

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 9, No.1 (Jan-2020)

E-mail: s.abed@ku.edu.kw, mariamalkandari@gmail.com, eng.hudaalrasheedi@gmail.com, imtiaz@eng.kuniv.edu.kw

 http://journals.uob.edu.bh

FPGA Implementation of Enhanced JPEG

Algorithm for Colored Images

Sa’ed Abed

1
, Mariam AlKandari

1
, Huda AlRasheedi

1
 and Imtiaz Ahmad

1

1 Department of Computer Engineering, Kuwait University, Kuwait

Received 16 Jun. 2019, Revised 23 Sep. 2019, Accepted 30 Dec. 2019, Published 01 Dec. 2020

Abstract: Image quality and size have been growing very fast over the last decades requiring large storage space and high

transmission rate. Image compression is an efficient method used to reduce the size of the image. JPEG algorithm has been

considered as one of the famous techniques used for image compression. This paper proposed and implemented an optimized

hardware solution called Hybrid Compression using Faster Color Conversion and Run Length (HC-FCC-RL) algorithm for JPEG

algorithm based on FPGA to reduce the latency and accelerate the compression process. The paper also proposed a Fast Color

Conversion with Approximation (FCCA) step to accelerate the conversion process from RGB to YCbCr. Using approximate

techniques will reduce the number of resources used as well as the latency with some percentage error. In addition, the paper

proposed a Parallel Run Length (P-RL) algorithm to speed up the design. The enhancement approach in this paper aimed to optimize

the overall design of the JPEG algorithm targeting color images. To evaluate the performance of the proposed framework, the HC-

FCC-RL architecture was implemented in Verilog and synthesized on FPGA board. The color conversion architecture uses 331 logic

elements, a latency of 13.930 ns for converting the three colors component of blocks and a power dissipation of 861.03 mW. The

percentage errors for the color conversion is 11.6%, 1.8% and 5.3% for Y, Cb, Cr components, respectively. The Run Length

algorithm performs better than existing work by saving 48.36% in logic elements, 53.79% in latency and 62.86% in power

dissipation. Thus, the proposed work demonstrated superior performance compared to current work in the literature.

Keywords: Image compression, FPGA, Color Conversion, JPEG Algorithm, Run Length Algorithm, Approximation Technique

1. INTRODUCTION

Joint Photographic Experts Group (JPEG) is one of the
algorithms that helps in reducing the size of an image and
excluding the redundancy in the image by compressing it
[1, 2]. JPEG algorithm consists of six general steps. The
first step is color conversion where the color is converted
from red green and blue (RGB) color space to luminance
chrominance (YCbCr) color space. In the second step, the
image is divided into blocks. Third step is Forward
Transform where Discrete Cosine Transform (DCT) is
applied on each block. In the fourth step, the 2D array
from DCT step is represented in another form using
Quantization step. Zig-Zag reordering and Run Length
algorithms are applied sequentially in the fifth step. The
Last step uses Huffman coding algorithm which is used to
compress the image farther. Fig. 1 shows the steps of
compressing a colored image using JPEG algorithm.

Many technologies have been developed for
improving the quality and the resolution of images.
However, these images will take large space and consume
huge power for processing them. Images are used in many

applications such as mobile phones, computers, medicals,
satellites and many other fields. Naturally, these images
need to be transferred through the network. Transmission
rate of these images will be extremely large, as it takes
many Bytes. Therefore, image compression is an essential
way to reduce the size of an image and hence reducing the
transmission time.

Figure 1. JPEG Algorithm Encoding Steps

Different software solutions have been proposed to
perform JPEG algorithm, but these solutions have
limitations in general purpose processor as they consume
much power and add an overhead work on the process [3].
On the other hand, several hardware solutions are

http://dx.doi.org/10.12785/ijcds/090102

14 Sa’ed Abed, et al.: FPGA Implementation of JPEG Algorithm for Colored

http://journals.uob.edu.bh

proposed to solve the software limitations. Many
researchers made effort in enhancing the algorithm by
optimizing some part of the algorithm. Lack of optimized
algorithm for color images motivates us to work on
proposing a general algorithm that can be applied for both
gray and color images. Moreover, most of the published
work are optimizing one step of JPEG algorithm, while
we are optimizing and improving two combined steps
from JPEG algorithm. The work in this paper is an
extension of [4] and is aimed to optimize two steps of the
algorithm to enhance the overall design in general and
mainly reduce the latency of the algorithm for colored
images. These steps are converting color space and Run
Length algorithm.

The first step in JPEG compression algorithm is color
space conversion for compressing colored images from
one color space to another to improve the design. The
proposed solution, Fast Color Conversion with
Approximation (FCCA) method contributes in reducing
the latency of the design proposed in [5]. Approximation
techniques are used in this paper in order to reduce the
latency of color conversion step. Hence, accelerating
JPEG algorithm since converting color space is a
necessary step to start compressing the image.

The other optimization step is the Run Length
algorithm which has big role in the compression process.
It scans the whole array produced by the Zig-Zag
algorithm to remove the redundancy. This algorithm has
to scan a huge array to remove the redundancy and hence
it takes a very long time. The proposed solution, Parallel
Run Length (P-RL) in this paper is to divide the array into
sub-arrays and perform Run Length algorithm in parallel,
which will make the compression process faster.

The proposed design Hybrid Compression using
Faster Color Conversion and Run Length (HC-FCC-RL)
algorithm is implemented using Verilog based on Field
Programmable Gate Array (FPGA) and analyzed using
Quartus. In addition, MATLAB is used to convert the
image into array of numbers. The proposed framework
demonstrated superior image quality compared to original
work in the literature. The proposed approximate color
conversion (FCCA) uses 331 logic gates, a latency of
13.930 ns for converting the three colors component of
8x8 blocks and a power dissipation of 861.03 mW. The
error rate of producing the YCbCr is 11.6% for Y
component, 1.8% for Cb and 5.3% for Cr, respectively.
The run length algorithm (P-RL) uses 3,468 logic gates, a
latency of 24.312 ns and a power dissipation of 4,861.98
mW. The results are carried out on each color component
at a time. The proposed framework demonstrated superior
performance compared to current work in the literature.

The contribution of this paper can be summarized as:

 Proposing a faster compression for colored JPEG
images.

 Reducing the latency of the first step in JPEG
algorithm by applying approximation technique.

 Reducing the size of the design for the original
color conversion step.

 Performing parallel Run Length algorithm.

 Implementing JPEG algorithm with all the
modifications on FPGA board.

 Performing and comparing the results with the
original design of JPEG algorithm.

The structure of the rest of the paper is as follows.
Literature review of this work is presented in Section 2.
The background of the JPEG algorithm and detail
explanations of its step is provided is Section 3. The HC-
FCC-RL methodology and the architecture of the design
is presented in Section 4. The experimental results are
shown in Section 5. Finally, we conclude the paper in
Section 6 and provide some trends for future works.

2. RELATED WORK

JPEG compression is a standard that has been mostly
used since many years. As the JPEG lossy compression is
commonly used, it took the attention of many researchers.
Numinous research has been published on the basic JPEG
algorithm and how to improve it. JPEG lossy compression
algorithm can be divided into four steps: Constructing nxn
blocks and converting color space, Forward Transform,
Quantizer and Symbol encoder. The general explanation
of the algorithm is expressed in [1, 6]. Marcus discussed
the general overview of the JPEG algorithm and showed
some experimental results [1]. Lin in [6] gave an
overview of the image compression in general, JPEG
compression in specific, some details of the algorithm was
missing such as the Huffman coding and he stated that
there was some improvement that could be applied to the
algorithm. Interestingly, he showed that changing the
block size depending on the image could sometime be
better than the standard block size that is nxn. Rawat et al.
[7] analyzed and provided comparison of different image
compression techniques such as Wavelet, JPEG/DCT,
VQ, and Fractal.

Many researches had different improvements on JPEG
algorithm and used different approaches to enhance it.
The authors in [8] compared different enhancements on
JPEG algorithm where most of the algorithms are already
exists in software implementation, i.e. mozjpeg and
libjpeg. Moreover, they compared these enhancements
with a modern image compression algorithm named JPEG
2000. Furthermore, they gave an additional opportunity to
enhance and optimize JPEG algorithm. The purpose of
their research is to assist in deciding the best compression
algorithm for a specific image. Alam et al. [9] improved
one step of the JPEG algorithm by modifying the
luminance quantization table for color image. Rippel et al.
[10] carried out their research on a machine learning-

 Int. J. Com. Dig. Sys. 9, No.1, 13-22 (Jan-2020) 15

http://journals.uob.edu.bh

based approach to lossy image compression which
performs all existing codecs, while running in real-time.

Agostini et al. [5] enhanced the first step in
compressing a colored image which is the conversion
process of a colored image from RGB to YCbCr. This
process must operate as fast as possible so that the
compression process will not be delayed more. Thus, they
tried to improve the design by pipelining it into five stages
and improving the shifters used for the multiplication
process.

Researchers in [11, 12, 13, 14] proposed fast solutions
for color conversion targeting a general purpose
processor. Kim et al. [11] had implemented an improved
performance of color conversion using the concept of
shared memory. They used OpenMP API which is used
for parallel programming and divided the color
conversion into multiple threads among different cores.
Kim et al. in [12] again explained the importance of
utilizing the multi-core processor for converting the color.
They used OpenMP and TBB tools for parallel coding to
perform the conversion on multicore and then compared
parallel results with the serial results. Many processors
had supported Single-Instruction-Multiple-Data (SIMD)
and color conversion were implemented using SIMD.
Color conversion has limitation when implemented in
SIMD, thus Shahbahrami et al. in [13] proposed an
extended sub-words and Matrix Register File (MRF) to
increase the conversion further. Shen et al. in [14]
enhanced the speed of the color conversion using Graphic
Processing Units (GPU). They created a multiple thread
for each color conversion kernel using CUDA which is
tool used for developing parallelism applications in GPU.

Naumowicz et al. [15] illustrated the transistor level of
color conversion. They used CMOS technology, studied
the low level of the color conversion and applied
migration method on the design. The migration method
resulted in having low power and low area for color
conversion.

Macieira et al. [16] provided a software-hardware co-
design of two algorithms which are color conversion and
thresholding. The architecture uses four color conversion
blocks for parallelism. The system takes 12-bit word of
RGB and converted into 32-bit floating point. They
compared their design with a pure software solution and
concluded that the hardware design is much faster than the
software design.

Bensaali et al. [17] proposed a low power solution for
color conversion using Distributed Arithmetic (DA).
Color conversion equations have products that can be pre-
computed. The pre-computed products are stored in ROM
with 13-bit fixed point representation. They used an
efficient way for rounding the output design of the
architecture by adding 0.5 value to the result. Sapkal et al.
[18] described the conversion of color space from RGB to
YCbCr using PCI interface which is an FPGA based
computing card. The proposed architecture in [19] used

approximate equations of converting colored image from
RGB to YCbCr. The authors multiplied and divided the
three equations by 256 for rounding and scaling purpose
and also proposed to add 0.5 to the result as an efficient
way to round the final result.

Researchers in [19, 20, 21] used the same
approximation concept for converting color space in order
to accelerate the conversion process. They converted the
floating point numbers in the equations of converting
color space into integers as a fast conversion method.
Chernov et al. [19] used this approximation technique to
convert color space from RGB to HSV (hue, saturation
and value) and vice versa. They did not use lookup table
technique unlike Jiang et al. [20] where they converted
the floating point numbers into integers and transformed
multiplications to lookup tables and additions. They also
used pipelining technology for farther acceleration. Liu et
al. [21] replaced all the floating point multiplication into
fixed point shifters and adders as a fast method to convert
color space from YCbCr to HSV. The authors in [22]
proposed FPGA design for the color space conversion
which is used in Video Graphics Array (VGA) standard.
They used the standard equation for YCbCr to RGB
transformation but since the equation needs fractional
arithmetic they simplified the design by multiply both
sides of the standard equation by a constant which is equal
to 256. In addition, since the interface of the SRAM
supports only 16 bits and each pixel has 24 bit, so 8 bit
should be discarded. Thus, the authors selected 5 most
significant bits (MSB) of R, 6 MSB of G and 5 MSB of B
since human eye is more sensitive the green color.

Because Run Length algorithm performs big part of
the compression process by removing the redundancy, Tu
et al. [23] made an enhancement on the Run-Length
coding algorithm. This algorithm usually encodes
(RUN/LEVEL) pairs all together at the same time where
RUN represents the number of zeroes and LEVEL is the
value of the following nonzero coefficient. The
enhancement was made so that the algorithm will deal
with a small number of symbols and encoding RUN and
LEVEL separately. Gupta et al. [24] followed another
approach to improve Run-Length coding algorithm by
using three symbols (RUNLENGTH, SIZE,
AMPLITUDE) instead of two (RUN/LEVEL) which is
the standard of Run-Length algorithm. Their research was
done for only gray scale images. Akhtar et al. [25] applied
Run-Length coding algorithm for biomedical imaging.
They improved the Run-Length encoding scheme by
removing the unintended redundancy by using an ordered
pair only when a zero occurs. Therefore, the Run-Length
will not make a pair for any ASCII character that does not
have zeroes preceding it. This will reduce the number of
pairs as well as the output size of the Run-Length process.
The same authors in [26] had applied the same
enhancement technique on the same enhancement on
Run-Length algorithm but for Space Research Program at
Institute of Space Technology (IST). Vohra et al. in [27]

16 Sa’ed Abed, et al.: FPGA Implementation of JPEG Algorithm for Colored

http://journals.uob.edu.bh

focused on compressing the test data, which is stream of
data that represents the defects in the digital circuit. They
proposed three techniques for the compression that are
based on run length algorithms. These techniques are 10
Coded, Selective CCPRL and Optimal selective count
compatible run length (OSCCPRL). The 10 Coded (10C)
technique divided the test data into sub blocks and
considered the compatibility checks between the adjacent
blocks by adding prefix and sub-prefix bit. In the other
hand, the selective CCPRL chose either to encode by
CCPRL scheme or not. OSCCPRL technique used a
combination of the first and second technique. The data is
divided into levels and the inter level encoding is done by
10C and the intra level is done by SCCPRL.

After reviewing the previous work carried out by the
researchers, it can be concluded that the idea proposed
which was pipelining the design that converts the colored
image from RGB to YCbCr [3] is close of what we are
trying to propose. However, we are looking forward to
optimizing the design more by adding an approximation
concept that is explained in the methodology section and
find a better way to express the equations of converting
color space without affecting the quality of the images.

Run length algorithm is performing big part of the
compression process by removing the redundancy. Many
researchers are trying to optimize this algorithm to speed
up the compression time of a gray scale image. Their
proposed work was to optimize the algorithm either by
encoding RUN and LEVEL separately [23] or by
encoding three symbols (RUNLENGTH, SIZE,
AMPLITUDE) instead of two, in addition the research
was done only for the gray scale images [24]. However, in
this paper, we are going to divide the array produced by
the previous step into sub-arrays and scan these sub-arrays
using Run Length algorithm at the same time which will
make the compression process faster. Our design is
targeting colored images unlike the previous researches
where they targeted only gray scale images.

3. BACKGROUND

JPEG compression algorithm is one method to solve
huge image size and slow transmission issues of an image.
JPEG algorithm can be described in the following steps:

 Converting color space: A colored image is
converted from red, green and blue (RGB) color
space to luminance chrominance (YCbCr).

 Constructing 8x8 blocks: The image is divided
into 8x8pixels blocks.

 Forward transform: Discrete Cosine Transform
(DCT) is used for each 8x8 blocks in this step.

 Quantization: Each coefficient in the DCT output
is divided by its corresponding quantized value
from a standardized quantization table.

 Reordering: Zig-Zag reordering and Run Length
algorithms are applied sequentially. Therefore, a
two dimensional array is going to be reordered
into one dimensional array so that the redundant
zeroes are discarded from the one dimensional
array.

 Entropy coding: Huffman coding algorithm is
going to be used at this step in order to reduce the
redundancy more.

In this section, color conversion and Run length
algorithms are going to be described in details in order to
understand HC-FCC-RL design. In addition, DCT will
also be explained since it is the critical path and the main
step in JPEG algorithm.

A. Color Conversion

Color space conversion is the first operation that must
be accomplished before starting the compression process
for a colored image. The conversion is necessarily to
convert a colored image from RGB representation that is
the most popular color space used in digital images to
luminance chrominance (YCbCr) representation where
luminance (Y) indicates intensity of the image and
chrominance (CbCr) indicates the blue and red colors
information, respectively. The reason behind this
conversation is that an image in RGP representation is not
suitable for image compression applications and the RGB
color space is a highly correlated color space [28]. Fig. 2
shows an image that is converted from RGB color space
to (YCbCr) color space.

Figure 2. Color Conversion Block Diagram

The conversion process is done using the standard
formulas presented in [5, 28]. For each operation of these
formulas, a suitable hardware is needed to perform the
addition or/and multiplication, for example adders,
multipliers or/and shifters.

𝑌 = 0.299 × 𝑅 + 0.587 × 𝐺 + 0.114 × 𝐵 + 16 (1)

𝐶𝑏 = −0.169 × 𝑅 − 0.331 × 𝐺 + 0.5 × 𝐵 + 128 (2)

𝐶𝑟 = 0.5 × 𝑅 − 0.419 × 𝐺 − 0.081 × 𝐵 + 128 (3)

B. Discrete Cosine Transform (DCT)

The Discrete Cosine Transform (DCT) is a well-
known mathematical model that has been used in different
computer fields like image processing, video processing,
face recognition and many other applications. DCT is an
orthogonal and reversible transformation used to convert

 Int. J. Com. Dig. Sys. 9, No.1, 13-22 (Jan-2020) 17

http://journals.uob.edu.bh

the image from the spatial domain to frequency domain
[29]. It is a very useful method in JPEG algorithm, as it
converts the image into a domain that makes the
compressing process easier for the encoder. The
transformation is done to decompose the image into three
categories of frequencies which are low, middle and high
frequencies [29]. The DCT will discard the redundancy in
the image and produce an image that has an important
data in the low frequency category and the less important
data in a higher frequency [30]. The DCT step will help
the encoding process to discard the higher frequency
component, because the human eye is less sensitive to the
high frequency components. Equation (4) presents the two
dimensions DCT (2D-DCT) [30].

𝐷𝐶𝑇(𝑢, 𝑣)

= 𝑐(𝑢)𝑐(𝑣) ∑ ∑ 𝑓(𝑥, 𝑦) [cos
(2𝑥 + 1)𝑢

2𝑛
]

𝑛−1

𝑦=0

𝑛−1

𝑥=0

[cos
(2𝑦 + 1)𝑣

2𝑛
] (4)

The summation limit is from 0 to n. However, since
the image will be divided into 8x8 sub images, then n will
be 8 in this case. The term f(x, y) is the pixel components,
and 𝑐(𝑢)𝑐(𝑣) is expressed as shown in (5) [30]:

𝑐(𝑢), 𝑐(𝑣) = {

1

√𝑛
 𝑓𝑜𝑟 𝑢 = 𝑣 = 0

 √
2

𝑛
 𝑓𝑜𝑟 𝑢 = 𝑣 ∈ {1,2, … 𝑛 − 1}

} (5)

There are many versions of DCT and different
algorithms are used to implement DCT. The one
dimension DCT (1D-DCT) is calculated by (6).

𝐷𝐶𝑇(𝑢) = 𝑐(𝑢) ∑ 𝑓(𝑥) [cos
(2𝑥 + 1)𝑢

2𝑛
]

𝑛−1

𝑥 = 0

 (6)

From (6), cosine part is pre-calculated and will be
multiplied by each pixel. One famous algorithm for
calculating the 1D-DCT that is used in many JPEG
implementations is proposed in [2]. This algorithm is
chosen for calculating the 1D-DCT because it has less
number of operations. Fig. 3 shows the block diagram of
the 2D-DCT.

Figure 3. Block Diagram of the DCT Model

The block diagram consists of three blocks; 1D-DCT
transformation block, transpose buffer and 1D-DCT
transformation block. The first 1D-DCT will take the 8x8
block input and apply the DCT calculation in the row-
wise and the output will be stored in the Transpose buffer.

The Transpose buffer will transpose the first 1D-DCT
coefficient. The second DCT will apply the calculation on
column-wise and produce the transformation output.

C. Run Length

After reordering 8x8 blocks into one dimensional
array using Zig-Zag reordering algorithm, it is time for
Run Length algorithm to do part of the compression
process by scanning the whole array produced by the Zig-
Zag algorithm to remove the redundancy and making a
pairs of (A, B) where A is the number of zeroes preceding
the nonzero number B. Fig. 4 shows an example of
applying Run Length algorithm on a simple array. In
reality, the array is going to be more than 100 times the
array presented in the example.

Figure 4. Example of Run Length Algorithm

If the array is having multiple of zeroes consequently
until the end of the array, then the scanning process is
finished. The output will be ended with a special coded
value End of Blocks (EOB) [6].

4. PROPOSED METHODOLOGY

This section describes our detailed HC-FCC-RL
architecture for the two main steps in the JPEG algorithm.
The proposed solution for the color conversion (FCCA)
and the parallel Run length algorithm (P-RL) are
explained in the following subsections.

A. FCCA Step

In this step, we are going to enhance the design
proposed by [4] by reducing the latency and accelerating
the conversion process. The high level block diagram of
color conversion step is shown in Fig. 5.

Figure 5. Color Conversion Block Diagram

The architecture designed by [4] consists of five stages
pipeline, where in the first two stages the multiplication is
performed using shifters and adders. The authors also
applied parallelism by duplicating stages 1 and 2 three
times in order to perform the multiplication process of the
three components (R, G and B) for one equation at the
same time. Stage 3 was designed to add the multiplication
results of R and G components and stage 4 was designed
to add the results from stage 3 with B component resulting

18 Sa’ed Abed, et al.: FPGA Implementation of JPEG Algorithm for Colored

http://journals.uob.edu.bh

from the multiplication. The final stage used an adder
called INC to round the final result. After each pipeline
stage, numbers of registers have been used to store the
results of the stage. The latency of this architecture is five
clock cycles and using at most 6 adders and 12 shifters at
the same time. Note that the design in [5] used basic
equations. In this paper, an approximation technique is
applied to accelerate the conversion process. Based on
approximation techniques used in [19, 20, 21], we found
that it is possible to round the decimal points in (1), (2)
and (3) into one decimal point digit. The new three
equations for converting color space from RGB to YCbCr
is shown as follows:

𝑌 = 0.3 × 𝑅 + 0.6 × 𝐺 + 0.1 × 𝐵 + 16 (7)

𝐶𝑏 = −0.2 × 𝑅 − 0.3 × 𝐺 + 0.5 × 𝐵 + 128
(8)

𝐶𝑟 = 0.5 × 𝑅 − 0.4 × 𝐺 − 0.1 × 𝐵 + 128 (9)

FCCA architecture reduced the number of resources
used in the design as well as the latency. Tables I, II and
III illustrate shifting amount needed for each number from
the (7), (8) and (9) to perform the multiplication part from
the equations.

TABLE I. SHIFTS AT EACH SHIFTER FOR COMPONENT R

Color

Component
value

Binary

value
BS1 BS2 BS3 BS4

Y 0.3 0.01001101 r[2] r[5] r[6] r[8]

Cb 0.2 0.00110011 r[3] r[4] r[7] r[8]

Cr 0.5 0.10000000 r[1] - - -

TABLE II. SHIFTS AT EACH SHIFTER FOR COMPONENT G

Color

Component
value

Binary

value
BS5 BS6 BS7 BS8

Y 0.6 0.10011010 g[1] g[4] g[5] g[7]

Cb 0.3 0.01001101 g[2] g[5] g[6] g[8]

Cr 0.4 0.01100110 g[2] g[3] g[6] g[7]

TABLE III. SHIFTS AT EACH SHIFTER FOR COMPONENT B

Color

Component
value

Binary

value
BS9

BS

10

BS

11
BS12

Y 0.1 0.00011010 b[4] b[5] r[7] -

Cb 0.5 0.10000000 b[1] - - -

Cr 0.1 0.00011010 b[4] b[5] b[7] -

 It can be noticed from Tables I, II and III that we can

reduce the number of shifters from 12-barrel shifter to

only 10 barrel shifters. Since shifter 4 is shifting an 8-bits

number 8 times that means the result is directly zero eight

bits, so shifter 4 can be excluded from the design as there

is no need to make more effort and take more time to

shift eight bits number 8 times. Moreover, shifter 12 is

not performing any shifting therefore the result is directly

zero eight bits. The number of adders used in the first

stage also reduced from 6 adders to only 4 adders since 2

shifters have been deleted from the design. This also

caused reduction in the total number of registers needed

in the design. The other extra stage, stage 5 is needed to

add either 16 or 128 to the final result from stage 4. A

multiplexer is needed to make a choice of either adding

16 to the result if calculating Y component or adding 128

to the result if calculating Cb or Cr components.

TABLE IV. MULTIPLEXER CHOICES AND RESULTS

Choice “S” Result “R”

0 16

1 128

Table IV shows the possible selection of the
multiplexer and the result from it. In the last stage, the
adder INC will round the output by adding the carry to the
number in order to get an 8-bit value at the end. Rounding
and approximation techniques used in this paper will
cause a significant amount of error. The approximate
parallel architecture is shown in Fig. 6.

Figure 6. Approximate Parallel Architecture of Color Conversion

B. P-RL Algorithm

In JPEG algorithm, Run Length algorithm is used to
count the consecutive zero before the non-zero
coefficient. This is done by scanning 64 array length to
produce the pairs of (A, B) where A is the number of
zeroes preceding the nonzero number B. This paper
proposed a Parallel Run Length (P-RL) algorithm to

 Int. J. Com. Dig. Sys. 9, No.1, 13-22 (Jan-2020) 19

http://journals.uob.edu.bh

fasten the Run Length-encoding step. The idea is to divide
the 64-element array into two sub-arrays, and apply the
Run Length algorithm on these sub-arrays. The zigzagged
array represented by z[i] is divided into two equal arrays;
z1[0..31] and z2[32..64]. The Run Length algorithm
encodes each array. Meanwhile, the Run Length
algorithm will count the number of zero preceding the
nonzero number then we should consider the number of
ending zeroes in the first array which is EOB1, because
these zeroes belongs to the second array (the first nonzero
number). However, in this design we are going to
approximate this approach by discarding the ending
zeroes from the first array. In the original design in [24],
they also discard EOB of 64 element array where these
zeroes belong to the next 64 element array since the image
was divided into blocks. The flowchart of P-RL algorithm
is presented in Fig. 7. It can be noted that although the
proposed algorithm used 2 arrays, the P-RL algorithm can
be generalized for any number of sub array sizes 4, 8, 16,
etc. In fact, it will fasten the compression step since the
algorithm will be applied for each sub array in parallel.
However, since we used an approximation method by
discarding the EOB at each array, it could affect the
accuracy of the image since the decompression will lose
some zeros.

Figure 7. P-RL Algorithm

5. EXPERIMENTAL RESULTS

In this section, the experimental results were evaluated
after implementing both designs the color space
conversion and Run Length algorithm using Verilog,
downloaded and synthesized on FPGA Cyclone II family,
and analyzed using Quartus.

A. Color Conversion

The color conversion architecture was implemented
using Verilog. The main components used in the design
are:

 Three 8-bit x16384 word RAM: one RAM for each
color component (R,G,B)

 10 Shifters

 Ripple Carry Adder-Subtractor units

 8-bit registers

 Multiplexer

 Increment unit: for rounding the result

 Control Unit

The color component was acquired from the
MATLAB functions. Each color component coefficient of
8x8 blocks are saved as .mif and used as initialization of
the RAM in Quartus. Each color component is processed
at one clock cycle. The output of Y, Cr and Cb is available
after 6 clock cycle. Table V shows a comparative
synthesis result of the FCCA design and the original
design in [5].

TABLE V. SYNTHESIS RESULT OF COLOR CONVERSION IN THE

PROPOSED DESIGN AND THE ORIGINAL DESIGN

Result Original Design
Proposed

Design

Latency (ns) 14.604 13.930

Frequency (MHz) 68.47 71.79

Estimated total logic

elements
360 331

Total Thermal Power

Dissipation (mW)
1944.48 861.03

Total Memory bits 393216 344064

From Table V, the FCCA design was able to
contribute in improving most design aspects from latency
improvement to total memory bits. FCCA design
accelerated the color conversion by 4.62%. The logic
element saves compared to the original design by 8.06%
less resource. FCCA design achieves a low power
dissipation compared to the original design in [5] by
decrease of 55.72%.

20 Sa’ed Abed, et al.: FPGA Implementation of JPEG Algorithm for Colored

http://journals.uob.edu.bh

The simulation result is done using waveform. The
waveform result was compared with MATLAB function
for converting the RGB to YCbCr. MATLAB result is
approximately the same but with some error rate
generated from the approximation method proposed in
this architecture. Table VI shows the result of each
component from MATLAB, original design in [5] and
FCCA design. It can be noticed from Table 6 that YCbCr
components are slightly differ from MATLAB results
since in FCCA design we applied an approximation
method for the converting equations. Even the accuracy
rate will decrease due to the extra bits being set, the rate in
the accuracy reduction is small since the bits being set are
from the LSBs and their effect in reducing the accuracy of
the result is minimal.

TABLE VI. YCBCR RESULT OF MATLAB, ORIGINAL DESIGN AND

THE PROPOSED DESIGN

Color

Component

MATLAB
Original Design Proposed Design

Y 155 159 173

Cb 111 239 109

Cr 168 49 177

Table VII illustrates the error rate percentage of the
original [3] and FCCA design compared to MATLAB
solution. It can be observed that the overall error rate in
FCCA design is less than the design proposed in [5].

TABLE VII. THE ERROR RATE OF YCBCR COMPARED TO MATLAB

RESULT

Color

Component

Percentage error in the

original design

Percentage error in the

Proposed design

Y 2.6% 11.6%

Cb 115.3% 1.8%

Cr 70.8% 5.3%

B. Parallel Run Length Algorithm

The main component was coded using Verilog. Table
VIII shows a comparative synthesis result of the P-RL
algorithm design and the Run length algorithm in the
original design [25].

TABLE VIII. SYNTHESIS RESULT OF RUN LENGTH IN THE PROPOSED

DESIGN AND THE ORIGINAL DESIGN

Result Original Design Proposed Design

Latency (ns) 52.619 24.312

Frequency (MHz) 19 41.13

Estimated total logic

elements
6,716 3,468

Total Thermal Power

Dissipation (mW)
13,092.01 4,861.98

It can be observed from Table VIII that the latency has
been reduced by 53.79% and the logic element is saved by
48.36%. P-RL design achieves a low power dissipation
compared to the original design in [25] by decrease of
62.86%.

The area decreased because we have reduced the size
of run and level output array since the 64 element array
input is almost filled with zeroes and partially filled with
non-zero numbers. Therefore, the number of bits used for
the level is also reduced to half and hence the power is
reduced as well.

6. CONCLUSION

This paper proposed fast design architecture for
converting the color space from RGB to YCbCr. FCCA
solution reduced the latency and improved the color
conversion step by using approximation method.
Approximation helped in reducing the number of
resources from 12 shifters to 10 shifters and from 6 adders
to 4 adders. FCCA architecture was implemented and
simulated in Quartus. The simulation results were
compared with a MATLAB function for converting the
color from RGB to YCbCr, and the results were
approximately equal with an error rate of 11.6% for Y
component, 1.8% for Cb and 5.3% for Cr. The error rate
has low impact on the image quality. The synthesis result
showed a latency of 13.930 ns which was 4.62% faster
than the other designs in literature. Total logic elements
were 331 which is 8.06% less than the compared design.
The power dissipation of this architecture was also
reduced by 55.72% too.

In this paper, a parallel run length algorithm P-RL was
also implemented in Verilog and simulated in Quartus. P-
RL design was able to reduce the latency by 53.79% and
save the logic gates by 48.36% compared to other designs.
The percentage of the power dissipation is also reduced by
62.86%.

The work done in this paper can be extended to
include an implementation of faster 2D-DCT architecture
to contribute in enhancing the overall design of the JPEG
compression. In addition, for the Run length algorithm,
since we are enhancing the latency of the design and
modifying the design to target colored images, then Run
Length algorithm should be applied for three the
components (Y, Cb and Cr). For each of three components,
there are many arrays of 64 elements, so providing three
parallel Run Length algorithm for each component is
another future trend.

 Int. J. Com. Dig. Sys. 9, No.1, 13-22 (Jan-2020) 21

http://journals.uob.edu.bh

REFERENCES

[1] Marcus, M. , “JPEG Image compression,” Dartmouth Math
Department, Dartmouth College, US, 2014.

[2] Kovac, M., Ranganathan, N., “JAGUAR: A fully pipelined VLSI
architecture for JPEG image compression standard,” Proceedings
of the IEEE, 1995, 83, (2), pp. 247-258.

[3] Agostini, L. V., Bampi, S., Silva, I. S. , “High throughput
architecture of JPEG compressor for color images targeting
FPGAs,” 13th IEEE International Conference on Electronics,
Circuits and Systems (ICECS’06), Nice, France, 2006, pp. 180-
183.

[4] Sa’ed Abed, Mariam AlKandari, Huda AlRasheedi and Imtiaz
Ahmad, “Enhanced JPEG Algorithm for Colored Images Based
on FPGA Implementation,” In Proc. of the 8th IEEE International
Conference on Modeling, Simulation, and Applied Optimization
(ICMSAO'19), Bahrain, April 15-17, 2019.

[5] Agostini, L. V., Silva, I. S., Bampi, S. , “Parallel color space
converters for JPEG image compression,” Microelectronics
Reliability, 2004, 44, (4), pp. 697-703.

[6] Lin, P. Y. , “Basic image compression algorithm and introduction
to JPEG standard,” National Taiwan University, 2009, Taipei,
Taiwan, ROC, pp. 1-15.

[7] Rawat, S., Verma, A. K. , “Survey paper on image compression
techniques,” International Research Journal of Engineering and
Technology (IRJET),2017, 4, (2), pp. 842-846.

[8] Richter, T. , “JPEG on STEROIDS: Common optimization
techniques for JPEG image compression,” IEEE International
Conference on Image Processing (ICIP), Phoenix, AZ, USA,
2016, pp. 61-65.

[9] Alam, L., Dhar, P. K., Hasan, M., Bhuyan, M. G., Daiyan, G. M. ,
“An improved JPEG image compression algorithm by modifying
luminance quantization table,” International Journal of Computer
Science and Network Security (IJCSNS), 2017, 17, (1), pp. 200-
208.

[10] Rippel, O., Bourdev, L. , “Real-Time adaptive image
compression,” Proceedings of the 34th International Conference on
Machine Learning (ICML 2017), arXiv preprint
arXiv:1705.05823, Sydney, Australia, 2017, pp. 1-16 .

[11] Kim, C. G., Beak, B. J. , “Fast JPEG color space conversion on
shared memory,” International Conference on Information
Science and Applications (ICISA), Suwon, South Korea, 2013,
pp. 1-3.

[12] Kim, C. G., Seo, Y. H. , “Parallel JPEG color conversion on
multi-core processor,” International Journal of Multimedia and
Ubiquitous Engineering, 2016, 11, (2), pp. 9-16.

[13] Shahbahrami, A., Juurlink, B., Vassiliadis, S. , “Accelerating
color space conversion using extended subwords and the matrix
register file,” Eighth IEEE International Symposium on
Multimedia (ISM’06), San Diego, CA, USA, 2006, pp. 37-46.

[14] Shen, G., Zhu, L., Li, S., Shum, H. Y., Zhang, Y. Q. ,
“Accelerating video decoding using GPU,” IEEE International
Conference on Acoustics, Speech, and Signal Processing
(ICASSP’03), Hong Kong, China, 2003, 4, pp. IV-772-5.

[15] Naumowicz, M., Melosik, M., Katarzynski, P., Handkiewicz, A. ,
“Automation of CMOS technology migration illustrated by RGB
to YCrCb analogue converter,” Opto-Electronics Review, 2013,
21, (3), pp. 326-331.

[16] Macieira, R. M., Cambuim, L., Souza, L. L., Oliveira, L. A., Rios,
M., Barros, E. , “The design of an image converting and
thresholding hardware accelerator,” Brazilian Symposium on
Computing Systems Engineering (SBESC), Manaus, Brazil, 2014,
pp. 103-108.

[17] Bensaali, F., Amira, A., Chandrasekaran, S. , “Power modeling
and efficient FPGA implementation of color space conversion,”
13th IEEE International Conference on Electronics, Circuits and
Systems (ICECS’06), Nice, France, 2006, pp. 164-167.

[18] Sapkal, A.M., Munot, M., Joshi, M.A. , “R’G’B’to Y’CbCr color
space conversion using FPGA,” IET International Conference
onWireless, Mobile and Multimedia Networks, Beijing, China,
2008, pp. 255-258.

[19] Chernov, V., Alander, J., Bochko, V. , “Integerbased accurate
conversion between RGB and HSV color spaces,” Computers &
Electrical Engineering, 2015, 46, pp. 328-337.

[20] Jiang, H., Li, H. Liu, T., Zhang, P., Lu, J. , “A fast method for
RGB to YCrCb conversion based on FPGA,” 3rd International
Conference on Computer Science and Network Technology
(ICCSNT), Dalian, China, 2013, pp. 588-591.

[21] Liu, Z. G., Du, S. Y., Yang, Y., Ji, X. H. , “A fast algorithm for
color space conversion and rounding error analysis based on
fixed-point digital signal processors,” Computers & Electrical
Engineering, 2014, 40, (4), pp. 1405-1414.

[22] Zhang, X., Li, X., Yang, W., Li, R. , “FPGAbased color space
conversion system design and implementation,” IEEE Annual
Ubiquitous Computing, Electronics & Mobile Communication
Conference (UEMCON), New York, NY, USA, 2016, pp.1-4.

[23] Tu, C., Liang, J., Tran, T. D. , “Adaptive runlength coding,” IEEE
Signal Processing Letters, 2003, 3, (10), pp. 61-64 .

[24] Gupta, A., Srivastava, M. C., Pandey, S. D., Bhandari, V. ,
“Modified runlength coding for improved JPEG performance,”
International Conference on Information and Communication
Technology (ICICT’07), 2007, pp. 235-237.

[25] Akhtar, M. B., Qamar, I. , “Open source algorithm for storage area
and temporally optimized run length coding for image
compression technology used in biomedical imaging,”
International Conference on Open Source Systems and
Technologies (ICOSST), Lahore, Pakistan, 2012, pp. 16-21.

[26] Akhtar, M. B., Qureshi, A. M., Qamar, I. , “Optimized run length
coding for jpeg image compression used in space research
program of IST,” International Conference on Computer
Networks and Information Technology (ICCNIT), Abbottabad,
Pakistan, 2011, pp. 81-85.

[27] Vohra, H., Singh, A. , “Optimal selective count compatible
runlength encoding for SOC test data compression,” Journal of
Electronic Testing, 2016, 32, (6), pp. 735-747.

[28] Li, S. A., Chen, C. Y., Chen, C. H. , “Design of a shift-and-add
based hardware accelerator for color space conversion,” Journal of
Real-Time Image Processing, 2015, 10, (2), pp. 193-206.

[29] Dahmouni, A., Aharrane, N., El Moutaouakil, K., Satori, K. ,
“Face recognition using local Binary probabilistic pattern (LBPP)
and 2DDCT frequency decomposition,” 13th International
Conference on Computer Graphics, Imaging and Visualization
(CGiV), Beni Mellal, Morocco, 2016, pp. 73-77.

[30] Aggrawal, E., Kumar, N. , “High throughput pipelined 2D
Discrete cosine transform for video compression,” International
Conference on Issues and Challenges in Intelligent Computing
Techniques (ICICT), Ghaziabad, India, 2014, pp. 702-705.

22 Sa’ed Abed, et al.: FPGA Implementation of JPEG Algorithm for Colored

http://journals.uob.edu.bh

Sa’ed Abed received his B.Sc. and M.Sc. in
Computer Engineering from Jordan

University of Science and Technology in

1994 and 1996, respectively. In 2008, he
received his Ph.D. in Computer Engineering

from Concordia University, Canada.

Currently, he is an associate professor in the
Department of Computer Engineering at

Kuwait University. His research interests

include VLSI Design, formal methods and
Image Processing.

Mariam AlKandari received the B.S. degree

in computer engineering from College of

Engineering and Petroleum, Kuwait

University, Kuwait, in 2015, and currently the

M.Sc. degree in computer engineering from
College of Engineering and Petroleum,

Kuwait University, Kuwait. She is currently a

research assistant in renewable energy
program, energy and building center at

Kuwait Institute for Scientific Research. Her

current research interests include machine
learning techniques, artificial Intelligence,

optical networks, renewable energy technologies and energy efficient

systems.

Imtiaz Ahmad has a B.Eng in electrical
engineering, from University of Engineering &

Technology, Lahore, Pakistan in 1984, M. Eng.

in electrical engineering from King Fahd
University of Petroleum & Minerals, Dhahran,

Saudi Arabia in 1988, and Ph.D. in computer

engineering from Syracuse University,
Syracuse, New York,USA, in 1992. His research

interests are in design automation of digital

systems, parallel and distributed computing. He
is currently a professor of the Computer Engineering Department at

Kuwait University, Kuwait since 1994.

Huda AlRasheedi received the B.S. degree in computer

engineering from College of Engineering and Petroleum,

Kuwait University, Kuwait, in 2015, and currently the M.Sc.

degree in computer engineering from College of Engineering

and Petroleum, Kuwait University, Kuwait. She is currently

working as a Contract Engineer for various trends including

information technology’s trends at commercial and planning

department in Kuwait Oil Company. Her current research

interests include machine learning techniques and

communication networks mainly optical networks.

