user (T.U): specifies the cloud actor to
whom is dedicated each study, in a way that he
can deploy the proposed solution related to
interference detection. The target user who
benefits of each suggested solution can be, either
the cloud service provider while offering his
services to tenants, or the cloud customer while
leasing the VM instances, or even both.

 Studied level metrics (L.M): indicates which
level authors have explored to capture the
interference problem. Was it the VM level
performance metric (such as network bandwidth,
CPU utilization and memory consumption), the
PM level metric (such as clock cycles per
instruction) or the Application level metric (such
as response time).

 Used resources (U.R): lists the mentioned
physical resources that researchers used to
experience and benchmark interference (i.e. CPU,
memory, network I/O etc.).

 Int. J. Com. Dig. Sys. 8, No.4, 317-332 (July-2019) 319

http://journals.uob.edu.bh

Figure 1. Inter-VM interference detection taxonomy

 Interference identification manner (I.M):
refers the used manner to identify the interference
problem. It can be either through predicting and
anticipating it before it occurs (i.e. proactive), or
detecting it simply based on historical
information but without predicting future data
changes (i.e. reactive).

 Used approach (U.A): used approach to identify
interference can be either learning-based
approach or queuing based approach.

 Used techniques (U.T): indicates the researchers
adopted techniques to compute interference (e.g.
Markov chain, least square method, Collaborative
filtering).

 Used metrics (U.M): points the used parameters
to express performance interference. Precisely,
parameters to identify the performance
degradation (e.g. QoS, response Time).

 Target field (T.F): this criterion emphasizes
authors main interest while identifying the
interference problem. Whether it was for
proposing a solution for either VM placement
(VM.P), resource provisioning (R.PV) or none of
the previous ones and simply identifying the
interference issue.

2) Emerging comparison: Table. I shows the

comparative study for works, dealing with the

performance interference problem, that we consider

relevant and outline the reported literature. In what

follows we build our comparative overview based on the

set of criteria depicted in the previous section. The

comparative study shows some similarities between the

different approaches. Hence, even though authors are

trying to explore performance interference issue from

various perspectives using diverse metrics and

techniques, yet they still adopting similar steps. [9] [9],

[10], [12] study both VM and PM level metrics to detect

the induced interference issue. Others, [8], [11] consider

the application level performance only and fewer are

those who explore the hardware level [6]. From another

perspective, many approaches unify in the manner they

predict interference. Thereby [6], [7], [11] and [12] use

the proactive strategy while [8], [9], [10], [23] and [24]

are adopting the reactive strategy.

3. MANAGING VIRTUAL MACHINES

PLACEMENT

We reviewed research work dealing with virtual machine
placement problem from the perspective of Energy-
awareness regarding the inter-VM performance
interference issue when placing VMs on PMs. As it is
described in Figure 2, the interference aware VMP is one
of the adopted aspects in researcher’s approaches related

320 Hamdi, Amri, et. al.: Managing performance interference effects for Intelligent …

http://journals.uob.edu.bh

Table 1. COMPARATIVE STUDY OF PERFORMANCE INTERFERENCE APPROACHES

F.N T.U L.M U.R I.M U.A U.T U.M

TF

R.PV VM.P

[6] Heifer C
PM,

VM

CPU,
Memory,

Network,

Disk I/O

P L Least square method

Resource utilization

(demand vs supply),
Task execution time

Y N

[7] CloudScope S.P VM
CPU, Disk,

I/O,
Network

P L

Discrete-time

Markov chain,

Virtualization
slowdown factor (V-

slowdown)

Job completion time Y N

[8] (CRE) C App P L

Collaborative

filtering -Proxy

concept. -Mean
reference response

time -Adjusted

Weighted Sum –
PCC (Pearson

Correlation
Coefficient)

Transaction response
time N N

[9] S.P, C
VM,
App

CPU, Disk,
I/O,

Network
R Q

Experiments on both

virtualized and non-

virtualized
servers

Job completion time Y N

[10] Q-Clouds S.P, C
VM,
App

CPU(cache) P L

-Static models

-Closed loop

controller –Discrete

time

multi-input

multi-
output(MIMO)-

Page coloring to

avoid interference
-Head room

QoS levels (Q-states) N N

[11] S.P App
CPU,

Network,

Disk I/O

P L

Application

clustering, Weighted

mean method,
Principal component

analysis (PCA),

Linear regression
analysis

Workload characteristics,
Runtime characteristics N N

[12] IC2 System C
VM,
App

CPU

(cache),
Memory

bandwidth

P L

Outlier detection

method, Decision
tree

classifier

(MXC)MaxClients,

(KAT)KeepaliveTimeout,
pm.max child ren

N N

[23] S.P, C VM
Network,

CPU cache

Statistical regression

techniques,
Heuristic

search algorithm

Request sizes,
Response time N N

[24] S.P VM Disk I/O R Q
Static Analysis

technique

Mean queuelength,

Response times,
Number of disk

read/write

Y N

 Int. J. Com. Dig. Sys. 8, No.4, 317-332 (July-2019) 321

http://journals.uob.edu.bh

to the VMP research axes. In this study, we are focusing
on surveying papers related to the mentioned VMP
research axes.

1) Proposed VMP taxonomy
Based on studying the most relevant VMP existing
research articles, we came up with classifying them
according to two levels: (1) the studied aspect (i.e. Energy-

Figure 2.Taxonomy of the VMP works

aware or Security aware VMP) and (2) the used approach
(game-theoretic, metaheuristic, FCA or Gossiping, based
approaches) as shown in our proposed taxonomy in
Figure2.

B. Comparative study

We established a comparative study of the most relevant

VMP approaches based on a set of criteria that we define

below. This comparative study may clarify the

similarities and the mismatches between the most

relevant interference-aware virtual machine placement

problem approaches.

1) Comparison criteria: Our comparative study is

based on the following criteria:

 Used resources: VM defined profiles in each

VMP approach. It consists on resources that

present intensive utilization to experience

interference (e.g. CPU, RAM, Disk I/O, etc.).

 Interference metrics: represents the used

parameters to compute interference. Precisely,

parameters to measure the performance

degradation.

 Placement metrics: identifies the adopted

parameters to verify by the placement module

while mapping VMs to PMs.

 Placement goal: defines the main objective of

server consolidation while placing the VMs (e.g.

minimize active PMs Number, Minimize

interference, etc.). Placement approach:

specifies the authors adopted approach to

resolve the VMP problem.

2) Emerging comparison: Table 2 shows the

comparative study for works, dealing with the

performance interference aware VMP problem, that we

consider most relevant and outline the reported literature.

In what follows we build our comparative overview

based on the set of criteria depicted in the previous

section. The comparative study shows that none of the

surveyed approaches considers VMP problem from

different levels of the cloud computing environments (i.e.

VM level, PM level and Application level).

The previous review of the most relevant literature to

inter-VM interference as well as virtual machine

placement problem in cloud data centers, shows that the

main challenges for managing the performance

interference problem that need to be further investigated

while placing VMs on PMs. In fact, we noted that the

reported literature has neglected the following:

 Most of the studied approaches detect and/or

predict interference through either, application

or VM levels, however we rarely find someone

who considers hardware level. Hence, it’s

essential to skim all cloud levels (i.e.PM, VM,

application, hypervisor, etc.) to overcome the

interference issue, which is not trivial.

322 Hamdi, Amri, et. al.: Managing performance interference effects for Intelligent …

http://journals.uob.edu.bh

 Virtual machine instances are provided to

tenants as on-demand computing resources. We assume

then, that cloud-customer profiling must be seriously

considered during the process of interference

identification, since cloud-customer is the main trigger of

VM and application behavior. So, we believe that its

crucial to investigate interference changes according to

users behavior. At this level, its critical to consider the

real-time aspect.

Table 2. COMPARATIVE STUDY OF INTERFERENCE-AWARE VMP APPROACHES

 Used

resources
Interference metrics

Placement
metrics

Placement goal
Placement
approach

[27]

CPU

RAM
Disk I/O

-CPU execution time percentage

of increase
-RAM and Disk I/O Throughput

percentage decrease

Interference
threshold

Minimize PM number
Heuristics (First

Fit, Best Fit,

Worst Fit)

[29]

CPU

Memory
Disk I/O

-slowdown(job1@job2):ratio

(completion time of job1

when job2 is running on the
Same PM To completion time

of job1 when running alone
on the PM).

Ratio of idle

PMs -Ratio of

SLA violation

Allocate interfering jobs on

different cores of the same PM

Minimize energy consumption in
datacenters and,

Reduce performance degradation

between colocated jobs

Heuristics

(Modified
Best Fit)

[30]

CPU

Memory

QoS in term of:

-throughput
-latency –Response time

Workload
heterogeneity

Select the best workload host
according to its internal

interference
level

Decision making
techniques

[5]
CPU cache:

(LLC)

Memory bus

LLC misses and references

Interference
intensity-

Interference
sensitivity

Minimize average performance

degradation ratio of all

applications

[31]

CPU cache:

(LLC)

Distance analysis

Cache

interference

intensity
Cache

pollution

Schedule VMs based on

Identifying applications cache

intensity

VM Scheduling
based on

Application
classification

[32]
Network

I/O
QoS violation: service time of

network I/O request.

Resource
demand of a

VM Application

QoS -VM
interference

Reduce VM interference Fully

exploit resource capacities of PMs

Satisfy applications QoS
requirements

Maximize cloud providers
profit

Integer Linear

programming

Polynomial time
Heuristic

[33]

CPU

Memory

Cycles Per Instruction (CPI):
response time

lowest

performance
interference level

Online VM placement strategy
Heuristics-

Machine
Learning

 Cloud computing environments are very

dynamic. A newly coming substantial

unpredictable application can seek for

computational resources any time, or even an

existing running workload can instantly be

resource intensive. Therefore, using historical

data alone is not enough to predict interference.

Thus, along with traces it’s essential to consider

prediction models that are flexible and

dynamicity-aware. At this level, it’s critical to

consider the real-time aspect. Far from the

traces, the real-time aspect is an attractive

search area that attempts to consider the present

front-end performance to anticipate the back-

end conduct. To tackle this matter, we are

chiefly motivated by a relatively young field:

the data stream mining.

4. GREY WOLF OPTIMIZER (GWO) APPROACH

The Grey Wolf Optimizer (GWO) is a new meta-

heuristic inspired by grey wolves (Canis lupus). The

GWO algorithm mimics the leadership hierarchy and

hunting mechanism of grey wolves in nature. In order to

design the models for both the hunting technique as well

as the social hierarchy of grey wolves.

 Int. J. Com. Dig. Sys. 8, No.4, 317-332 (July-2019) 323

http://journals.uob.edu.bh

A. Mathematical models of grey wolves hunting

process:

The grey wolves’ social hierarchy is mathematically

modeled as follows. The fittest solution is considered as

the alpha (α). Consequently, the second and third best

solutions are named beta (β) and delta (δ) respectively.

The rest of the candidate solutions are assumed to be

omega (ω). In the GWO algorithm the hunting

(optimization) is guided by α, β, and δ. The ω wolves

follow these three wolves. Three main steps of hunting

(i.e. searching for prey, encircling prey, and attacking

prey), are implemented to perform optimization.

1) Encircling

 Encircling prey is mathematically modeled by the

following equations:

�⃗⃗� = |𝐶 × 𝑋 𝑝(𝑡) − 𝑋 (𝑡)|

(1)

𝑋 (𝑡 + 1) = 𝑋𝑝(𝑡) − 𝐴 × �⃗⃗�

(2)

Vectors 𝐴 and 𝐶 are calculated as follows:

 𝐴 = 2𝑎 𝑟1 − 𝑎 (3)

 𝐶 = 2𝑟 2 (4)

Where:

�⃗⃗� : victor distance between grey wolf and prey p.

t: current iteration.

�⃗⃗� p: position vector of the prey (the best agent)

�⃗⃗� : position vector of a grey wolf.

�⃗⃗� , �⃗⃗� are coefficient vectors

�⃗⃗� : The components of are linearly decreased

from 2 to 0 over the course of iterations.

𝒓𝟏⃗⃗ ⃗⃗ , 𝒓𝟐⃗⃗ ⃗⃗ are random vectors in [0,1]

2) Hunting: The alpha leads the pack for hunting.

Therefore, alpha is considered as the best solution. The

beta and delta are considered as better solutions because

they have better information about the probable location

of the prey. Among the all obtained solutions, three best

solutions are considered as alpha, beta, delta, and others

have to update their positions according to the positions

of best search agents. To mathematically simulate the

hunting behavior of grey wolves, it is supposed that the

alpha, beta and delta have better knowledge about the

potential location of prey. Hence, first three best

solutions obtained so far are saved and oblige the other

search agents (including omegas) to update their

positions according to the positions of best search agents.

Following are the equations to implements the hunting

mechanism:

 �⃗⃗� 𝛼 = |𝐶1
⃗⃗⃗⃗ × 𝑋 𝛼 − 𝑋 |, �⃗⃗� 𝛽 = |𝐶2

⃗⃗⃗⃗ × 𝑋 𝛽 − 𝑋 |,

�⃗⃗� 𝛿 = |𝐶3
⃗⃗⃗⃗ × 𝑋 𝛿 − 𝑋 |

(5)

 𝑋1
⃗⃗⃗⃗ = 𝑋 𝛼 − 𝐴 1 × (�⃗⃗� 𝛼), 𝑋2

⃗⃗⃗⃗ = 𝑋 𝛽 − 𝐴 2 × (�⃗⃗� 𝛽),

𝑋3
⃗⃗⃗⃗ = 𝑋 𝛿 − 𝐴 3 × (�⃗⃗� 𝛿)

(6)

𝑋 (𝑡 + 1) =

𝑋 1 + 𝑋 2 + 𝑋 3
3

(7)

Where:{

D⃗⃗ α ∶ distance between wolf(α)and wolf (ω)

D⃗⃗ β ∶ distance between wolf(β)and wolf (ω)

D⃗⃗ δ ∶ distance between wolf(δ)and wolf (ω)

3) Attacking prey (exploitation): Grey wolves finally

finish their hunt by attacking their prey after it stops

moving. Approaching the prey, is mathematically

modeled by decreasing the value of 𝑎 and 𝐴 from 2 to 0

over the course of iterations.

4) Search for prey (exploration): The search process

starts with creating a random population of grey wolves

(candidate solutions) in the GWO algorithm. Over the

course of iterations, alpha, beta, and delta wolves

estimate the probable position of the prey. Each

candidate solution updates its distance from the prey. The

parameter “a” is decreased from 2 to 0 in order to

emphasize exploration and exploitation, respectively.

Candidate solutions tend to diverge from the prey when

|𝐴 |>1 , and converge towards the prey when |𝐴 |<1.

Finally, the GWO algorithm is terminated by the

satisfaction of an end criterion.

B. GWO Algorithm

To see how GWO is theoretically able to solve
optimization problems, some points may be noted:

 The proposed social hierarchy assists GWO to save
the best solutions obtained so far over the course of
iteration.

324 Hamdi, Amri, et. al.: Managing performance interference effects for Intelligent …

http://journals.uob.edu.bh

 The proposed encircling mechanism defines a circle-
shaped neighborhood around the solutions which can
be extended to higher dimensions as a hyper-sphere.

 The random parameters A and C assist candidate
solutions to have hyper-spheres with different
random radii.

 Exploration and exploitation are guaranteed by the
adaptive values of a and A.

 The proposed hunting method allows candidate
solutions to locate the probable position of the prey.

 The adaptive values of parameters a and A allow
GWO to smoothly transition between exploration and
exploitation. With decreasing A, half of the iterations

are devoted to exploration |A|≥1 and the other half

are dedicated to exploitation |A|<1.

The GWO has only two main parameters to be adjusted (a
and C). There are possibilities to integrate mutation and
other evolutionary operators to mimic the whole life cycle
of grey wolves.

5. INTERFERENCE-AWARE VMP BASED ON

GREY WOLF OPTIMIZER (GWO) APPROACH

In this section we propose our interference-aware

VMP based on a Swarm Intelligence metaheuristic,

named as Grey Wolf Optimizer (GWO). First, we

formalize our VMP problem based on our defined

problem dimensions (i.e. resource use, resource

balancing and performance interference) and define our

emerging objective function. Then, we reveal our own

interference-aware VMP approach inspired by GWO by

defining our GWO-based interference-aware VMP

algorithm (GWO-IVMP).

A. VMPP Formalization

Formally the VM Placement Problem VMPP can be

modeled as the triple: VMPP=<VM, PM, VPM>. Where:

 𝑉𝑀 = {𝑉1, … , 𝑉𝑛} : is the set of n virtual

machines

 𝑃𝑀 = {𝑃1 , … , 𝑃𝑚} : is the set of m physical

machines

 {𝑉𝑖} × 𝑃𝑀 → 𝑉𝑃𝑀 : where VPM is the Virtual

machines Placement Matrix with n rows and m

columns, that models VM-to-PM placement and

is defined as follows.

 𝑉𝑃𝑀𝑛,𝑚 = {𝑥𝑖,𝑗|𝑖 ∈ [1, 𝑛], 𝑎𝑛𝑑 𝑗 ∈ [1,𝑚]}

 𝑥𝑖,𝑗 = {
1, 𝑖𝑓 𝑉𝑖 𝑖𝑠 𝑝𝑙𝑎𝑐𝑒𝑑 𝑜𝑛 𝑃𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝑥𝑖,𝑗 = 1, means that the placement of coupling

(Vi , Pj) = true

Each 𝑷𝒋 ∈ 𝑃𝑀, (𝑗 ∈ [1,𝑚]), has:

- A set of hosted VMs given as: 𝑉𝑃𝑗
∈ 𝑉𝑀, where

𝑉𝑃𝑗
= {𝑉𝑖𝑗 , 𝑖 ∈ [1, 𝑛], 𝑎𝑛𝑑 𝑗 ∈ [1,𝑚]} , for xi,j

= 1

- Resource Capacity Vector (RCV) given as a

dimensional vector: 𝑅𝐶𝑉𝑃𝑗
= 〈𝐶𝑃𝑗

𝑟1 , 𝐶𝑃𝑗

𝑟2 , . . , 𝐶𝑃𝑗

𝑟𝑑〉 ,

where: 𝐶𝑃𝑗

𝑟𝑘 is the global capacity of resource 𝑟𝑘

provided by PM number j, k is the index of

resource r. Where, 𝑘 ∈ [1, 𝑑] and d is the

number of different provided resources.

𝑟𝑘 ∈ 𝑅, 𝑤ℎ𝑒𝑟𝑒: 𝑅 = {CPU, RAM, Disk I/O}, in

our model we consider 3-dimentional resources

(CPU, RAM, Disk I/O).

- Resource Utilization Vector (RUV) in a 𝑃𝑗 is

given as a d-dimensional vector: 𝑅𝑈𝑉𝑃𝑗
=

〈𝑈𝑃𝑗

1 , 𝑈𝑃𝑗

2 , … , 𝑈𝑃𝑗

𝑟𝑑〉, where:

o 𝑈𝑃𝑗

𝑟𝑘 = ∑ 𝐷𝑉𝑖𝑗

𝑟𝑘𝑣
𝑖=1 , for ∀ 𝑥𝑖,𝑗 = 1 , is the

overall used quantity of resource rk, by all

hosted VMs, among the overall capacity of

resource rk provided by the PM number j.

o v = |VPj |, is the number of VMs, Vij ∈ VPj,

hosted by Pj ∈ PM .

(𝑋𝛼) = the best search agent

(𝑋𝛽) = 𝑡ℎ𝑒 𝑠𝑒𝑐𝑜𝑛𝑑 𝑏𝑒𝑠𝑡 𝑠𝑒𝑎𝑟𝑐ℎ 𝑎𝑔𝑒𝑛𝑡

(𝑋𝛿) = 𝑡ℎ𝑒 𝑡ℎ𝑖𝑟𝑑 𝑏𝑒𝑠𝑡 𝑠𝑒𝑎𝑟𝑐ℎ 𝑎𝑔𝑒𝑛𝑡

Initialize the population of wolves 𝑋𝑖 , (𝑖 = 1,2, … , 𝑁𝑚𝑎𝑥)

Initialize parameters a, A, and c

Calculate the fitness of agent

While (𝑡 < 𝑀𝑎𝑥 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠)

for each search agent

Update the position of the current search agent

by the equation(7)

end for

Update a, A, and c

calculate the fitness of all search agents

Update (𝑋𝛼), beta (𝑋𝛽) and (𝑋𝛿)

End while

Return 𝑋𝛼

 Int. J. Com. Dig. Sys. 8, No.4, 317-332 (July-2019) 325

http://journals.uob.edu.bh

o 𝐷𝑉𝑖𝑗

𝑟𝑘 , is the quantity of resource demand 𝑟𝑘

required by 𝑉𝑖𝑗 , as it is explained in the

following virtual machines formalization.

- Resource Utilization Threshold Vector (RUTV): is a

fixed d-dimensional Vector for each 𝑃𝑗 ∈ 𝑃𝑀 and

must not be exceeded during the VM packing process

(i.e.VM placement process) process. The RUTV

vector is introduced in order to comply the SLA

constraints.

- 𝑅𝑈𝑇𝑉𝑃𝑗
=

 〈(𝛽𝑃𝑗

𝑟1
, 𝜃𝑃𝑗

𝑟1
) , (𝛽𝑃𝑗

𝑟2
, 𝜃𝑃𝑗

𝑟2
) , … , (𝛽𝑃𝑗

𝑟d
, 𝜃𝑃𝑗

𝑟d
)〉 , where

𝛽𝑃𝑗

𝑟k
, denotes the upper threshold that resource

𝑟𝑘 , utilization percentage should not exceed.

𝜃𝑃𝑗

𝑟k
, denotes the lower threshold that

resource𝑟𝑘 , utilization percentage should not be

less than it.

Each 𝑽𝒊 ∈ 𝑉𝑀, i index of virtual machine, 𝑖 ∈ [1, 𝑛],

has:

- Resource Demand Vector (RDV) given as a d-

dimensional vector:

 𝑅𝐷𝑉𝑉𝑖
= 〈𝐷𝑉𝑖

𝑟1 , 𝐷𝑉𝑖

𝑟2 , … , 𝐷𝑉𝑖

𝑟𝑑〉, where: 𝐷𝑉𝑖

𝑟𝑘 is the

quantity of resource 𝑟𝑘 required (demanded)

by 𝑉𝑖 ∈ 𝑉𝑀.

1) Management of Performance Interference model:

Performance interference refers to the performance

degradation percentage in a 𝑃𝑗 ∈ 𝑃𝑀, when placing on it

a new 𝑉𝑖 ∈ 𝑉𝑀 . Performance interference on each

physical machine is given as:

𝒊𝒏𝒕𝒆𝒓𝒇i,j =

∑ 𝒊𝒏𝒕𝒆𝒓𝒇i,j
𝒓𝒌𝒅

𝒌=𝟏

𝒅

(8)

The formula of (eq. 8), gives the average of

interferences (i.e. caused by contention over all required

resources (𝑟𝑘 ∈ 𝑅)) occurred while intending to place a

given (𝑉𝑖 ∈ 𝑉𝑀) into a given (𝑃𝑗 ∈ 𝑃𝑀). We designed by

𝒊𝒏𝒕𝒆𝒓𝒇𝒊,𝒋
𝒓𝒌 , the interference model obtained for each

resource 𝑟𝑘 using the interference models obtained

through Machine Learning-based regression technique

defined by [29]. According to [11], the following

interference models was obtained after executing specific

benchmarks that stress each computational resource

separately, in order to identify how much interference

percentage each type of shared resource produces:

- Interference model of CPU resource is given as:

 𝑖𝑛𝑡𝑒𝑟𝑓𝑖,𝑗
𝑐𝑝𝑢

∶ 𝑦 = 6,5346ln (𝑥) − 4,4983 (9)

- Interference model of RAM resource is given

as:

 𝑖𝑛𝑡𝑒𝑟𝑓𝑖,𝑗
𝑅𝐴𝑀 ∶ 𝑦 = 34,398ln (𝑥) − 4,7183 (10)

- Interference model of Disk I/O resource is given

as:

 𝑖𝑛𝑡𝑒𝑟𝑓𝑖,𝑗
𝐷𝑖𝑠𝑘𝐼/𝑂

∶ 𝑦 = 35,347ln (𝑥) − 7,2785 (11)

Where, y is the percentage of interference, and x in the

number of VMs ∈ 𝑉𝑃𝑗
 seeking for resource 𝑟𝑘.

2) Resource management models: Other than

performance interference minimization heuristic, our VM

packing process must not overload the PM and violate

the SLA (Service Level Agreement) constraint. In our

proposed solution we adopted the two following

heuristics as well:

- Each VM should be placed on the PM that has the

minimum unused resources without exceeding

resources use threshold. The purpose of our heuristic

is to maximize physical resources exploitation.

- Each VM should be placed on to the PM that

decreases further the imbalance rate of resources use.

This is feasible by using magnitude imbalance vector

a) Management of Resource utilization (RU)

model: In order to control the resource usage in each PM,

we will compute the amount of resource supply in each

PM through defining two vectors (i.e. Resource Supply

Vector (RSV) and New Resource Supply Vector

(NRSV)), that store respectively the available quantity of

resources before and after the virtual machine, 𝑉𝑖 ∈ 𝑉𝑀,

placement on the physical machine 𝑃𝑗 ∈ 𝑃𝑀.

- Resource Supply vector (RSV), defines the available

quantity of resource offered by 𝑃𝑗 ∈ 𝑃𝑀 respecting its

Resource Utilization Threshold Vector (RUTV), and

is calculated as follows:𝑅𝑆𝑉𝑃𝑗
= 〈𝑆𝑃𝑗

𝑟1
, 𝑆𝑃𝑗

𝑟2
, … , 𝑆𝑃𝑗

𝑟𝑑
〉 ,

where: 𝑆𝑃𝑗

𝑟𝑘
 denotes the available quantity of resource

𝑟𝑘 , respecting its threshold 𝛽𝑃𝑗

𝑟𝑘
, and is given by

𝑆𝑃𝑗

𝑟𝑘
= 𝛽𝑃𝑗

𝑟𝑘
× 𝐶𝑃𝑗

𝑟𝑘
− 𝑈𝑃𝑗

𝑟𝑘

- New Resource Supply vector (NRSV), which

denotes, the new remaining quantity of resources that

a 𝑃𝑗 will have if 𝑉𝑖 is placed on it, and is calculated as

326 Hamdi, Amri, et. al.: Managing performance interference effects for Intelligent …

http://journals.uob.edu.bh

follows: 𝑁𝑅𝑆𝑉𝑃𝑗
= 〈𝑁𝑆𝑖,𝑗

𝑟1
, 𝑁𝑆𝑖,𝑗

𝑟2
, … , 𝑁𝑆𝑖,𝑗

𝑟𝑑
 〉 , such

that:

 𝑁𝑆𝑖,𝑗
𝑟𝑘

= 𝑆𝑃𝑗

𝑟𝑘
− 𝐷𝑉𝑖

𝑟𝑘 (12)

b) Management of Resource Balancing (RB)

model: In fact, capturing the measure of overall resources

utilization across multiple resource types is one of the

most important factors, saturation of only one resource

type can lead to no further improvement in utilization

while leaving other types of resources underutilized [28],

[29], [30], [31].

- Resource Imbalance Vector (RIV), is a d-dimensional

vector, it computes the degree of imbalance in the

current utilization of a given 𝑃𝑗 , when placing a new

incoming 𝑉𝑖 , on it. And it’s defined as follows:

𝑅𝐼𝑉𝑖,𝑗 = 〈(𝑁𝑆𝑖,𝑗
𝑟1

+ 𝑀), (𝑁𝑆𝑖,𝑗
𝑟2

+ 𝑀),… , (𝑁𝑆𝑖,𝑗
𝑟𝑑

+

𝑀)〉 where = ∑
𝐷𝑣𝑖

𝑟𝑘

𝑑

𝑑
𝑘=1 , in our case, 𝑑 = 3 (3 types

of resources).

In order to quantify the RIV vector, we will calculate

its length which is in fact vectors magnitude. The

magnitude of a vector is computed based on the

Pythagorean Theorem and it defines the difference

between the d-dimensions of supply vector and the

average value. The magnitude is always a positive value,

since it’s a length value.

- The magnitude of RIV is given as follows:

𝑚𝑎𝑔(𝑅𝐼𝑉𝑖,𝑗) = √(𝑁𝑆𝑖,𝑗
𝑟1

+ 𝑀)
2
+ ⋯+ (𝑁𝑆𝑖,𝑗

𝑟𝑑
+ 𝑀)

2
 (13)

 When selecting a 𝑃𝑗 to host a 𝑉𝑖, the couple (𝑉𝑖 , 𝑃𝑗)

that has the smaller magnitude of RIV is the one that

mostly balances the resources utilization of the server

across different dimensions.

B. Objective function

 In this section, we give our objective function

relative to the Virtual Machines Placement Problem

(VMPP) in cloud data centers. Initially, when we take a

global look at our goals while placing VMs on PMs, it

seems to be a multi-objective problem since we have

multiple goals to achieve to resolve the VMPP:

- First goal: Optimize resource utilization, (i.e.

maximize resource use, and consequently

minimize the quantity of unused resources on a

given PM), which is modeled by (NSi;j).

- Second goal: Optimize resource balancing, (i.e.

all resources of a given PM are preferred to be

equally used, and none of them should be

stressed more than the others), which is

modeled by (mag(RIVi;j)).

- Third goal: Minimize inter-VM performance

interference, (i.e. minimize performance

degradation. In that case, the performance of

one VM should not be affected by the behavior

of another adversely one, both sharing same

physical resources), which is modeled by

(interfi;j).

Nevertheless, when we closely examine all the

mentioned goals, we clearly notice that all of them

attempt to minimize something (i.e. quantity of unused

resources, resource imbalance and performance

interference). Therefore, the virtual machines placement

problem (VMPP) for each VMP couple (Vi; Pj) ∈

VMPS, can be modeled by a Mono-objective function

Fi;j which is the sum of all our obtained goals models,

when placing Vi on Pj , such that:

 𝐹𝑖,𝑗 = (𝑁𝑆𝑖,𝑗 + 𝑚𝑎𝑔(𝑅𝐼𝑉𝑖,𝑗) + 𝑖𝑛𝑡𝑒𝑟𝑓i,j) (14)

Thereafter, in order to reach a better solution for the

VMPP, our goal is to minimize the global objective

function F. F is the objective function of a given virtual

machines placement solution (VMPS) and is defined as:

𝐹 = ∑𝐹𝑖,𝑗
, (∀ (𝑉𝑖 , 𝑃𝑗

𝑑

1

)|𝑥𝑖,𝑗 = 1)

(13)

Subject to the constraints:

- ∀𝑖 ∑ 𝑥𝑖,𝑗
𝑚
𝑗=1 ≤ 1 , this constraint ensures that

each Vi is allocated to at most only one Pj ,

though one host Pj can host multiple VMs,

𝑉𝑃𝑗
∈ 𝑉𝑀.

- 𝜃𝑃𝑗

𝑟𝑘
× 𝐶𝑃𝑗

𝑟𝑘 ≤ 𝑈𝑃𝑗

𝑟𝑘 ≤ 𝛽𝑃𝑗

𝑘 × 𝐶𝑃𝑗

𝑟𝑘; 𝑘 ∈ [1, 𝑑] , This

constraint ensures that the overall PM utilization

must be lower than the fixed threshold. (i.e.

must be lower than the fixed upper threshold

and upper than the lower threshold of resource

r
k
 utilization percentage).

- 𝑈𝑃𝑗

𝑟𝑘 ≥ 𝜃𝑃𝑗

𝑘 × 𝐶𝑃𝑗

𝑟𝑘; 𝑘 ∈ [1, 𝑑] , This constraint

ensures that the overall PM utilization must be

higher than the fixed lower threshold.

- 𝐷𝑉𝑖,𝑗

𝑟𝑘 < 𝐶𝑃𝑗

𝑟𝑘 , or also: 𝑈𝑃𝑗

𝑟𝑘 ≤ 𝐶𝑃𝑗

𝑟𝑘, this constraint

ensures that the load on each host machine is

not greater than its capacity.

- 𝜃𝑃𝑗

𝑟𝑘
× 𝐶𝑃𝑗

𝑟𝑘 < 𝑁𝑆𝑖,𝑗
𝑟𝑘

, the new supply of the

required resources, should not be negative, or

 Int. J. Com. Dig. Sys. 8, No.4, 317-332 (July-2019) 327

http://journals.uob.edu.bh

else the coupling (𝑉𝑖 , 𝑃𝑗) violates the SLA

constraint.

C. GWO-based interference-aware VMP (GWO-IVMP)

1) Mapping between our VMP Problem formulation

and GWO algorithm: In order to apply GWO algorithm in

VMP problem we present in table V-C1 a mapping

between GWO and our problem formulation parameters.

2) GWO-IVMP: GWO-based interference-aware VMP

algorithm:

In order to apply the GWO in our VMP algorithm, we

will adjust the GWOs steps using our problems

parameters respecting the mapping in Table V-C1. The

steps description is as follows.

 Step1: Initial population:

In this Step we are going to initialize the set of

incoming VMs, PM, seeking to be hosted and the set

of the candidate hosting PMs, PM. Then, our grey

wolves initial population is going to be the set of

randomly obtained VMPS (i.e. VMs to-PMs

placement solutions obtained by randomly assigning

each incoming Vi VM, to a random Pj PM to be

its host). Any needed parameters can be also

initialized in this step (e.g. a, A, and C vectors).

 Step2: Fitness of wolves:

At this level, we will be computing the fitness of each

wolf according to eq.15 from the generated initial

population.

 Step 3: Find alpha, beta, and delta:

Sort the wolves in a decreasing dominance level based on

their fitness values. Alpha (), beta (), and delta () will

be the three best suitable arrangements of wolves that

minimize the most their objective functions. The

remaining applicant arrangements are regarded to be the

omega (). Let F be the first-best fitness solution, F the

second-best fitness solution and F the third-best fitness

solution.

 Step 4: Update position of wolves:

Update position of omega wolves based on

Eq.17.

 Step 5: Update alpha, beta, and delta:

After performing movements of all group

members, the (new) alpha, beta, and delta must

be found. Repeat steps 45 until the stopping

condition is met after maximum number of

iterations Itmax.

In what follows we give our interference aware

GWO-based VMP algorithm (GWO-IVMP).

Table 1. MAPPING BETWEEN GWO AND OUR PROBLEM
FORMULATION

GWO Algorithm Problem Formulation

A Grey wolf A solution which is a set of

initial (Vi,Pj) placement:

VMPS

Fitness function The objective function F

given by Eq.15.

, , and

The three best suitable

arrangements of wolves that

minimize the most their

objective function F given by

Eq.15. i.e. best three VMPS

having best three fitness

values.

X: position of best

search agent

Fi;j

 : first best value of

fitness solution

X: position of best

search agent

Fi;j

 : second best value of

fitness solution

X: position of best

search agent

Fi;j

 : third best value of

fitness solution

Encircling prey

�⃗⃗� = |𝐶 × 𝑋 𝑝(𝑡) − 𝑋 (𝑡)| �⃗⃗� = |𝐶 × F(𝑡 + 1) − F(𝑡)| (16)

𝑋 (t + 1) = Xp(t) − 𝐴 �⃗⃗� F(t + 1) = Fp(t) − 𝐴 �⃗⃗� (17)

𝐴 = 2𝑎 𝑟1 − 𝑎 , 𝐶 = 2𝑟2 𝐴 = 2𝑎 𝑟1 − 𝑎 , 𝐶 = 2𝑟2

Hunting

𝐷⃗⃗ ⃗⃗ = |𝐶1
⃗⃗⃗⃗ × 𝑋 (𝑡) − 𝑋 | 𝐷⃗⃗ ⃗⃗ = |𝐶1

⃗⃗⃗⃗ × F𝑖,𝑗
 − F|

𝐷⃗⃗⃗⃗ = |𝐶2
⃗⃗⃗⃗ × 𝑋 (𝑡) − 𝑋 | 𝐷⃗⃗⃗⃗ = |𝐶2

⃗⃗⃗⃗ × F𝑖,𝑗

− F|

𝐷⃗⃗⃗⃗ = |𝐶3
⃗⃗⃗⃗ × 𝑋 (𝑡) − 𝑋 | 𝐷⃗⃗⃗⃗ = |𝐶3

⃗⃗⃗⃗ × F𝑖,𝑗
 − F|

𝑋1
⃗⃗⃗⃗ = 𝑋 − 𝐴1

⃗⃗⃗⃗ × (𝐷⃗⃗ ⃗⃗) 𝑋1
⃗⃗⃗⃗ = F𝑖,𝑗

 − 𝐴1
⃗⃗⃗⃗ × (𝐷⃗⃗ ⃗⃗)

𝑋2
⃗⃗⃗⃗ = 𝑋 − 𝐴2

⃗⃗ ⃗⃗ × (𝐷⃗⃗⃗⃗) 𝑋2
⃗⃗⃗⃗ = F𝑖,𝑗

 − 𝐴2

⃗⃗ ⃗⃗ × (𝐷⃗⃗⃗⃗)

𝑋3
⃗⃗⃗⃗ = 𝑋 − 𝐴3

⃗⃗ ⃗⃗ × (𝐷⃗⃗⃗⃗) 𝑋3
⃗⃗⃗⃗ = F𝑖,𝑗

 − 𝐴3
⃗⃗ ⃗⃗ × (𝐷⃗⃗⃗⃗)

𝑋 ⃗⃗ ⃗(𝑡 + 1) =
 𝑥1⃗⃗ ⃗⃗ + 𝑥2⃗⃗ ⃗⃗ + 𝑥3⃗⃗ ⃗⃗

3
 𝐹(𝑡 + 1) =

 𝑥1⃗⃗ ⃗⃗ + 𝑥2⃗⃗ ⃗⃗ + 𝑥3⃗⃗ ⃗⃗

3

Input: VM =V1,V2,, Vn, PM =P1,P2,, Pm

Output: VMPS = /* A VM Placement Solution */

begin

 S = initialize Set of Solutions(VM, PM);

 initialize Parameters(a, A, C);

 /* compute the fitness of initial population*/

 for each (Si S) do

 Si.Ftitness = Fitness(Si);

 end

 (, ,) = Find Alpha Beta Delta(S);

 /* Update position of each wolf based on Eq.17

 */

 while (t < Itmax) do

 for each (search agent Si S {, , }) do

 Update Position(Si);

 end

 Update(a, A, C);

328 Hamdi, Amri, et. al.: Managing performance interference effects for Intelligent …

http://journals.uob.edu.bh

 (, ,) = Find Alpha Beta Delta(S*);

 t t +1 ;

 end

 return VPMS;

end

Algorithm 2: GWO-based Interference-aware VMP

Algorithm (GWO-IVMP)

6. EXPERIMENTAL STUDY

This section emphasizes the description of test beds

scenarios used to evaluate the performance of our GWO-

based interference-aware VMP approach (GWO-IVMP),

and results given by another random VMP approach that

we will define as well.

A. Used test beds

Since the virtual machines placement problems size

depends heavily on the number of both virtual machines

and physical machines, we can observe the variations of

the completion time when the number of virtual

machines increases while the number of physical

machines remains fixed and also when we change the

number of physical machines and keep the number of

virtual machines fixed. For that, we have prepared two

groups of scenarios of test beds (as presented in Table

IV):

 In a first test scenario, the number of physical

machines was fixed as 1000, while the number

of virtual machines varies with a step of 500.

 In a second scenario, the number of virtual

machines was fixed as 3500, while the number

of physical machines varies with a step of 200.

The two groups of randomly generated scenarios

were also used to evaluate the performance and

efficiency of our solution.

Table 2. SCENARIOS OF TEST BEDS

Scenario 1 Scenario 2
Test

(ID)

Number

of VMs

Number

of PMs
 Test

(ID)

Number

of VMs

Number

of PMs

1 1500 1000 11 3500 800

2 2000 1000 12 3500 1000

3 2500 1000 13 3500 1200

4 3000 1000 14 3500 1400

5 3500 1000 15 3500 1600

6 4000 1000 16 3500 1800

7 4500 1000 17 3500 2000

8 5000 1000 18 3500 2200

9 5500 1000 19 3500 2400

10 6000 1000 20 3500 2600

B. Comparison basics

We used the comparison of our GWO-IVMP solution,

based on Swarm intelligence, with one other solution.

For the rest of the job, all the test problems are applied to

two policies:

 Our proposed GWO-based interference-aware

VMP policy.

 A random VMP policy.

These two policies are developed at the CloudSim

simulator level that provides a simulated cloud

environment. Before we begin implementing the

proposed policies for allocating virtual machines, it is

essential to know where the change can be made, since

CloudSim offers several classes that support the

simulation of the cloud environment. Thus, in order to

implement a new virtual machine placement policy, it is

essential to have knowledge of the existing policies and

classes that support these allocation strategies. The

“VMMAllocation-Policy” class is the component of

CloudSim where the virtual machine allocation policies

are performed. So, at this class level, we are developing

our GWO-IVMP solution based on Swarm intelligence

and another random VMP solution.

1) Implementation of the random VMP policy: At the

”VMMAllocationPolicy” class of the CloudSim package,

we have developed a second virtual machine placement

policy that is based on a random choice of a physical

machine to host the virtual machine. For each virtual

machine in the simulated environment, the system

chooses a random physical machine, if it meets the

requirements of the virtual machine then the allocation

will take place, otherwise the system chooses another

physical machine randomly, and so on.

2) Implementation of our GWO-based VMP policy:

Still

at the ”VMMAllocationPolicy” class, we have developed

our decentralized virtual machine placement solution

based on Swarm intelligence, where each virtual machine

in the system individually decides which physical

machine to migrate based on its obtained fitness value.

The size of initial population was set to 20 and the

maximum number of iterations is fixed to 50. We’ve

chosen these values based on observing the ratios of best

results given by our solution.

C. Results and discussion

In this section, we will identify the factors

influencing the performance of all virtual machine

placement solutions. Then, based on these factors we will

present the simulation results by applying the different

scenarios on both virtual machine allocation policies

previously mentioned (i.e. our GWO-IVMP solution and

the random VMP solution).

 Int. J. Com. Dig. Sys. 8, No.4, 317-332 (July-2019) 329

http://journals.uob.edu.bh

D. Evaluation metrics

In order to analyze the quality of proposed solutions,

we must evaluate the performance, efficiency and

scalability of each of them:

 The performance evaluation is performed by

comparing the quality of the results generated

by different solutions for a set of randomly

generated test beds.

 The evaluation of efficiency is performed by

comparing the computation time (completion

time) of various solutions for a series of test

problems of different sizes and complexities.

 Scalability is tested by studying how its

compute time (completion time) increases as the

size of the test problem increases.

However, in cloud data centers, a virtual machine

placement solution is reported effective and efficient if it

respects the two major constraints, namely:

 Minimal energy consumption.

 Maximized and balanced resource use in all

dimensions.

E. Results

The simulation is conducted through the 20

previously defined test beds in Table IV, and each

simulation has been repeated several times, the results

being generated using the average. The results are

calculated according to the evaluation metrics mentioned

above: the number of active physical machines, the

efficiency of the reached packing efficiency PE, the

quantity of unused resources UNR and the completion

time.

1) Number of active PMs: Figure 3, show curves of

obtained results after testing the two previously defined

VMP policies (i.e. our GWO-IVMP solution and the

random VMP solution) respecting both previously fixed

scenarios in Table IV, in term of the evaluation criterion,

number of active physical machines. Results of obtained

number of active PMs in term of varying number of VMs

while fixing number of PMs, as it is defined in first

scenario, are shown in Figure 3. It shows also the results

of second scenario, in which number of active PMs is

captured while varying PMs number and fixing VMs’

number. In Figure 3, we have varied the number of of

virtual machines between 1500 and 6000, with a step of

500. Our GWO-IVMP solution used only about 200 to

600 physical machines to place all virtual machines. In

the same Figure, we also varied the number of PMs while

fixing the number of VMs to 3500, our GWO-IVMP

solution used almost the same number of physical

machines that was less than 500. However, for both

scenarios the random VMP solution was almost using all

physical machines in order to allocate the given virtual

machines, regardless the number of VMs (i.e. whether it

was fixed or varied).

Figure 3.Number on active PMs in term of VMs (scenario1 and

scenario2)

2) Packing efficiency PE: This section evaluates the

effectiveness of the packing within each solution when

simulating twenty test beds. Packaging efficiency (PE), is

a critical factor in assessing the quality of any virtual

machine placement solution. The higher the PE value, the

better the solution is. For the twenty different test beds,

our GWO-based interference aware virtual machines

placement algorithm has reached the highest packaging

efficiency value. From graphs in Figure 4, we can deduce

that as the number of virtual machines in the system

increases, the efficiency increases. However, when the

number of virtual machines is invariant and the number

of physical machines increases, packaging efficiency

decreases. But anyway, our solution has guaranteed an

efficiency value greater than 8.

Figure 4. Packing Efficiency (PE) in term of VMs (scenario 1 and
scenario 2)

3) Quantity of unused resources UNR: During the

simulation of the twenty test beds, we took the amount of

unused resources produced by each allocation solution.

The results are summarized in Figure 5. The amount of

unused resources is represented as a percentage of the

total capacity of the active physical machines. For the

twenty different simulations, our GWO-IVMP policy

was wasting less than 10% of available resources, while

330 Hamdi, Amri, et. al.: Managing performance interference effects for Intelligent …

http://journals.uob.edu.bh

the random solution had high resource wastage up to

85%.

Figure 5. Quantity of UNused Resources (UNS) in term of VMs
(scenario 1 and scenario 2)

3) Completion time: In order to verify the scalability of

our Swarm intelligence-based algorithm, we have plotted

a first completion time curve in Figure 6 for the first

scenario where the number of virtual machines varies

between 1500 and 6000 with a step of 500 while the

number of physical machines is set to 1000. We have

also plotted a second completion time curve, for the

second scenario where the number of physical machines

increases from 800 to 2600 with a step of 200 while the

number of virtual machines has been set at 3500. As

shown in Figure 6, the execution time of our GWO-

IVMP solution increases too slowly as the size of the

problem increases; i.e. either by increasing the number of

virtual machines or the number of physical machines.

Figure 6. Completion time in term of VMs (scenario 1 and scenario 2)

For large scale problems, the execution time of our

algorithm has not exceeded 1000(ms). Same thing for the

execution time of the random VMP algorithm, except

that the random solution is based on a simple assignment

of the first available physical machine without taking into

consideration either the maximization or the balance of

the use of available resources.

F. Discussion

Results of the experiments clearly show that our

solution based on Swarm intelligence surpasses the other

proposed random VMP solution on all performance

measures, namely: the number of active physical

machines, the efficiency of packing, the amount of

unused resources and the completion time. Our virtual

machine placement algorithm was able to guarantee a

better reduction in power consumption while ensuring a

low number of active physical machines (servers) for the

twenty different test beds. The highest packing efficiency

values were produced by our GWO-IVMP solution.

Regarding the amount of unused resources in physical

machines, our algorithm shows the lowest percentages.

For the twenty different simulations, the amount of

unused resources in our GWO-IVMP algorithm was less

than 10%, while the unused resource quantities of the

random solution were between 40% and 90%. We can

conclude that our virtual machine placement solution has

strongly respected the constraint of maximizing the

exploitation of resources. From the execution time graphs

in Figure 6, we have been able to deduce that the

completion time of our GWOIVMP solution has

increased almost linearly as the size of the problem

increases. The completion time of our solution has had

the same rate whether while varying the number of

virtual machines or the number of physical machines.

Therefore, we can conclude that our solution based

on Swarm intelligence is highly scalable. In other words,

the evaluation of the results of the 20 test beds applied to

both proposed VMP policies (i.e. our GWO-IVMP

algorithm and the random VMP algorithm), showed that

our GWO-IVMP algorithm generates better results

compared to the other random VMP algorithm.

7. CONCLUSION

In this work we proposed a Swarm intelligence

metaheuristic-based Grey Wolf Optimizer (GWO)

approach for interference-aware virtual machine

placement in cloud datacenters. Our approach mainly

focuses on energy optimization and efficiency of

resource utilization while placing VMs on PMs in data

centers. Experimental results have shown that our virtual

machine placement algorithm consistently outperforms

the random VMP algorithm in terms of performance

criteria. It ensured a minimum number of active physical

machines and a minimum amount of unused resources,

high packing efficiency and reliable computing time. The

results also showed that our Swarm intelligence based

solution is highly scalable by its shorter completion time

and slowly increasing with the complexity of the

problem. The evaluations carried out validate the

robustness and the efficiency of the algorithm object of

this work. As a future work we will be concerned by two

main levels for enhancing our interference-aware VMP

 Int. J. Com. Dig. Sys. 8, No.4, 317-332 (July-2019) 331

http://journals.uob.edu.bh

solution: Front-end and back-end. The former exhibits

the set of users that use cloud services and the latter is

materialized by the set of servers where VMs are hosted.

We also point out three main challenges in interference

detection and prediction.

REFERENCES

[1] Chekuri, C., & Khanna, S. (2004). On multidimensional packing
problems. SIAM journal on computing, 33(4), 837-851.

[2] Wood, T., Shenoy, P. J., Venkataramani, A., & Yousif, M. S.
(2007, April). Black-box and Gray-box Strategies for Virtual
Machine Migration. In proc. Of NSDI (Vol. 7, pp.17-17).

[3] Mishra, M., & Sahoo, A. (2011, July). On theory of vm
placement: Anomalies in existing methodologies and their
mitigation using a novel vector based approach. In proc. Of IEEE
International Conference on Cloud Computing (CLOUD), (pp.
275-282). IEEE.

[4] Tickoo, O., Iyer, R., Illikkal, R., & Newell, D. (2010). Modeling
virtual machine performance: challenges and approaches. ACM
SIGMETRICS Performance Evaluation Review, 37(3), 55-60.

[5] Koh, Y., Knauerhase, R., Brett, P., Bowman, M., Wen, Z., & Pu,
C. (2007, April). An analysis of performance interference effects
in virtual environments. In proc of. IEEE International
Symposium on Performance Analysis of Systems & Software,
2007 (pp. 200-209). IEEE.

[6] Barker, S. K., & Shenoy, P. (2010, February). Empirical
evaluation of latencysensitive application performance in the
cloud. In Proceedings of the first annual ACM SIGMM
conference on Multimedia systems (pp. 35-46). ACM.

[7] Shieh, A., Kandula, S., Greenberg, A. G., Kim, C., & Saha, B.
(2011, March). Sharing the Data Center Network. In NSDI (Vol.
11, pp. 23-23).

[8] Matthews, J. N., Hu, W., Hapuarachchi, M., Deshane, T.,
Dimatos, D., Hamilton, G., & Owens, J. (2007, June). Quantifying
the performance isolation properties of virtualization systems. In
Proceedings of the 2007 workshop on Experimental computer
science (p. 6). ACM.

[9] Padala, P., Zhu, X., Wang, Z., Singhal, S., & Shin, K. G. (2007).
Performance evaluation of virtualization technologies for server
consolidation. HP Labs Tec. Report, 137.

[10] Xavier, M. G., Neves, M. V., Rossi, F. D., Ferreto, T. C., Lange,
T., & De Rose, C. A. (2013, February). Performance evaluation of
containerbased virtualization for high performance computing
environments. Proc. of 21st Euromicro International Conference
Parallel, Distributed and Network-Based Processing (PDP), 2013
(pp. 233-240). IEEE.

[11] Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer. Adv Eng
Softw are2014; 69:4661.

[12] [12] Xu, F., Liu, F., & Jin, H. (2016). Heterogeneity and
interference-aware virtual machine provisioning for predictable
performance in the cloud. IEEE Transactions on Computers,
65(8), 2470-2483.

[13] Chen, X., Rupprecht, L., Osman, R., Pietzuch, P., Franciosi, F.,
& Knottenbelt, W. (2015, October). Cloudscope: Diagnosing and
managing performance interference in multi-tenant clouds. Proc.
Of the IEEE 23rd International Symposium on Modeling,Analysis
and Simulation of Computer and Telecommunication Systems
(MASCOTS),(pp. 164-173). IEEE.

[14] Amannejad, Y., Krishnamurthy, D., & Far, B. (2015, May).
Detecting performance interference in cloud-based web services.
In proc. Of IFIP/IEEE International Symposium on Integrated
Network Management (IM), 2015 (pp. 423-431). IEEE.

[15] Yuan, Y., Wang, H., Wang, D., & Liu, J. (2013, June). On
interferenceaware provisioning for cloud-based big data
processing. In Proc. Of IEEE/ACM 21st International Symposium
on Quality of Service (IWQoS), 2013 (pp. 1-6). IEEE.

[16] Nathuji, R., Kansal, A., & Ghaffarkhah, A. (2010, April). Q-
clouds: managing performance interference effects for qos-aware
clouds. In Pro. Of the 5th European conference on Computer
systems (pp. 237-250). ACM.

[17] Koh, Y., Knauerhase, R., Brett, P., Bowman, M., Wen, Z., & Pu,
C. (2007, April). An analysis of performance interference effects
in virtual environments. In proc of. IEEE International
Symposium on Performance Analysis of Systems & Software,
2007 (pp. 200-209). IEEE.

[18] Maji, A. K., Mitra, S., Zhou, B., Bagchi, S., & Verma, A. (2014,
December). Mitigating interference in cloud services by
middleware reconfiguration. In Proceedings of the 15th
International Middleware Conference (pp. 277-288). ACM.

[19] Noorshams, Q., Bruhn, D., Kounev, S., & Reussner, R. (2013,
April). Predictive performance modeling of virtualized storage
systems using optimized statistical regression techniques. In Proc.
of the 4th ACM/SPEC International Conference on Performance
Engineering (pp. 283-294). ACM.

[20] Casale, G., Kraft, S., & Krishnamurthy, D. (2011, June). A model
of storage I/O performance interference in virtualized systems. In
Proc. of 31st International Conference Distributed Computing
Systems Workshops (ICDCSW), 2011 (pp. 34-39).IEEE.

[21] [21] Kim, S. G., Eom, H., & Yeom, H. Y. (2013). Virtual machine
consolidation based on interference modeling. Journal of
Supercomputing, 66(3), 1489-1506.

[22] Jersak, L. C., & Ferreto, T. (2016, April). Performance-aware
server consolidation with adjustable interference levels. In Proc.
of the 31st Annual ACM symposium on applied computing (pp.
420-425). ACM.

[23] Shim, Y. C. (2015). Inter-VM Performance Interference Aware
Static VM Consolidation Algorithms for Cloud-Based Data
Centers. In proc. Of The International Conference on
Communications and Computers, pp-18.

[24] Moreno, I. S., Yang, R., Xu, J., & Wo, T. (2013, March).
Improved energy-efficiency in cloud datacenters with
interference-aware virtual machine placement. In Autonomous
Decentralized Systems (ISADS), 2013 IEEE Eleventh
International Symposium on (pp. 1-8). IEEE.

[25] Jin, H., Qin, H., Wu, S., & Guo, X. (2015). CCAP: a cache
contentionaware virtual machine placement approach for HPC
cloud. International Journal of Parallel Programming, 43(3), 403-
420.

[26] Lin, J. W., & Chen, C. H. (2012, June). Interference-aware virtual
machine placement in cloud computing systems. International
Conference In Computer & Information Science (ICCIS), 2012
(Vol. 2, pp. 598-603). IEEE.

[27] Caglar, F., Shekhar, S., & Gokhale, A. (2011). Towards a
performance interference aware virtual machine placement
strategy for supporting soft real-time applications in the cloud, In
proc of 3rd IEEE International Workshop on Real-time and
distributed computing in emerging applications.

[28] Sabrine Amri, Hamdi H´edi and Zaki Brahmi, Inter-VM
Interference in Cloud Environments : A Survey, In Proceedings of
2017 IEEE/ACS 14th International Conference on Computer
Systems and Applications.IEEE Computer Society, page 154159 -
2017.

[29] Shim, Y. C. (2015). Inter-VM Performance Interference Aware
Static VM Consolidation Algorithms for Cloud-Based Data
Centers. In proc. Of The International Conference on
Communications and Computers, pp-18.

332 Hamdi, Amri, et. al.: Managing performance interference effects for Intelligent …

http://journals.uob.edu.bh

[30] Moreno, I. S., Yang, R., Xu, J., & Wo, T. (2013, March).
Improved energy-efficiency in cloud datacenters with
interference-aware virtual machine placement. In Autonomous
Decentralized Systems (ISADS), 2013 IEEE Eleventh
International Symposium on (pp. 1-8). IEEE

[31] Jersak, L. C., & Ferreto, T. (2016, April). Performance-aware
server consolidation with adjustable interference levels. In Proc.
of the 31st Annual ACM symposium on applied computing (pp.
420-425). ACM.

[32] Lin, J. W., & Chen, C. H. (2012, June). Interference-aware virtual
machine placement in cloud computing systems. In Computer &
Information Science (ICCIS), 2012 International Conference on
(Vol. 2, pp. 598-603). IEEE.

[33] Caglar, F., Shekhar, S., & Gokhale, A. (2011). Towards a
performance interferenceaware virtual machine placement
strategy for supporting soft real-time applications in the cloud, In
proc of 3rd IEEE International Workshop on Real-time and
distributed computing in emerging applications.

Dr. Hedi HAMDI received his PhD in

Computer sciences from The

University of Bordeaux France in

December 2009. Currently, he is an

Assistant Professor at Computer

Science Department, College Of

Computer and information Science,

Jouf university where he is conducting

research activities in areas of cloud

computing, information security,

software defined network, Network

Functions Virtualization. Dr. Hedi HAMDI is a member of

RIADI-GLD Laboratory (ENSI-Manouba University).

Amri Sabrine received his master

Thesis in Computer sciences form

sousse university in December

2017. She currently a PHD Student.

His main research contributions

concern: Machine learning, VM

consolidation and cloud computing.

Dr. Brahmi Zaki received his PhD

in Computer sciences from The

Faculty of Mathematical, Physical

and Natural Sciences of Tunis-

Manar University (Tunisie) in

December 2010. He is currently an

Associate Professor at Computer

Science Department, College Of

Science And arts at Al-Ola, Taibah

University. He is member at RIADI-

GLD Laboratory (ENSI-Manouba

University). His main research

contributions concern: Web services composition, intensive

workflow scheduling in cloud computing and data stream

mining for outlier and workload detection in Cloud computing.

