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Abstract: Cloud computing paradigm has been a trend in the computational world. Thus, many service providers today are 

competing to enhance their features to attract more customers as they are offering them a bunch of features through a pay-as-you-go 

pricing model. However, despite their huge fame, cloud environments still suffer from some issues that are being studied by 

researchers from various perspectives. One of the controversial cloud issues nowadays is interference among virtual machines (VMs) 

sharing the same hardware platform called also physical machine (PM). This problem occurs due to contention on shared resources 

(e.g. CPU, disk, memory, network I/O, etc.) between co-hosted VMs which results in a performance degradation. The co-hosting of 

VMs on the same PM, emerges from the ambition of server consolidation that cloud providers aim to reach in order to improve 

power efficiency and optimize resource utilization. Furthermore, the Virtual Machine Placement (VMP) is one of the most 

challenging problems in cloud environments management and it is being studied from various perspectives. Therefore, the key factor 

of successful server consolidation is to minimize performance interference among co-located VMs. In this paper, we are going to 

review two closely related research lines (i.e. the inter-VM interference detection and/or prediction and the interference-aware virtual 

machine placement in cloud computing environments), give a comparative study between the reviewed approaches for each of them 

and propose our Swarm intelligence-based metaheuristic, named Grey Wolf Optimizer (GWO) approach, for interference aware 

Virtual Machine Placement Problem (VMPP). 

 

Keywords: Cloud Computing, Virtual Machine (VM), Physical Machine (PM), VM Placement (VMP), Server Consolidation, 

Resource Utilization, Performance Interference, SLA violation, Grey Wolf Optimizer (GWO), Swarm Intelligence metaheuristic 

 

1. INTRODUCTION  

Virtual machines placement (VMP) in cloud data centers, 

is strictly considered among the NP-hard [1] 

multidimensional [2] problems similar to bin packing 

problems [3], where objects with a given area must be 

packed into a finite number of bins such that the 

minimum number of bins is used. Moreover, VMP are 

multi-objective problems. Thereby, aiming to reduce 

power consumption and resource wastage (i.e. through 

virtualization and server consolidation) in data centers, 

results in the birth of new challenges that must be 

seriously considered in order to define efficient VMP 

solutions. In other words, we must be aware of the 

multidimensional aspect of the virtual machines 

placement problem (VMPP). Hence, while trying to 

optimize energy consumption by provisioning multiple 

VMs on the Same PM and put as much as possible idle 

PMs on a power saving mode, we should not forget about 

resource usage balancing within each PM and resource 

contention between co-hosted VMs. Which results in a 

severe VMs performance degradation called also 

performance interference, and consequently violates the 

Service Level Agreement (SLA). The main challenge 

then, is how to combine a set of goals which are 

sometimes contradictory: 1) minimize used resources but 

2) maximize resource balance of the server hosting 

multiple VMs and 3) minimize power consumption by 

collocating VMs on the same PM but 4) minimize inter-

VMs interference threshold. Performance interference is 

a performance degradation [4] due to lack of effective 

performance isolation among co-hosted VMs [5]. In that 

case, the performance of one VM can still be affected by 

the behavior of another adversely one, both sharing same 

http://dx.doi.org/10.12785/ijcds/080401 
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systems physical resources. Moreover, studies on 

Amazon EC22 have shown that, disk I/O bandwidth can 

vary by 50% [6], and network I/O bandwidth of medium 

instances can vary by 66% [7], due to the contention on 

shared resources. In some cases, VM interference caused 

by resource contention may even lead a virtual machine 

to stop responding [8], [9], [10], [11]. Therefore, VM 

interference problem should be well considered when 

allocating VMs across PMs. This is why we insist on the 

fact that, the key factor of successful VM placement is to 

minimize performance interference among co-located 

VMs [12]. Many studies [13], [14], [15], [16], [17], [18], 

[19], [20], [21], have addressed this problem, some have 

tried to propose different but sometimes similar solutions 

to detect and calculate what they called a performance 

interference problem, while others [22], [23], [24], [25], 

[26], [27], have tried to propose approaches VMP taking 

into account the interference between co-located VMs. 

However, most of them are proposing solutions that seem 

to be tighten to a specific level of VMP problem 

dimension and do not treat the problem from all its 

perspectives. In a previous work [28] we examined two 

closely related research axes (the detection we examined 

two closely related research axes (the detection and / or 

prediction of interferences between VMs, as well as the 

placement of interference-sensitive virtual machines in 

cloud computing environments), we proposed 

taxonomies and comparative studies of the current 

achievements in each of them. In this paper, a Swarm 

intelligence-based metaheuristic Grey Wolf Optimizer 

(GWO) approach for interference-aware Virtual Machine 

Placement Problem (VMPP). 

The rest of the paper is organized as follows. In section 

2, we review the revealing interference detection and/or 

prediction approaches without considering any virtual 

machines placement solutions. Section 3 presents 

revealing works using interference-aware models to 

define virtual machines placement approaches. In Section 

4, we present the Grey Wolf Optimizer (GWO) 

Approach. Section 5 introduces our proposed approach: 

Interference-Aware VMP based on Grey Wolf Optimizer 

(GWO) Approach. In Section 6, we give and discuss the 

experimental study. In Section 7, we provide the 

conclusions. 

2. MANAGING INTER-VM PERFORMANCE 

INTERFERENCE 

Performance interference is the contention and fight 
between co-hosted VMs over the storage and 
computational resources (i.e. Disk I/O,CPU, Memory, 
Network I/O, etc.) provided by the hosting PM. It can be 
considered as the mismatch [6] between the resource 
supply, provided by the hosting PM, and the resource 
demand, of co-located VMs (i.e. whether the resource 
demand can be satisfied by the resource supply).  

A. Proposed inter-VM interference taxonomy 

Fig.1 presents our taxonomy of inter-VM interference 
detection techniques. Thereby, we meta-model the studied 
works detailed in next section based on: (1) the studied 
level metric (i.e. VM, PM or application level), and (2) 
the adopted approach to identify it (i.e. learning based or 
queuing based approach). 

B. Comparative study 

We propose a comparison between the existing 

approaches that outline the most the performance 

interference issue among VMs based on the following 

criteria. 

1) Comparison criteria: We emphasize distinct criteria 

that we adopted during our comparative study between 

the existing approaches. Those criteria come out to sculpt 

a better understanding of the similarities and mismatches 

between the proposed literature approaches upon 

performance interference issue. 

 Framework name (F.N): indicates the name that 
authors choose to attribute to their proposed 
framework. 

 Target user (T.U): specifies the cloud actor to 
whom is dedicated each study, in a way that he 
can deploy the proposed solution related to 
interference detection. The target user who 
benefits of each suggested solution can be, either 
the cloud service provider while offering his 
services to tenants, or the cloud customer while 
leasing the VM instances, or even both. 

 Studied level metrics (L.M): indicates which 
level authors have explored to capture the 
interference problem. Was it the VM level 
performance metric (such as network bandwidth, 
CPU utilization and memory consumption), the 
PM level metric (such as clock cycles per 
instruction) or the Application level metric (such 
as response time). 

 Used resources (U.R): lists the mentioned 
physical resources that researchers used to 
experience and benchmark interference (i.e. CPU, 
memory, network I/O etc.). 
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Figure 1. Inter-VM interference detection taxonomy 

 

 Interference identification manner (I.M): 
refers the used manner to identify the interference 
problem. It can be either through predicting and 
anticipating it before it occurs (i.e. proactive), or 
detecting it simply based on historical 
information but without predicting future data 
changes (i.e. reactive). 

 Used approach (U.A): used approach to identify 
interference can be either learning-based 
approach or queuing based approach. 

 Used techniques (U.T): indicates the researchers 
adopted techniques to compute interference (e.g. 
Markov chain, least square method, Collaborative 
filtering). 

 Used metrics (U.M): points the used parameters 
to express performance interference. Precisely, 
parameters to identify the performance 
degradation (e.g. QoS, response Time). 

 Target field (T.F): this criterion emphasizes 
authors main interest while identifying the 
interference problem. Whether it was for 
proposing a solution for either VM placement 
(VM.P), resource provisioning (R.PV) or none of 
the previous ones and simply identifying the 
interference issue. 

 

 

 

2) Emerging comparison: Table. I shows the 

comparative study for works, dealing with the 

performance interference problem, that we consider 

relevant and outline the reported literature. In what 

follows we build our comparative overview based on the 

set of criteria depicted in the previous section. The 

comparative study shows some similarities between the 

different approaches. Hence, even though authors are 

trying to explore performance interference issue from 

various perspectives using diverse metrics and 

techniques, yet they still adopting similar steps. [9] [9], 

[10], [12] study both VM and PM level metrics to detect 

the induced interference issue. Others, [8], [11] consider 

the application level performance only and fewer are 

those who explore the hardware level [6]. From another 

perspective, many approaches unify in the manner they 

predict interference. Thereby [6], [7], [11] and [12] use 

the proactive strategy while [8], [9], [10], [23] and [24] 

are adopting the reactive strategy. 

3. MANAGING VIRTUAL MACHINES 

PLACEMENT 

We reviewed research work dealing with virtual machine 
placement problem from the perspective of Energy-
awareness regarding the inter-VM performance 
interference issue when placing VMs on PMs. As it is 
described in Figure 2, the interference aware VMP is one 
of the adopted aspects in researcher’s approaches related  
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Table 1. COMPARATIVE STUDY OF PERFORMANCE INTERFERENCE APPROACHES 

 
F.N T.U L.M U.R I.M U.A U.T U.M 

TF 

R.PV  VM.P 

[6] Heifer C 
PM, 

VM 

CPU, 
Memory, 

Network, 

Disk I/O 

P L Least square method 

Resource utilization 

(demand vs supply), 
Task execution time 

Y N 

[7] CloudScope S.P VM 
CPU, Disk, 

I/O, 
Network 

P L 

Discrete-time 

Markov chain, 

Virtualization 
slowdown factor (V-

slowdown) 

Job completion  time Y N 

[8] (CRE) C App  P L 

Collaborative 

filtering -Proxy 

concept. -Mean 
reference response 

time -Adjusted 

Weighted Sum –
PCC (Pearson 

Correlation 
Coefficient) 

Transaction response 
time N N 

[9]  S.P, C 
VM, 
App 

CPU, Disk, 
I/O, 

Network 
R Q 

Experiments on both 

virtualized and non-

virtualized 
servers 

Job completion time Y N 

[10] Q-Clouds S.P, C 
VM, 
App 

CPU(cache) P L 

-Static models 

-Closed loop 

controller –Discrete 

time 

multi-input 

multi-
output(MIMO)- 

Page coloring to 

avoid interference 
-Head room 

QoS levels (Q-states) N N 

[11]  S.P App 
CPU, 

Network, 

Disk I/O 

P L 

Application 

clustering, Weighted 

mean method, 
Principal component 

analysis (PCA), 

Linear  regression 
analysis 

Workload characteristics, 
Runtime characteristics N N 

[12] IC2 System C 
VM, 
App 

CPU 

(cache), 
Memory 

bandwidth 

P L 

Outlier detection 

method, Decision 
tree 

classifier 

(MXC)MaxClients, 

(KAT)KeepaliveTimeout, 
pm.max child ren 

N N 

[23]  S.P, C VM 
Network, 

CPU cache 
  

Statistical regression 

techniques, 
Heuristic 

search algorithm 

Request sizes, 
Response time N N 

[24]  S.P VM Disk I/O R Q 
Static Analysis 

technique 

Mean queuelength, 

Response times, 
Number of disk 

read/write 

Y N 
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to the VMP research axes. In this study, we are focusing 
on surveying papers related to the mentioned VMP 
research axes.  

1)  Proposed VMP taxonomy 
Based on studying the most relevant VMP existing 
research articles, we came up with classifying them 
according to two levels: (1) the studied aspect (i.e. Energy- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.Taxonomy of the VMP works 

 
aware or Security aware VMP) and (2) the used approach 
(game-theoretic, metaheuristic, FCA or Gossiping, based 
approaches) as shown in our proposed taxonomy in 
Figure2. 

B.  Comparative study 

We established a comparative study of the most relevant 

VMP approaches based on a set of criteria that we define 

below. This comparative study may clarify the 

similarities and the mismatches between the most 

relevant interference-aware virtual machine placement 

problem approaches. 

1) Comparison criteria: Our comparative study is 

based on the following criteria: 

 Used resources: VM defined profiles in each 

VMP approach. It consists on resources that 

present intensive utilization to experience 

interference (e.g. CPU, RAM, Disk I/O, etc.). 

 Interference metrics: represents the used 

parameters to compute interference. Precisely, 

parameters to measure the performance 

degradation. 

 Placement metrics: identifies the adopted 

parameters to verify by the placement module 

while mapping VMs to PMs. 

 Placement goal: defines the main objective of 

server consolidation while placing the VMs (e.g. 

minimize active PMs Number, Minimize 

interference, etc.). Placement approach: 

specifies the authors adopted approach to 

resolve the VMP problem. 

2)  Emerging comparison: Table 2 shows the 

comparative study for works, dealing with the 

performance interference aware VMP problem, that we 

consider most relevant and outline the reported literature. 

In what follows we build our comparative overview 

based on the set of criteria depicted in the previous 

section. The comparative study shows that none of the 

surveyed approaches considers VMP problem from 

different levels of the cloud computing environments (i.e. 

VM level, PM level and Application level). 

 

The previous review of the most relevant literature to 

inter-VM interference as well as virtual machine 

placement problem in cloud data centers, shows that the 

main challenges for managing the performance 

interference problem that need to be further investigated 

while placing VMs on PMs. In fact, we noted that the 

reported literature has neglected the following: 

 Most of the studied approaches detect and/or 

predict interference through either, application 

or VM levels, however we rarely find someone 

who considers hardware level. Hence, it’s 

essential to skim all cloud levels (i.e.PM, VM, 

application, hypervisor, etc.) to overcome the 

interference issue, which is not trivial. 
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 Virtual machine instances are provided to 

tenants as on-demand computing resources. We assume 

then, that cloud-customer profiling must be seriously 

considered during the process of interference 

identification, since cloud-customer is the main trigger of 

VM and application behavior. So, we believe that its 

crucial to investigate interference changes according to 

users behavior. At this level, its critical to consider the 

real-time aspect. 

 

 
Table 2. COMPARATIVE STUDY OF INTERFERENCE-AWARE VMP APPROACHES 

 Used 

resources 
Interference metrics 

Placement 
metrics 

Placement goal 
Placement 
approach 

[27] 

CPU 

RAM 
Disk I/O 

-CPU execution time percentage 

of increase 
-RAM and Disk I/O Throughput 

percentage decrease 

Interference 
threshold 

Minimize PM number 
Heuristics (First 

Fit, Best Fit, 

Worst Fit) 

[29] 

CPU 

Memory 
Disk I/O 

-slowdown(job1@job2):ratio 

(completion time of job1 

when job2 is running on the 
Same PM To completion  time 

of job1 when running alone 
on the PM). 

Ratio of idle 

PMs -Ratio of 

SLA violation 

Allocate interfering jobs on 

different cores of the same PM 

Minimize energy consumption in 
datacenters and, 

Reduce performance degradation 

between colocated jobs 

Heuristics 

(Modified 
Best Fit) 

[30] 

CPU 

Memory 
 

QoS in term of: 

-throughput 
-latency –Response  time 

Workload 
heterogeneity 

Select the best workload host 
according to its internal 

interference 
level 

Decision making 
techniques 

[5] 
CPU cache: 

(LLC) 

Memory bus 

LLC misses and  references 

Interference 
intensity- 

Interference 
sensitivity 

Minimize average performance 

degradation ratio of all 

applications 

 

[31] 

CPU cache: 

(LLC) 
 

Distance analysis 

Cache 

interference 

intensity 
Cache 

pollution 

Schedule VMs based on 

Identifying  applications cache 

intensity 

VM Scheduling 
based on 

Application 
classification 

[32] 
Network 

I/O 
QoS violation: service time of 

network I/O request. 

Resource 
demand of a 

VM Application 

QoS -VM 
interference 

Reduce VM interference Fully 

exploit resource capacities of PMs 

Satisfy applications QoS 
requirements 

Maximize cloud providers 
profit 

Integer Linear 

programming 

Polynomial time 
Heuristic 

[33] 

CPU 

Memory 
 

Cycles Per Instruction (CPI): 
response  time 

lowest 

performance 
interference level 

Online VM placement strategy 
Heuristics-

Machine 
Learning 

 

 Cloud computing environments are very 

dynamic. A newly coming substantial 

unpredictable application can seek for 

computational resources any time, or even an 

existing running workload can instantly be 

resource intensive. Therefore, using historical 

data alone is not enough to predict interference. 

Thus, along with traces it’s essential to consider 

prediction models that are flexible and 

dynamicity-aware. At this level, it’s critical to 

consider the real-time aspect. Far from the 

traces, the real-time aspect is an attractive 

search area that attempts to consider the present 

front-end performance to anticipate the back-

end conduct. To tackle this matter, we are 

chiefly motivated by a relatively young field: 

the data stream mining. 

4. GREY WOLF OPTIMIZER (GWO) APPROACH 

The Grey Wolf Optimizer (GWO) is a new meta-

heuristic inspired by grey wolves (Canis lupus). The 

GWO algorithm mimics the leadership hierarchy and 

hunting mechanism of grey wolves in nature. In order to 

design the models for both the hunting technique as well 

as the social hierarchy of grey wolves. 
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A. Mathematical models  of grey wolves hunting 

process:  

The grey wolves’ social hierarchy is mathematically 

modeled   as follows. The fittest solution is considered as 

the alpha (α). Consequently, the second and third best 

solutions are named beta (β) and delta (δ) respectively.  

The rest of the candidate solutions are assumed to be 

omega (ω). In the GWO algorithm the hunting 

(optimization) is guided by α, β, and δ. The ω wolves 

follow these three wolves. Three main steps of hunting 

(i.e. searching for prey, encircling prey, and attacking 

prey), are implemented to perform optimization.  

1) Encircling 

 Encircling prey is mathematically modeled by the 

following equations: 

 
�⃗⃗� =  |𝐶 × 𝑋 𝑝(𝑡) − 𝑋 (𝑡)| 

 
(1) 

 
𝑋 (𝑡 + 1) = 𝑋𝑝(𝑡) − 𝐴 × �⃗⃗�  

 

(2) 

Vectors 𝐴  and 𝐶  are calculated as follows: 

 𝐴 = 2𝑎 𝑟1 − 𝑎  (3) 

 𝐶 = 2𝑟 2 (4) 

Where: 

�⃗⃗� : victor distance between grey wolf and prey p. 

t: current iteration. 

�⃗⃗� p: position vector of the prey (the best agent) 

�⃗⃗� : position vector of a grey wolf.                                                                                     

�⃗⃗� , �⃗⃗�  are coefficient vectors                                                                                                        

�⃗⃗� : The components of are linearly decreased 

from 2 to 0 over the course of iterations. 

𝒓𝟏⃗⃗ ⃗⃗ , 𝒓𝟐⃗⃗ ⃗⃗  are random vectors in [0,1] 

2) Hunting: The alpha leads the pack for hunting. 

Therefore, alpha is considered as the best solution. The 

beta and delta are considered as better solutions because 

they have better information about the probable location 

of the prey. Among the all obtained solutions, three best 

solutions are considered as alpha, beta, delta, and others 

have to update their positions according to the positions 

of best search agents. To mathematically simulate the 

hunting behavior of grey wolves, it is supposed that the 

alpha, beta and delta have better knowledge about the 

potential location of prey. Hence, first three best 

solutions obtained so far are saved and oblige the other 

search agents (including omegas) to update their 

positions according to the positions of best search agents. 

Following are the equations to implements the hunting 

mechanism: 

 �⃗⃗� 𝛼 = |𝐶1
⃗⃗⃗⃗ × 𝑋 𝛼 − 𝑋 |, �⃗⃗� 𝛽 = |𝐶2

⃗⃗⃗⃗ × 𝑋 𝛽 − 𝑋 |, 

�⃗⃗� 𝛿 = |𝐶3
⃗⃗⃗⃗ × 𝑋 𝛿 − 𝑋 | 

(5) 

 

 𝑋1
⃗⃗⃗⃗ = 𝑋 𝛼 − 𝐴 1 × (�⃗⃗� 𝛼), 𝑋2

⃗⃗⃗⃗ = 𝑋 𝛽 − 𝐴 2 × (�⃗⃗� 𝛽), 

𝑋3
⃗⃗⃗⃗ = 𝑋 𝛿 − 𝐴 3 × (�⃗⃗� 𝛿) 

(6) 

 

 
𝑋 (𝑡 + 1) =

𝑋 1 + 𝑋 2 + 𝑋 3
3

 
(7) 

Where:{

D⃗⃗ α ∶ distance between wolf(α)and wolf (ω)

D⃗⃗ β ∶ distance between wolf(β)and wolf (ω)

D⃗⃗ δ ∶ distance between wolf(δ)and wolf (ω)

 

3) Attacking prey (exploitation): Grey wolves finally 

finish their hunt by attacking their prey after it stops 

moving. Approaching the prey, is mathematically 

modeled by decreasing the value of 𝑎  and 𝐴  from 2 to 0 

over the course of iterations.  

 

4) Search for prey (exploration): The search process 

starts with creating a random population of grey wolves 

(candidate solutions) in the GWO algorithm. Over the 

course of iterations, alpha, beta, and delta wolves 

estimate the probable position of the prey. Each 

candidate solution updates its distance from the prey. The 

parameter “a” is decreased from 2 to 0 in order to 

emphasize exploration and exploitation, respectively. 

Candidate solutions tend to diverge from the prey when 

|𝐴  |>1 , and converge towards the prey when |𝐴  |<1. 

Finally, the GWO algorithm is terminated by the 

satisfaction of an end criterion. 

B. GWO Algorithm 

To see how GWO is theoretically able to solve 
optimization problems, some points may be noted: 

 The proposed social hierarchy assists GWO to save 
the best solutions obtained so far over the course of 
iteration. 
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 The proposed encircling mechanism defines a circle-
shaped neighborhood around the solutions which can 
be extended to higher dimensions as a hyper-sphere. 

 The random parameters A and C assist candidate 
solutions to have hyper-spheres with different 
random radii. 

 Exploration and exploitation are guaranteed by the 
adaptive values of a and A. 

 The proposed hunting method allows candidate 
solutions to locate the probable position of the prey. 

 The adaptive values of parameters a and A allow 
GWO to smoothly transition between exploration and 
exploitation. With decreasing A, half of the iterations 

are devoted to exploration |A|≥1 and the other half 

are dedicated to exploitation |A|<1. 

The GWO has only two main parameters to be adjusted (a 
and C). There are possibilities to integrate mutation and 
other evolutionary operators to mimic the whole life cycle 
of grey wolves. 
 

 

 

5. INTERFERENCE-AWARE VMP BASED ON 

GREY WOLF OPTIMIZER (GWO) APPROACH 

In this section we propose our interference-aware 

VMP based on a Swarm Intelligence metaheuristic, 

named as Grey Wolf Optimizer (GWO). First, we 

formalize our VMP problem based on our defined 

problem dimensions (i.e. resource use, resource 

balancing and performance interference) and define our 

emerging objective function. Then, we reveal our own 

interference-aware VMP approach inspired by GWO by 

defining our GWO-based interference-aware VMP 

algorithm (GWO-IVMP). 

A. VMPP Formalization 

Formally the VM Placement Problem VMPP can be 

modeled as the triple: VMPP=<VM, PM, VPM>. Where: 

 𝑉𝑀 = {𝑉1, … , 𝑉𝑛} : is the set of n virtual 

machines 

 𝑃𝑀 = {𝑃1 , … , 𝑃𝑚} : is the set of m physical 

machines 

 {𝑉𝑖} × 𝑃𝑀 → 𝑉𝑃𝑀 : where VPM is the Virtual 

machines Placement Matrix with n rows and m 

columns, that models VM-to-PM placement and 

is defined as follows. 

 𝑉𝑃𝑀𝑛,𝑚 = {𝑥𝑖,𝑗|𝑖 ∈ [1, 𝑛], 𝑎𝑛𝑑 𝑗 ∈ [1,𝑚]} 

  𝑥𝑖,𝑗 = {
1, 𝑖𝑓 𝑉𝑖  𝑖𝑠 𝑝𝑙𝑎𝑐𝑒𝑑 𝑜𝑛 𝑃𝑗

0,                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 𝑥𝑖,𝑗 = 1, means that the placement of coupling 

(Vi , Pj ) = true 

Each 𝑷𝒋 ∈ 𝑃𝑀, ( 𝑗 ∈ [1,𝑚]), has: 

- A set of hosted VMs given as: 𝑉𝑃𝑗
∈ 𝑉𝑀, where 

𝑉𝑃𝑗
= {𝑉𝑖𝑗 , 𝑖 ∈ [1, 𝑛], 𝑎𝑛𝑑 𝑗 ∈ [1,𝑚]} , for  xi,j 

= 1 

- Resource Capacity Vector (RCV) given as a 

dimensional vector: 𝑅𝐶𝑉𝑃𝑗
= 〈𝐶𝑃𝑗

𝑟1 , 𝐶𝑃𝑗

𝑟2 , . . , 𝐶𝑃𝑗

𝑟𝑑〉 , 

where: 𝐶𝑃𝑗

𝑟𝑘 is the global capacity of resource 𝑟𝑘 

provided by PM number j, k is the index of 

resource r. Where,  𝑘 ∈ [1, 𝑑]  and d is the 

number of different provided resources. 

𝑟𝑘 ∈ 𝑅, 𝑤ℎ𝑒𝑟𝑒: 𝑅 =  {CPU, RAM, Disk I/O}, in 

our model we consider 3-dimentional resources 

(CPU, RAM, Disk I/O). 

- Resource Utilization Vector (RUV) in a 𝑃𝑗  is 

given as a d-dimensional vector: 𝑅𝑈𝑉𝑃𝑗
=

〈𝑈𝑃𝑗

1 , 𝑈𝑃𝑗

2 , … , 𝑈𝑃𝑗

𝑟𝑑〉, where: 

o   𝑈𝑃𝑗

𝑟𝑘 = ∑ 𝐷𝑉𝑖𝑗

𝑟𝑘𝑣
𝑖=1  , for  ∀ 𝑥𝑖,𝑗 = 1 , is the 

overall used quantity of resource rk, by all 

hosted VMs, among the overall capacity of 

resource rk  provided by the PM number j. 

o v = |VPj  |, is the number of VMs, Vij ∈ VPj, 

hosted by Pj ∈ PM .   

(𝑋𝛼) =  the best search agent  

(𝑋𝛽) = 𝑡ℎ𝑒 𝑠𝑒𝑐𝑜𝑛𝑑 𝑏𝑒𝑠𝑡 𝑠𝑒𝑎𝑟𝑐ℎ 𝑎𝑔𝑒𝑛𝑡  

(𝑋𝛿) =  𝑡ℎ𝑒 𝑡ℎ𝑖𝑟𝑑 𝑏𝑒𝑠𝑡 𝑠𝑒𝑎𝑟𝑐ℎ 𝑎𝑔𝑒𝑛𝑡  

Initialize the population of wolves 𝑋𝑖 , (𝑖 = 1,2, … , 𝑁𝑚𝑎𝑥) 

Initialize parameters a, A, and c 

Calculate the fitness of agent 

While (𝑡 < 𝑀𝑎𝑥 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠)  

for each search agent 

Update the position of the current search agent                    

by the equation(7) 

end for 

Update a, A, and c 

calculate the fitness of all search agents 

Update (𝑋𝛼), beta (𝑋𝛽) and  (𝑋𝛿) 

End while 

Return 𝑋𝛼 
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o 𝐷𝑉𝑖𝑗

𝑟𝑘 , is the quantity of resource demand 𝑟𝑘 

required by 𝑉𝑖𝑗 , as it is explained in the 

following virtual machines formalization. 

- Resource Utilization Threshold Vector (RUTV): is a 

fixed d-dimensional Vector for each 𝑃𝑗 ∈ 𝑃𝑀  and 

must not be exceeded during the VM packing process 

(i.e.VM placement process) process. The RUTV 

vector is introduced in order to comply the SLA 

constraints. 

- 𝑅𝑈𝑇𝑉𝑃𝑗
=

 〈(𝛽𝑃𝑗

𝑟1
, 𝜃𝑃𝑗

𝑟1
) , (𝛽𝑃𝑗

𝑟2
, 𝜃𝑃𝑗

𝑟2
) , … , (𝛽𝑃𝑗

𝑟d
, 𝜃𝑃𝑗

𝑟d
)〉 , where 

𝛽𝑃𝑗

𝑟k
, denotes the upper threshold that resource 

𝑟𝑘 , utilization percentage should not exceed. 

𝜃𝑃𝑗

𝑟k
, denotes the lower threshold that 

resource𝑟𝑘 , utilization percentage should not be 

less than it. 

Each 𝑽𝒊 ∈ 𝑉𝑀, i index of virtual machine,  𝑖 ∈ [1, 𝑛], 

has: 

- Resource Demand Vector (RDV) given as a d-

dimensional vector: 

 𝑅𝐷𝑉𝑉𝑖
= 〈𝐷𝑉𝑖

𝑟1 , 𝐷𝑉𝑖

𝑟2 , … , 𝐷𝑉𝑖

𝑟𝑑〉, where: 𝐷𝑉𝑖

𝑟𝑘  is the 

quantity of resource 𝑟𝑘   required (demanded) 

by 𝑉𝑖  ∈ 𝑉𝑀. 

1) Management of Performance Interference model: 

Performance interference refers to the performance 

degradation percentage in a 𝑃𝑗 ∈ 𝑃𝑀, when placing on it 

a new 𝑉𝑖 ∈ 𝑉𝑀 . Performance interference on each 

physical machine is given as: 

 
𝒊𝒏𝒕𝒆𝒓𝒇i,j = 

∑ 𝒊𝒏𝒕𝒆𝒓𝒇i,j
𝒓𝒌𝒅

𝒌=𝟏

𝒅
 

(8) 

The formula of (eq. 8), gives the average of 

interferences (i.e. caused by contention over all required 

resources (𝑟𝑘  ∈ 𝑅)) occurred while intending to place a 

given (𝑉𝑖 ∈ 𝑉𝑀) into a given (𝑃𝑗 ∈ 𝑃𝑀). We designed by 

𝒊𝒏𝒕𝒆𝒓𝒇𝒊,𝒋
𝒓𝒌 , the interference model obtained for each 

resource 𝑟𝑘  using the interference models obtained 

through Machine Learning-based regression technique 

defined by [29]. According to [11], the following 

interference models was obtained after executing specific 

benchmarks that stress each computational resource 

separately, in order to identify how much interference 

percentage each type of shared resource produces: 

 

 

- Interference model of CPU resource is given as: 

 𝑖𝑛𝑡𝑒𝑟𝑓𝑖,𝑗
𝑐𝑝𝑢

∶ 𝑦 = 6,5346ln (𝑥) − 4,4983 (9) 

- Interference model of RAM resource is given 

as: 

 𝑖𝑛𝑡𝑒𝑟𝑓𝑖,𝑗
𝑅𝐴𝑀 ∶ 𝑦 = 34,398ln (𝑥) − 4,7183 (10) 

- Interference model of Disk I/O resource is given 

as: 

 𝑖𝑛𝑡𝑒𝑟𝑓𝑖,𝑗
𝐷𝑖𝑠𝑘𝐼/𝑂

∶ 𝑦 = 35,347ln (𝑥) − 7,2785 (11) 

Where, y is the percentage of interference, and x in the 

number of VMs ∈  𝑉𝑃𝑗
 seeking for resource 𝑟𝑘. 

2) Resource management models: Other than 

performance interference minimization heuristic, our VM 

packing process must not overload the PM and violate 

the SLA (Service Level Agreement) constraint. In our 

proposed solution we adopted the two following 

heuristics as well: 

- Each VM should be placed on the PM that has the 

minimum unused resources without exceeding 

resources use threshold. The purpose of our heuristic 

is to maximize physical resources exploitation. 

-  Each VM should be placed on to the PM that 

decreases further the imbalance rate of resources use. 

This is feasible by using magnitude imbalance vector 

a) Management of Resource utilization (RU) 

model: In order to control the resource usage in each PM, 

we will compute the amount of resource supply in each 

PM through defining two vectors (i.e. Resource Supply 

Vector (RSV) and New Resource Supply Vector 

(NRSV)), that store respectively the available quantity of 

resources before and after the virtual machine, 𝑉𝑖 ∈ 𝑉𝑀, 

placement on the physical machine 𝑃𝑗 ∈ 𝑃𝑀. 

- Resource Supply vector (RSV), defines the available 

quantity of resource offered by 𝑃𝑗 ∈ 𝑃𝑀 respecting its 

Resource Utilization Threshold Vector (RUTV), and 

is calculated as follows:𝑅𝑆𝑉𝑃𝑗
= 〈𝑆𝑃𝑗

𝑟1
, 𝑆𝑃𝑗

𝑟2
, … , 𝑆𝑃𝑗

𝑟𝑑
〉 , 

where: 𝑆𝑃𝑗

𝑟𝑘
 denotes the available quantity of resource 

𝑟𝑘 , respecting its threshold 𝛽𝑃𝑗

𝑟𝑘
, and is given by 

𝑆𝑃𝑗

𝑟𝑘
= 𝛽𝑃𝑗

𝑟𝑘
× 𝐶𝑃𝑗

𝑟𝑘
− 𝑈𝑃𝑗

𝑟𝑘
 

- New Resource Supply vector (NRSV), which 

denotes, the new remaining quantity of resources that 

a 𝑃𝑗 will have if 𝑉𝑖 is placed on it, and is calculated as 
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follows: 𝑁𝑅𝑆𝑉𝑃𝑗
= 〈𝑁𝑆𝑖,𝑗

𝑟1
, 𝑁𝑆𝑖,𝑗

𝑟2
, … , 𝑁𝑆𝑖,𝑗

𝑟𝑑
 〉 , such 

that: 

 𝑁𝑆𝑖,𝑗
𝑟𝑘

= 𝑆𝑃𝑗

𝑟𝑘
− 𝐷𝑉𝑖

𝑟𝑘 (12) 

b) Management of Resource Balancing (RB) 

model: In fact, capturing the measure of overall resources 

utilization across multiple resource types is one of the 

most important factors, saturation of only one resource 

type can lead to no further improvement in utilization 

while leaving other types of resources underutilized [28], 

[29], [30], [31].  

- Resource Imbalance Vector (RIV), is a d-dimensional 

vector, it computes the degree of imbalance in the 

current utilization of a given 𝑃𝑗 , when placing a new 

incoming 𝑉𝑖 , on it. And it’s defined as follows: 

𝑅𝐼𝑉𝑖,𝑗 = 〈(𝑁𝑆𝑖,𝑗
𝑟1

+ 𝑀), (𝑁𝑆𝑖,𝑗
𝑟2

+ 𝑀),… , (𝑁𝑆𝑖,𝑗
𝑟𝑑

+

𝑀)〉 where = ∑
𝐷𝑣𝑖

𝑟𝑘

𝑑

𝑑
𝑘=1  , in our case, 𝑑 = 3 (3 types 

of resources). 

In order to quantify the RIV vector, we will calculate 

its length which is in fact vectors magnitude. The 

magnitude of a vector is computed based on the 

Pythagorean Theorem and it defines the difference 

between the d-dimensions of supply vector and the 

average value. The magnitude is always a positive value, 

since it’s a length value. 

- The magnitude of RIV is given as follows: 

𝑚𝑎𝑔(𝑅𝐼𝑉𝑖,𝑗) = √(𝑁𝑆𝑖,𝑗
𝑟1

+ 𝑀)
2
+ ⋯+ (𝑁𝑆𝑖,𝑗

𝑟𝑑
+ 𝑀)

2
       (13) 

      When selecting a 𝑃𝑗 to host a 𝑉𝑖, the couple (𝑉𝑖 , 𝑃𝑗) 

that has the smaller magnitude of RIV is the one that 

mostly balances the resources utilization of the server 

across different dimensions.  

B. Objective function 

      In this section, we give our objective function 

relative to the Virtual Machines Placement Problem 

(VMPP) in cloud data centers. Initially, when we take a 

global look at our goals while placing VMs on PMs, it 

seems to be a multi-objective problem since we have 

multiple goals to achieve to resolve the VMPP: 

-  First goal: Optimize resource utilization, (i.e. 

maximize resource use, and consequently 

minimize the quantity of unused resources on a 

given PM), which is modeled by (NSi;j ). 

-  Second goal: Optimize resource balancing, (i.e. 

all resources of a given PM are preferred to be 

equally used, and none of them should be 

stressed more than the others), which is 

modeled by (mag(RIVi;j)). 

-  Third goal: Minimize inter-VM performance 

interference, (i.e. minimize performance 

degradation. In that case, the performance of 

one VM should not be affected by the behavior 

of another adversely one, both sharing same 

physical resources), which is modeled by 

(interfi;j). 

Nevertheless, when we closely examine all the 

mentioned goals, we clearly notice that all of them 

attempt to minimize something (i.e. quantity of unused 

resources, resource imbalance and performance 

interference). Therefore, the virtual machines placement 

problem (VMPP) for each VMP couple (Vi; Pj) ∈ 

VMPS, can be modeled by a Mono-objective function 

Fi;j which is the sum of all our obtained goals models, 

when placing Vi on Pj , such that: 

           𝐹𝑖,𝑗 =  (𝑁𝑆𝑖,𝑗 + 𝑚𝑎𝑔(𝑅𝐼𝑉𝑖,𝑗) + 𝑖𝑛𝑡𝑒𝑟𝑓i,j)      (14) 

Thereafter, in order to reach a better solution for the 

VMPP, our goal is to minimize the global objective 

function F. F is the objective function of a given virtual 

machines placement solution (VMPS) and is defined as: 

 

𝐹 = ∑𝐹𝑖,𝑗  
, (∀ (𝑉𝑖 , 𝑃𝑗 

𝑑

1

)|𝑥𝑖,𝑗 = 1) 

(13) 

Subject to the constraints: 

- ∀𝑖 ∑ 𝑥𝑖,𝑗
𝑚
𝑗=1 ≤ 1 , this constraint ensures that 

each Vi  is allocated to at most only one Pj , 

though one host Pj can host multiple VMs, 

𝑉𝑃𝑗
∈ 𝑉𝑀. 

- 𝜃𝑃𝑗

𝑟𝑘
× 𝐶𝑃𝑗

𝑟𝑘 ≤ 𝑈𝑃𝑗

𝑟𝑘 ≤ 𝛽𝑃𝑗

𝑘 × 𝐶𝑃𝑗

𝑟𝑘; 𝑘 ∈ [1, 𝑑] , This 

constraint ensures that the overall PM utilization 

must be lower than the fixed threshold. (i.e. 

must be lower than the fixed upper threshold 

and upper than the lower threshold of resource 

r
k
 utilization percentage). 

- 𝑈𝑃𝑗

𝑟𝑘 ≥ 𝜃𝑃𝑗

𝑘 × 𝐶𝑃𝑗

𝑟𝑘; 𝑘 ∈ [1, 𝑑] , This constraint 

ensures that the overall PM utilization must be 

higher than the fixed lower threshold. 

- 𝐷𝑉𝑖,𝑗

𝑟𝑘 < 𝐶𝑃𝑗

𝑟𝑘 , or also: 𝑈𝑃𝑗

𝑟𝑘 ≤ 𝐶𝑃𝑗

𝑟𝑘, this constraint 

ensures that the load on each host machine is 

not greater than its capacity. 

- 𝜃𝑃𝑗

𝑟𝑘
× 𝐶𝑃𝑗

𝑟𝑘 < 𝑁𝑆𝑖,𝑗
𝑟𝑘

, the new supply of the 

required resources, should not be negative, or 
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else the coupling (𝑉𝑖 , 𝑃𝑗)  violates the SLA 

constraint. 

C. GWO-based interference-aware VMP (GWO-IVMP) 

1)  Mapping between our VMP Problem formulation 

and GWO algorithm: In order to apply GWO algorithm in 

VMP problem we present in table V-C1 a mapping 

between GWO and our problem formulation parameters. 

2) GWO-IVMP: GWO-based interference-aware VMP 

algorithm: 

In order to apply the GWO in our VMP algorithm, we 

will adjust the GWOs steps using our problems 

parameters respecting the mapping in Table V-C1. The 

steps description is as follows. 

 Step1: Initial population:  

In this Step we are going to initialize the set of 

incoming VMs, PM, seeking to be hosted and the set 

of the candidate hosting PMs, PM. Then, our grey 

wolves initial population is going to be the set of 

randomly obtained VMPS (i.e. VMs to-PMs 

placement solutions obtained by randomly assigning 

each incoming Vi  VM, to a random Pj  PM to be 

its host). Any needed parameters can be also 

initialized in this step (e.g. a, A, and C vectors). 

 Step2: Fitness of wolves: 

At this level, we will be computing the fitness of each 

wolf according to eq.15 from the generated initial 

population. 

 Step 3: Find alpha, beta, and delta: 

Sort the wolves in a decreasing dominance level based on 

their fitness values. Alpha (), beta (), and delta () will 

be the three best suitable arrangements of wolves that 

minimize the most their objective functions. The 

remaining applicant arrangements are regarded to be the 

omega (). Let F be the first-best fitness solution, F the 

second-best fitness solution and F the third-best fitness 

solution. 

 Step 4: Update position of wolves: 

Update position of omega wolves based on 

Eq.17. 

 Step 5: Update alpha, beta, and delta: 

After performing movements of all group 

members, the (new) alpha, beta, and delta must 

be found. Repeat steps 45 until the stopping 

condition is met after maximum number of 

iterations Itmax. 

 

In what follows we give our interference aware 

GWO-based VMP algorithm (GWO-IVMP). 
 

 

 
 

Table 1. MAPPING BETWEEN GWO AND OUR PROBLEM 
FORMULATION 

GWO Algorithm Problem Formulation 

A Grey wolf A solution which is a set of 

initial (Vi,Pj) placement: 

VMPS 

Fitness function The objective function F 

given by Eq.15. 

, ,  and  

The three best suitable 

arrangements of wolves that 

minimize the most their 

objective function F given by 

Eq.15. i.e. best three VMPS 

having best three fitness 

values. 

X: position of best 

search agent 

Fi;j

 : first best value of 

fitness solution 

X: position of best 

search agent 

Fi;j

 : second best value of 

fitness solution 

X: position of best 

search agent 

Fi;j

 : third best value of 

fitness solution 

Encircling prey 

�⃗⃗� =  |𝐶 × 𝑋 𝑝(𝑡) − 𝑋 (𝑡)| �⃗⃗� = |𝐶 × F(𝑡 + 1) − F(𝑡)| (16) 

𝑋 (t + 1) = Xp(t) − 𝐴 �⃗⃗�   F(t + 1) = Fp(t) − 𝐴 �⃗⃗�       (17) 

𝐴 = 2𝑎 𝑟1 − 𝑎 , 𝐶 = 2𝑟2 𝐴 = 2𝑎 𝑟1 − 𝑎 , 𝐶 = 2𝑟2 

Hunting 

𝐷⃗⃗ ⃗⃗  =  |𝐶1
⃗⃗⃗⃗ × 𝑋 (𝑡) − 𝑋 | 𝐷⃗⃗ ⃗⃗  =  |𝐶1

⃗⃗⃗⃗ × F𝑖,𝑗
 − F| 

𝐷⃗⃗⃗⃗  =  |𝐶2
⃗⃗⃗⃗ × 𝑋 (𝑡) − 𝑋 | 𝐷⃗⃗⃗⃗  =  |𝐶2

⃗⃗⃗⃗ × F𝑖,𝑗


− F| 

𝐷⃗⃗⃗⃗ =  |𝐶3
⃗⃗⃗⃗ × 𝑋 (𝑡) − 𝑋 | 𝐷⃗⃗⃗⃗ =  |𝐶3

⃗⃗⃗⃗ × F𝑖,𝑗
 − F| 

𝑋1
⃗⃗⃗⃗   = 𝑋   − 𝐴1

⃗⃗⃗⃗    ×  (𝐷⃗⃗ ⃗⃗   ) 𝑋1
⃗⃗⃗⃗   = F𝑖,𝑗

   − 𝐴1
⃗⃗⃗⃗    ×  (𝐷⃗⃗ ⃗⃗   ) 

𝑋2
⃗⃗⃗⃗   = 𝑋   − 𝐴2

⃗⃗ ⃗⃗    ×  (𝐷⃗⃗⃗⃗   ) 𝑋2
⃗⃗⃗⃗   = F𝑖,𝑗


  − 𝐴2

⃗⃗ ⃗⃗    ×  (𝐷⃗⃗⃗⃗   ) 

𝑋3
⃗⃗⃗⃗   = 𝑋   − 𝐴3

⃗⃗ ⃗⃗    ×  (𝐷⃗⃗⃗⃗  ) 𝑋3
⃗⃗⃗⃗   = F𝑖,𝑗

   − 𝐴3
⃗⃗ ⃗⃗    ×  (𝐷⃗⃗⃗⃗  ) 

𝑋 ⃗⃗  ⃗(𝑡 + 1) =
 𝑥1⃗⃗ ⃗⃗  +   𝑥2⃗⃗ ⃗⃗     +  𝑥3⃗⃗ ⃗⃗    

3
  𝐹(𝑡 + 1) =

 𝑥1⃗⃗ ⃗⃗  +   𝑥2⃗⃗ ⃗⃗     +  𝑥3⃗⃗ ⃗⃗    

3
  

 

 

Input: VM =V1,V2, ...., Vn, PM =P1,P2, ...., Pm 

Output: VMPS =  /* A VM Placement Solution */ 

begin 

 S = initialize Set of Solutions(VM, PM); 

 initialize Parameters(a, A, C); 

 /* compute the fitness of initial population*/ 

 for each (Si  S) do 

 Si.Ftitness = Fitness(Si); 

 end  

 (, , ) = Find Alpha Beta Delta(S); 

 /* Update position of each wolf based on Eq.17 

  */ 

 while (t < Itmax ) do 

       for each (search agent Si  S {, , }) do 

  Update Position(Si); 

      end 

     Update(a, A, C); 
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    (, , ) = Find Alpha Beta Delta(S*); 

                  t   t +1 ; 

 end 

      return VPMS; 

end 

 

Algorithm 2: GWO-based Interference-aware VMP 

Algorithm (GWO-IVMP) 

6. EXPERIMENTAL STUDY 

This section emphasizes the description of test beds 

scenarios used to evaluate the performance of our GWO-

based interference-aware VMP approach (GWO-IVMP), 

and results given by another random VMP approach that 

we will define as well. 

A. Used test beds 

Since the virtual machines placement problems size 

depends heavily on the number of both virtual machines 

and physical machines, we can observe the variations of 

the completion time when the number of virtual 

machines increases while the number of physical 

machines remains fixed and also when we change the 

number of physical machines and keep the number of 

virtual machines fixed. For that, we have prepared two 

groups of scenarios of test beds (as presented in Table 

IV): 

 In a first test scenario, the number of physical 

machines was fixed as 1000, while the number 

of virtual machines varies with a step of 500. 

 In a second scenario, the number of virtual 

machines was fixed as 3500, while the number 

of physical machines varies with a step of 200. 

The two groups of randomly generated scenarios 

were also used to evaluate the performance and 

efficiency of our solution. 
 

Table 2. SCENARIOS OF TEST BEDS 

 

Scenario 1  Scenario 2 
Test 

(ID) 

Number 

of VMs 

Number 

of PMs 
 Test 

(ID) 

Number 

of VMs 

Number 

of PMs 

1 1500 1000  11 3500 800 

2 2000 1000  12 3500 1000 

3 2500 1000  13 3500 1200 

4 3000 1000  14 3500 1400 

5 3500 1000  15 3500 1600 

6 4000 1000  16 3500 1800 

7 4500 1000  17 3500 2000 

8 5000 1000  18 3500 2200 

9 5500 1000  19 3500 2400 

10 6000 1000  20 3500 2600 

 

B. Comparison basics 

We used the comparison of our GWO-IVMP solution, 

based on Swarm intelligence, with one other solution. 

For the rest of the job, all the test problems are applied to 

two policies: 

 Our proposed GWO-based interference-aware 

VMP policy. 

 A random VMP policy. 

These two policies are developed at the CloudSim 

simulator level that provides a simulated cloud 

environment. Before we begin implementing the 

proposed policies for allocating virtual machines, it is 

essential to know where the change can be made, since 

CloudSim offers several classes that support the 

simulation of the cloud environment. Thus, in order to 

implement a new virtual machine placement policy, it is 

essential to have knowledge of the existing policies and 

classes that support these allocation strategies. The 

“VMMAllocation-Policy” class is the component of 

CloudSim where the virtual machine allocation policies 

are performed. So, at this class level, we are developing 

our GWO-IVMP solution based on Swarm intelligence 

and another random VMP solution. 

 

1) Implementation of the random VMP policy: At the 

”VMMAllocationPolicy” class of the CloudSim package, 

we have developed a second virtual machine placement 

policy that is based on a random choice of a physical 

machine to host the virtual machine. For each virtual 

machine in the simulated environment, the system 

chooses a random physical machine, if it meets the 

requirements of the virtual machine then the allocation 

will take place, otherwise the system chooses another 

physical machine randomly, and so on. 

 

2) Implementation of our GWO-based VMP policy: 

Still 

at the ”VMMAllocationPolicy” class, we have developed 

our decentralized virtual machine placement solution 

based on Swarm intelligence, where each virtual machine 

in the system individually decides which physical 

machine to migrate based on its obtained fitness value. 

The size of initial population was set to 20 and the 

maximum number of iterations is fixed to 50. We’ve 

chosen these values based on observing the ratios of best 

results given by our solution. 

C. Results and discussion 

In this section, we will identify the factors 

influencing the performance of all virtual machine 

placement solutions. Then, based on these factors we will 

present the simulation results by applying the different 

scenarios on both virtual machine allocation policies 

previously mentioned (i.e. our GWO-IVMP solution and 

the random VMP solution). 
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D. Evaluation metrics 

In order to analyze the quality of proposed solutions, 

we must evaluate the performance, efficiency and 

scalability of each of them: 

 The performance evaluation is performed by 

comparing the quality of the results generated 

by different solutions for a set of randomly 

generated test beds. 

 The evaluation of efficiency is performed by 

comparing the computation time (completion 

time) of various solutions for a series of test 

problems of different sizes and complexities. 

 Scalability is tested by studying how its 

compute time (completion time) increases as the 

size of the test problem increases. 

However, in cloud data centers, a virtual machine 

placement solution is reported effective and efficient if it 

respects the two major constraints, namely: 

 Minimal energy consumption. 

 Maximized and balanced resource use in all 

dimensions. 

E. Results 

The simulation is conducted through the 20 

previously defined test beds in Table IV, and each 

simulation has been repeated several times, the results 

being generated using the average. The results are 

calculated according to the evaluation metrics mentioned 

above: the number of active physical machines, the 

efficiency of the reached packing efficiency PE, the 

quantity of unused resources UNR and the completion 

time. 

1) Number of active PMs: Figure 3, show curves of 

obtained results after testing the two previously defined 

VMP policies (i.e. our GWO-IVMP solution and the 

random VMP solution) respecting both previously fixed 

scenarios in Table IV, in term of the evaluation criterion, 

number of active physical machines. Results of obtained 

number of active PMs in term of varying number of VMs 

while fixing number of PMs, as it is defined in first 

scenario, are shown in Figure 3. It shows also the results 

of second scenario, in which number of active PMs is 

captured while varying PMs number and fixing VMs’ 

number. In Figure 3, we have varied the number of of 

virtual machines between 1500 and 6000, with a step of 

500. Our GWO-IVMP solution used only about 200 to 

600 physical machines to place all virtual machines. In 

the same Figure, we also varied the number of PMs while 

fixing the number of VMs to 3500, our GWO-IVMP 

solution used almost the same number of physical 

machines that was less than 500. However, for both 

scenarios the random VMP solution was almost using all 

physical machines in order to allocate the given virtual 

machines, regardless the number of VMs (i.e. whether it 

was fixed or varied). 

 

 
 

Figure 3.Number on active PMs in term of VMs (scenario1 and 

scenario2) 

 

2) Packing efficiency PE: This section evaluates the 

effectiveness of the packing within each solution when 

simulating twenty test beds. Packaging efficiency (PE), is 

a critical factor in assessing the quality of any virtual 

machine placement solution. The higher the PE value, the 

better the solution is. For the twenty different test beds, 

our GWO-based interference aware virtual machines 

placement algorithm has reached the highest packaging 

efficiency value. From graphs in Figure 4, we can deduce 

that as the number of virtual machines in the system 

increases, the efficiency increases. However, when the 

number of virtual machines is invariant and the number 

of physical machines increases, packaging efficiency 

decreases. But anyway, our solution has guaranteed an 

efficiency value greater than 8. 

 

 
 

Figure 4. Packing Efficiency (PE) in term of VMs (scenario 1 and 
scenario 2) 

 

3) Quantity of unused resources UNR: During the 

simulation of the twenty test beds, we took the amount of 

unused resources produced by each allocation solution. 

The results are summarized in Figure 5. The amount of 

unused resources is represented as a percentage of the 

total capacity of the active physical machines. For the 

twenty different simulations, our GWO-IVMP policy 

was wasting less than 10% of available resources, while 
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the random solution had high resource wastage up to 

85%. 

 

 
 

Figure 5. Quantity of UNused Resources (UNS) in term of VMs 
(scenario 1 and scenario 2) 

 

3) Completion time: In order to verify the scalability of 

our Swarm intelligence-based algorithm, we have plotted 

a first completion time curve in Figure 6 for the first 

scenario where the number of virtual machines varies 

between 1500 and 6000 with a step of 500 while the 

number of physical machines is set to 1000. We have 

also plotted a second completion time curve, for the 

second scenario where the number of physical machines 

increases from 800 to 2600 with a step of 200 while the 

number of virtual machines has been set at 3500. As 

shown in Figure 6, the execution time of our GWO-

IVMP solution increases too slowly as the size of the 

problem increases; i.e. either by increasing the number of 

virtual machines or the number of physical machines. 

 

 
 

Figure 6. Completion time in term of VMs (scenario 1 and scenario 2) 

 

For large scale problems, the execution time of our 

algorithm has not exceeded 1000(ms). Same thing for the 

execution time of the random VMP algorithm, except 

that the random solution is based on a simple assignment 

of the first available physical machine without taking into 

consideration either the maximization or the balance of 

the use of available resources. 

F. Discussion 

Results of the experiments clearly show that our 

solution based on Swarm intelligence surpasses the other 

proposed random VMP solution on all performance 

measures, namely: the number of active physical 

machines, the efficiency of packing, the amount of 

unused resources and the completion time. Our virtual 

machine placement algorithm was able to guarantee a 

better reduction in power consumption while ensuring a 

low number of active physical machines (servers) for the 

twenty different test beds. The highest packing efficiency 

values were produced by our GWO-IVMP solution. 

Regarding the amount of unused resources in physical 

machines, our algorithm shows the lowest percentages. 

For the twenty different simulations, the amount of 

unused resources in our GWO-IVMP algorithm was less 

than 10%, while the unused resource quantities of the 

random solution were between 40% and 90%. We can 

conclude that our virtual machine placement solution has 

strongly respected the constraint of maximizing the 

exploitation of resources. From the execution time graphs 

in Figure 6, we have been able to deduce that the 

completion time of our GWOIVMP solution has 

increased almost linearly as the size of the problem 

increases. The completion time of our solution has had 

the same rate whether while varying the number of 

virtual machines or the number of physical machines. 

Therefore, we can conclude that our solution based 

on Swarm intelligence is highly scalable. In other words, 

the evaluation of the results of the 20 test beds applied to 

both proposed VMP policies (i.e. our GWO-IVMP 

algorithm and the random VMP algorithm), showed that 

our GWO-IVMP algorithm generates better results 

compared to the other random VMP algorithm. 

7. CONCLUSION 

In this work we proposed a Swarm intelligence 

metaheuristic-based Grey Wolf Optimizer (GWO) 

approach for interference-aware virtual machine 

placement in cloud datacenters. Our approach mainly 

focuses on energy optimization and efficiency of 

resource utilization while placing VMs on PMs in data 

centers. Experimental results have shown that our virtual 

machine placement algorithm consistently outperforms 

the random VMP algorithm in terms of performance 

criteria. It ensured a minimum number of active physical 

machines and a minimum amount of unused resources, 

high packing efficiency and reliable computing time. The 

results also showed that our Swarm intelligence based 

solution is highly scalable by its shorter completion time 

and slowly increasing with the complexity of the 

problem. The evaluations carried out validate the 

robustness and the efficiency of the algorithm object of 

this work. As a future work we will be concerned by two 

main levels for enhancing our interference-aware VMP 
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solution: Front-end and back-end. The former exhibits 

the set of users that use cloud services and the latter is 

materialized by the set of servers where VMs are hosted. 

We also point out three main challenges in interference 

detection and prediction. 
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