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Abstract: Pelvic Lymph Nodes (PLNs) segmentation and classification are fundamental tools in the medical image analysis of 

pelvic gynecological cancer such as endometrial and cervical cancer. Often used by the radiologist, PLN classification requires 

detailed knowledge of the morphological features of PLNs, derived from size, shape, contour and heterogeneous appearance. 

Accurate PLN segmentation is an essential step in PLN classification. In order to supply the best assessment of a nodal status, semi-

automatic and automatic PLN segmentation and classification methods are highly desired as they can strongly capture the wide 

variability in morphological features and reduce classification errors due to the inter and intra-observer variability, while avoiding the 

time-consuming for manual delineation of PLN boundary. Nevertheless, semi-automatic segmentation methods require the clinician 

intervention to select the initial seed point. However, typical semi-automatic PLN segmentation methods might fail due to (1) the 

intensity inhomogeneity, noise and low contrast in medical images, and (2) the position of the starting point. Thus, the performance 

of these methods can be enhanced by using a preprocessing-based iterative segmentation approach. Currently, Magnetic Resonance 

Imaging (MRI) is the most common imaging modality used for staging endometrial and cervical cancer, evaluation of PLN 

involvement and selection of therapeutic strategy. PLN detection using classic features can be challenging due to the similarity 

between normal and abnormal PLNs structures. In pelvic cancer and metastatic PLN, Diffusion Weighted (DW)-MRI exhibits 

brighter areas indicating tumor and metastatic PLN. This paper combines anatomic T2-Weighted (T2-w) imaging with DW imaging. 

Specifically, we propose a computer-aided pelvic framework, which leverages (1) an ensemble preprocessing method to improve 

PLN segmentation, (2) the iterative correction of the position of the initial point by executing the segmentation algorithm several 

times in succession, (3) the fusion of structural and diffusion MRI and, (4) the extraction of morphological features of segmented 

PLNs (axial T2-w image) as well as intensity feature derived from the fused image for the final classification of PLNs as suspect or 

non-suspect. Research in the field of PLN detection is important as it can help doctors to better detect cervical and endometrial 

cancer and decide the appropriate treatment. To the best of our knowledge, this is the first work to segment and classify PLN. Our 

preprocessing-based iterative segmentation approach significantly (p<0.05) improved comparison segmentation methods, with a 

segmentation accuracy boosted from 61.37% for the conventional region-growing algorithm to 66.53% for the proposed method. 

Furthermore, we obtained an average accuracy of 78.50% for pelvic nodule classification. 

 

Keywords: Pelvic lymph nodes, Endometrial and cervical cancer; Ensemble preprocessing boosting strategy; Iterative; 

segmentation; Classification; Multimodal image fusion; MRI; Normal and abnormal node detection 

1. INTRODUCTION  

Endometrial and cervical cancer are the mostly 

common gynecologic malignancies in the world. The 

clinical stage [1] is based on the prognostic factors like 

the tumor volume [2] and the nodal status. Cancer can 

spread to other part of the body and/or through the lymph 

system. Pelvic Lymph Nodes (PLNs) involvement is a 

very wicked prognostic factor [3]. The ganglionic status 

affects the patient survival and guides the choice of 

treatment planning. Furthermore, PLN is small oval-

shape organ, in the order of a few millimeters, which is 

difficult to classify (suspect/ non-suspect) and confides 

on the radiologist’s experience. Affected PLNs are 

typically enlarged and are evaluated by the recist 

criterion [4]. Indeed, the PLN size, shape, contour and 

heterogeneous appearance can determine its metastatic 

detection and give significant information about the 

disease and the effectiveness of the treatment. Using 

http://dx.doi.org/10.12785/ijcds/090103 
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automatic methods to extract these morphological 

features might help decrease inter and intra-observer 

variability and in a subsequent stage avoids a PLN 

dissection, which might have an impact on patient 

survival. Surgical lymphadenectomy is considered as the 

gold standard for the diagnosis of PLN metastasis, but it 

is routinely affected with an invasive and expensive 

process and an elevated risk of complications [5]. If 

metastatic PLNs are found at surgery, adjuvant treatment 

is adopted. In clinical practice, radiologists commonly 

have to evaluate PLNs status, which requires to segment 

and classify PLNs. However, finding the exact 

measurement and characteristic of PLNs by hand is time 

consuming, subjective and highly complex. Therefrom, 

semi-automatic and automatic PLN segmentation and 

classification methods are greatly needed as they can 

reduce segmentation and subsequently classification 

errors. Nevertheless, semi-automatic segmentation and 

automatic PLN methods might fail due to (1) the 

intensity inhomogeneity, poor contrast, and noise often 

present in medical images, and (2) the selection of the 

initial point that can largely influence the segmentation 

results. In cervix and uterus cancer, physicians typically 

use Magnetic Resonance Imaging (MRI) for evaluation. 

MRI is well-considered as the gold standard for staging 

and treatment planning of pelvic cancer. While axial T2-

Weighted (T2-w)-MRI is classically used for the 

evaluation of the PLNs [6], Diffusion Weighted (DW)-

MRI improves tumor delineation and detection of PLNs 

metastasis in pelvic cancer [7]. Specifically, DW-MRI 

visualizes metastatic PLNs as bright regions. To leverage 

the complementary sides of both anatomical T2-w and 

DW imaging modalities, we propose a novel approach to 

fuse the axial T2-w and the DW images. We segment 

PLNs afterwards and we combine the morphological 

features provided by each modality to finally classify 

PLNs. 

Image fusion has gained more popularity in the 

analysis of multimodal medical images. Several fusion 

approaches used in medical images were analyzed in [8], 

such as morphological, knowledge-based, neural-

network-based, wavelet-based and fuzzy-logic-based 

methods. Multimodal medical image fusion techniques 

have shown great success in the clinical accuracy 

progression of decisions. Several studies combined the 

MRI with other modalities to obtain a fused image which 

considerably contains more amount of information and 

much details for diagnosis and reported the effective 

fusion of MRI with various types of modalities. Image 

fusion techniques have been widely applied for brain 

diagnosis and treatment to improve imaging and 

diagnostic performances such as Positron Emission 

Tomography (PET)-MRI [9, 10, 11, 12] and Computed 

Tomography (CT)-MRI [13, 14]. Image fusion are also 

used to improve prostate cancer detection such as MRI-

ultrasound [15], CT-MRI [16, 17] and MRI-transrectal 

ultrasound [18]. On pelvis gynecological imaging, fusion 

techniques have been utilized for cancer diagnosis [19, 

20]. In ovarian cancer diagnosis, fuzzy-rule-based 

classifier has been used for fusion [21]. 

Furthermore, a number of methods have targeted the 

automatic detection of Lymph Node (LN) including the 

local-scale-based Hessian analysis method [22] and the 

learned prior of the spatial distribution [23]. In [24], a 

graph cut with locally adaptive energy dealt with 

spatially varying distributions of LN parenchyma and fat 

caused by in-homogeneous acoustic attenuation. In [25], 

a segmenting blob-like structure using the graph cut 

method was adapted and an Ada-Boost classier was 

trained with features extracted from the segmentation to 

the 3D chest CT LNs. In [26, 27], the authors used a new 

method based on integrating segmentation with a 

learning-based detector. In [28], a cost function was 

developed to deal with common segmentation problems 

based on a weighted edge and region homogeneity term. 

Feuersetein et al. [29] utilized a new approach to 

automatically detect mediastinal, hilar, and 

intrapulmonary LN candidates in contrast-enhanced chest 

CT. Seff et al. [30] used a novel method to automatically 

detect LNs in CT images, which exploits a hierarchy of 

classifiers trained on features extracted from 2D views of 

3D candidate volumes. Kitasaka et al. [31] used a new 

method for extracting LN regions from 3D abdominal CT 

images using a 3D minimal directional difference filter 

was proposed. In [32], a learned image transformation 

scheme was explored for producing higher-level inputs of 

Histograms of Oriented Gradients (HOG) and 

demonstrated that semantic boundary cues based on 

HOG descriptors would enrich raw intensity. In [33], a 

novel approach to segment thoracoabdominal LN clusters 

combined holistically-nested neural networks and 

structured optimization. Other works addressed the 

segmentation of LNs in head and neck CT images [34, 

35, 36]. Recently, deep learning techniques have been 

developed to segment LNs. For instance, Roth et al. [37] 

generated 2D views via sampling through scale 

transformation, random translation and rotation to train 

deep convolutional neural network classifiers. Zhang et 

al. [38] used a novel deep learning approach, called 

coarse-to-fine stacked fully convolutional nets to 

automatically segment LNs in ultrasound images. 

However, all these approaches did not exploit DW 

images where metastatic LNs have a higher intensity than 

benign ones. In our recent work [39], we used T2-w and 

DW image fusion step for LN segmentation and 

classification in cervical cancer MRI. Nevertheless, the 

segmentation was made by a classic region-growing 

approach without taking into account the noise and 

perturbations present in pelvic MRI, PLNs variability as 

well as the influence of the selection of the initial point. 
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Additionally, the classification was achieved by a 

decision tree giving the same degree of reliability to all 

criteria and the utilized database only contained 

metastatic PLNs. To address these limitations, we 

propose in this paper a novel preprocessing-based 

iterative segmentation approach to correct degradation in 

the image, iteratively rectify the position of the initial 

seed point and improve the segmentation results. 

Furthermore, segmentation step is followed by an 

automatic classification system based on learning benign 

and metastatic PLN criteria (morphological and 

intensity). Moreover, this study aims to detect and stratify 

PLNs in endometrial and cervical cancer by (1) the 

combination of several independent preprocessing 

approaches, (2) the iterative correction of the position of 

the initial point using region-growing technique to 

segment PLNs, (3) the registration and fusion of two MR 

modalities to a common coordinate system using the non-

rigid transformation and, (4) the extraction of 

morphological features of segmented PLNs as well as 

intensity feature derived from the fused image 

(previously obtained in (3)) to classify them as suspect or 

non-suspect. To the best of our knowledge, this is the 

first work to perform such task. Section 2 presents the 

proposed method in detail including the MRI and DW 

image fusion, and the PLN segmentation and 

classification steps. Finally, section 3 describes the 

results of our approach, and section 4 concludes the 

paper. 

2. PROPOSED METHOD 

In this paper, we firstly propose a semi-automatic 

computer-aided pelvic approach to extract morphological 

and intensity features for PLN classification. Specifically, 

we fuse axial T2-w and DW-MR images. On the other 

hand, we segment PLNs in axial T2-w images, utilizing a 

preprocessing-based iterative region-growing method. 

For PLN segmentation, we label each voxel as PLN or 

non-PLN thereby generating a 2D binary mask for PLNs. 

Next, we use the morphological features extracted from 

the segmented PLNs on T2-w and the intensity feature 

from the fused image. Ultimately, a decision-based 

Support Vector Machine (SVM) classification model 

uses these features to classify candidate PLN as suspect 

or non-suspect, as illustrated in Fig. 1. In this section, we 

provide a detailed technical explanation of the proposed 

method. As shown in Fig. 1, the proposed approach 

consists of a preprocessing, a fusion and a segmentation 

and classification stages. 

 

A. Pelvic lymph-node fusion 

A typical image fusion technique comprises two 

steps: (1) image registration and, (2) fusion of features 

extracted from the registered images. Image registration 

aligns two images into a common space, where their 

appearance and structure become similar (Fig. 2). The 

two imaging modalities used in this paper are axial T2-w 

and DW images. 

 

1) Axial T2-w image 

 

 
Figure 1. Flowchart of the proposed method. We fuse both axial T2-w and DW imaging modalities. On the other hand, we generate the PLN 

segmentation mask using T2-w images and preprocessing-based region-growing algorithm. Next, we use the same mask to segment PLNs on fused 

images. Finally, we extract several features (morphological and intensity) from the segmented PLN to classify them as normal or abnormal. 
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     T2-w imaging is often used for the evaluation of the 

PLNs [6], which are clearly differentiated from the 

hypointense blood vessels and muscles within this 

sequence (Fig. 3). However, routine MRI is less sensitive 

and accurate for the detection of PLN metastasis [40]. 

Thus, the fusion of T2-w and DW-MRI may increase the 

diagnostic performance. 

 

2) DW image 

DW is a promising imaging modality for identifying 

pelvic gynecological malignancies [41]. DW imaging is 

based on the movement of water molecules inside voxels 

giving information about the tissue structure on a 

microscopic level [41]. The more water molecules 

diffuse, the lower recorded signal’s intensity will be. DW 

imaging may specify pathologic changes because of the 

water mobility driven by thermal agitation and the great 

reliance on its cellular environment. Specifically, tumor 

tissues are further cellular compared to the native tissues. 

In case of cancer, anarchic cell proliferation reduces the 

diffusion of water molecules. Consequently, they show a 

high signal on the DW-MRI. Because the metastatic PLN 

intensity is higher than benign PLN one (Fig. 4), the DW 

sequence is highly useful to detect metastatic PLN. Fused 

images of both DW-MRI and conventional T2-w image 

can enhance the detection of metastatic PLNs. 

Furthermore, early reports involving DW imaging for 

classifying metastatic PLNs in patients with pelvic 

gynecological cancer are encouraged. Thus, we propose 

to fuse both T2-w and DW imaging to improve the 

diagnostic accuracy of MRI. To this aim, we first map the 

DW image space to the axial T2-w image space. 

 

3) Non-rigid registration 

Since information is acquired from two images and 

obtained in the clinical exam, it is usually of 

complementary nature. The suitable integration of useful 

details gained from the separate modalities is frequently 

desired. A first stage in this fusion process is the 

registration allowing bringing the images involved into 

spatial alignment. Image registration is popularly used for 

medical image analysis [42] to align data to a common 

space. There exist two principal transformation models of 

registration techniques: (1) affine and rigid 

transformation, and (2) non-rigid transformation. 

 

Affine and rigid transformation. The rigid transformation 

is a special case of affine transformation. 

 

Non-rigid transformation. Demon transformation method 

introduced in [43] is used in this work as it improves 

rigid trans-formation in registration accuracy [39]. 

Specifically, Demon registration method is used to 

register DW and T2-w images and to generate the most 

comprehensive details provided by both modalities. The 

axial T2-w image is fixed as a reference and the DW 

image is automatically moved to the axial T2-w image 

space. Fig. 5 shows some examples for the automatic 

alignment the two MR modalities to a common 

coordinate system. After registration, a fusion step is 

used to integrate both registered images. 

 

4) Image fusion using wavelet transform 

  
 

Figure 3. PLN in axial T2-w image. A PLN in a patient with 

endometrial cancer is visible on axial T2-w image with a hyper 

signal distinguishing it from the muscles and vessels. PLNs are 

evaluated on axial slices perpendicular to the cervical axis. 

 
  

 

Figure 2. Multimodal MR fusion image. The fused image is obtained 

by combining information from the DW registered and the T2-w 

images in order to produce an image that integrates complementary 

information from both modalities. 
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Fusion image is an important technique in medical 

applications [8]. Combining two images into a single one 

is more suitable for image-processing tasks [44, 45]. The 

fused image mostly improves the information density and 

the overall contrast. In this paper, wavelet-based fusion 

method [46] is used. First, wavelet transform is applied to 

each image (i.e axial T2-w image and the registered DW 

image) to decomposed into different multi-frequency 

bands. Next, at each frequency band, we fuse the 

corresponding wavelet maps derived from T2-w image 

with the one derived from the registered DW image. 

Finally, the fused image is constructed by applying the 

inverse wavelet transform. An example of our image 

fusion process is shown in Fig. 2. On the other hand, we 

locate PLNs and their boundaries in T2-w images using 

the preprocessing-based iterative region-growing 

algorithm in order to extract morphological features. 

Then we segment the fused image to extract the PLN 

intensity features for ultimate classification. 

 

B. Pelvic lymph-node segmentation 

PLN segmentation plays a key role in medical imaging. 

Segmentation of PLNs in pelvic MR images is a 

challenging task due to potentially inhomogeneous PLNs 

density and vicinity structures with similar intensity. A 

semi-automatic or automatic system that segments PLNs 

from MR images would therefore be of high clinical use. 

Little work has used preprocessing techniques to improve 

the quality of MRI such as tumor detection in cervical 

cancer [47] and brain tumor [48]. 

 

1) Region-growing segmentation 

PLN segmentation has also recognized increasing 

attention in the last years. PLNs are frequently textured in 

complex ways; however, they have contiguous regions. 

Consequently, a region-growing technique for 

segmentation is chosen. The region-growing method is a 

pixel-based image segmentation. Particularly, this 

method iteratively explores the neighboring initial-seed-

point pixels and concludes whether the pixel neighbors 

ought or not to be added to the region. Specifically, 

regions can be grouped from a manually selected start 

point. Research has shown that region-growing is based 

primarily on the selection of the initial point, the 

characteristics of the image and the homogeneity of the 

regions. In our work, PLN segmentation by the 

preprocessing-based iterative region-growing algorithm 

is initialized with a single point fixed by an expert 

radiologist. The region-growing approach has been 

applied for diverse medical image segmentation tasks 

[49] such as retinal and abdomen liver images [50, 51]. 

Region-growing segmentation begins with an interactive 

selection step of the initial seed-point, followed by the 

region-growing process. Nevertheless, the selection of 

the initial point is a difficult process and can influence 

the segmentation results. The proposed iterative region-

growing approach (Fig. 7) addresses this limitation by 

proposing an iterative method to optimize the position of 

the initial seed-point using the region-growing algorithm. 

 

2) Iterative region-growing segmentation 

We firstly propose an iterative region-growing PLN 

segmentation method to refine the segmentation results 

of the classic region-growing method. Our iterative 

  
 

Figure 4. PLN in DW-MR image. (a) DW-MRI with metastatic 
PLN (yellow arrow). A PLN in a patient with cervical cancer has a 

bright intensity in DW image. Metastatic PLNs appear with a higher 

intensity than benign PLNs and it is therefore advantageous to use 
this sequence for classification. (b) DW image scaled to full range 

of colors. (c) DW image scaled to full range of hot colors. 

  
Figure 5. Examples of our registration results. Two types of MRI 

images (T2-w axial and DW Image) are used. (a) Fixed image is: 

Axial T2-w image, (b) Moving image is: DW image, and (c) 
registered image. 
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method allows to reduce errors of the semi-automatic 

PLN segmentation due to a fallible choice of the initial 

seed-point. The iterative segmentation step is proposed to 

optimize the initial seed-point selected by the clinician 

for improving the segmentation results. The principle of 

the proposed method is presented in (Fig. 7). The first 

initial seed-points are introduced by a clinician. Then the 

region-growing algorithm is executed to generate the 

initial segmentations (K = 1). Based on the center of the 

(K-1)
th

  segmentation, the region-growing algorithm is 

repeated the K
th

 time. The algorithm stops when the 

location of the seed point remains unchanged in two 

consecutive iterations. On the other hand, image intensity 

homogeneity is the most used criterion in the growing 

process. However, pelvic MR images suffer from poor 

contrast, intensity inhomogeneity, noise and non-uniform 

lighting. To correct different types of image degradation 

and to make region-growing approach more adaptive to 

variations of the dataset, we propose a new approach for 

endometrial and cervical cancer segmentation based on 

the iterative region-growing and the different 

preprocessing techniques (Fig. 6). 

 

3) Region-growing preprocessing-based iterative 

segmentation 

In pelvic MRI, noise is a common issue which 

restricts image accuracy. Additionally, the metastatic 

PLN is composed of tumor cells, native PLN tissue and 

necrosis. Therefore, this problem can be overcome by 

using different preprocessing techniques. Especially, in 

this paper, several independent processing approaches for 

endometrial and cervical cancer MRI are used in order to 

enhance contrast, improve image quality, suppress noise, 

reduce perturbations and to address the limitation of 

depending on a single preprocessing method (Fig. 6). 

Next, we apply the iterative region-growing approach to 

the processed images outputted by each specific 

processing method. Finally, through applying majority 

voting to our segmentation maps, we obtain the target 

label map. Our three preprocessing approaches used for 

pelvic gynecological MRI are detailed below. 

Histogram-based MRI preprocessing. Pelvic MR 

images are exhibited by close contrast values. To reveal 

more image details, raise overall contrast and redistribute 

the pixel intensity, we use the Rayleigh distribution (P- 

Method 1). 

 

Smoothing-and-adjustment based MRI preprocessing. 

For the second method (P-Method 2), the Gaussian filter 

is utilized in order to smooth images and remove noise 

and unwanted details in pelvic MRI. The Gaussian filter 

is followed by contrast adjustment. The latter is used to 

increase the contrast of pelvic MRI. Additionally, it 

remaps image intensity values to the full display range of 

the data type allowing to sharply differentiate between 

the PLN and its boundary. 

  
Figure 6. Proposed paralleled preprocessing-based PLN segmentation framework. The proposed approach for PLN segmentation uses an ensemble 

of preprocessing methods for pelvic cancer segmentation. We first propose N preprocessing techniques. Next, we apply the iterative region-growing 

approach with the same initial point on images outputted by each of the N preprocessing techniques, respectively. The final segmentation map is 

obtained by applying the majority voting to segmentation maps, each generated by a preprocessing techniques. 
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Morphological MRI preprocessing. For the third 

method (P-Method 3), first we apply the Gaussian filter 

to smooth images, followed by morphological operations 

to fill in the holes in pelvic MRI, suppress noise, and 

generate a more homogeneous texture. In particular, we 

apply their closing and opening successively. 

Additionally, this approach allows filtering the false 

positives in the closing and the false negatives in the 

opening without causing a loss of useful information. 

The following section depicts the morphological MRI 

criteria for suspect and non-suspect PLNs extracted from 

the segmented PLNs, used for classification, in 

endometrial and cervical cancer. 

 

C. Pelvic lymph-node classification 

In this paper, we use both fusion and segmentation 

results to improve the PLNs detection performance. 

Specifically, we combine the anatomical features of the 

PLN appearance with the intensity feature extracted from 

the fused image. Then we train a classier using these 

features to decide if the PLN segmented is suspect or 

non-suspect. 

 

1) Criteria for normal and abnormal nodes in 

gynecological pelvic cancer MR imaging 

 

Pelvic lymph node size. The nodal size (short axis >1 

cm [4]) is a key criterion used to discriminate benign 

from metastatic PLNs. If the short axis exceeds 10 mm, 

PLNs will be considered suspect. In [52], pelvic PLNs 

with a diameter of ≥ 8 mm were considered suspect. Fig. 

8 depicts PLN metastatic with a 8.39-mm long axis 

diameter, and 7.41-mm short axis diameter, respectively. 
 

However, the PLN size alone cannot be used to 

differentiate benign from metastatic nodes. In fact, the 

nodal size in axial T2-w cannot distinguish between 

enlarged inflammatory and metastatic PLNs. 

Pelvic lymph node shape. Another morphological feature 

suggestive of a malignant PLN is the round shape. 

Specifically, benign PLNs are more likely to be ovoid. 

On the other hand, they become more circular due to 

malignant infiltration. Moreover, if the ratio of the long-

axis diameter to the short-axis one is less than 2, the PLN 

is more probable to be malignant [53]. Thus, we use the 

Ratio as in (1) as a feature. 

Ratio =  (LongAxis)/(ShortAxis)                           (1) 

However, PLN shape cannot be used as an exclusive 

criterion for PLN assessment of round parotid and normal 

submandibular nodes [53]. 

 

Pelvic lymph node contour. The PLN contour is a 

morphological feature that helps to distinguish metastatic 

PLN from benign one. Specifically, some malignant 

PLNs are characterized by irregular borders as a result of 

the extra-capsular disease extension. Metastatic PLNs 

demonstrate ill-defined borders, while benign PLNs 

exhibit well-defined borders. Furthermore, the sharp 

border in the metastatic PLNs is generated by the existing 

intranodal tumor infiltration that raises the acoustic 

impedance variance among surrounding and intranodal 

tissues. Therefore, the PLN border alone cannot be solely 

relied on to distinguish suspect PLNs from non-suspect 

ones in a routine clinical practice. Nevertheless, the PLN 

appearance will be helpful in predicting the node status 

when utilized with other criteria. We calculate the border 

values with the energy (E) measure from Gray-Level Co-

Occurrence Matrix (GLCM) according to (2). 

𝐸 = ∑ 𝑝(𝑖, 𝑗)²(𝑖,𝑗)                                     (2)  

  
Figure 8. PLN size example. (a) PLN (white arrow), (b) 8.39-mm 

long axis diameter, (c) 7.41-mm short axis diameter. 

 

 
 

Figure 7. Iterative segmentation method using RG algorithm. (a) 

Generation of initial LN segmentation (red zone) by RG method based on 

initial seed-point selected by clinician (black), (b) Iterative improvement 

loop. Here we use a RG algorithm for LN segmentation, but other semi-

automatic methods can be used. The RG algorithm can be applied 

iteratively until segmentation is satisfactory. For the Kth iteration, we use 

the center of the LN generated at the end of the (K-1)th iteration (white). 
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The energy produces the sum of squared components in 

the GLCM and produces a value among 0 and 1. 

Pelvic lymph node appearance. Normal PLNs are seen as 

homogeneous structures of intermediate signal intensity 

on axial T2-w. We define the PLN heterogeneity index 

(H) using (3). 

𝐻 =  − ∑ 𝑃(𝑖) log[𝑃(𝑖)]𝑖                          (3)       

where P(i) denotes the histogram of the intensity values 

of the selected inner region. H is expected to have 

relatively low values when the region is homogeneous 

and high values when the histogram values are widely 

spread, indicating region heterogeneity. The 

heterogeneity index ranging can have any positive real 

value. 

 

Pelvic lymph node intensity. Metastatic PLN have an 

intermediate signal intensity on the axial T2-w MR 

image. In DW-MRI, metastatic PLNs have high signals. 

Thus, the use of the intensity of the fused image (axial 

T2-w and DW image) may improve the classification 

results. The mean signal intensity (GLCM) for each PLN 

is calculated and used for classification. 

 

2) Classification 

The set of features will be used to classifiy PLN 

candidate. We have exactly two classes: benign and 

metastatic PLNs. As a consequence, we choose the SVM 

classification. The latter is a machine learning technique 

that has been successfully used for image classification in 

medical applications [54]. It produces the classification 

between two groups by finding a decision based on the 

most informative features of the training set. Specifically, 

its goal is to find the best hyperplane that separates 

benign PLNs from metastatic ones. 

 

3. RESULTS AND DISCUSSION 

A. Dataset, parameters and evaluation 

We carried out the experiments on a pelvic MR 

database with 48 metastatic PLNs and 59 benign PLNs 

acquired between January 2016 and December 2017 

diagnosed with cervical and endometrial cancer collected 

from a gynecologic oncology referral center (Maternity 

Center of Monastir, Fattouma Bourguiba Monastir 

University Hospital). All patients underwent a regular 

examination with a 1.5-T MRI system. Axial T2-w 2D 

turbo spin-echo sequences with voxel size of 0.5×0.5×3 

mm were used. All data sets were analyzed by an expert 

radiologist and PLNs were manually segmented. 

Malignity and benignity of PLNs were determined by 

surgical-pathologic examinations. We note that a DW 

image corresponding to a T2 axial image was provided 

by an expert. We evaluated our approach on 107 PLNs 

using SVM classification and leave-one-out cross-

validation. The performance of classification results 

generated by the SVM was assessed with the manual 

PLN label value (1, -1), (i.e metastatic PLN, benign 

PLN). The segmentation accuracy was evaluated using 

the average Dice coefficient (± standard deviation) 

defined in (4): 

𝐷𝑖𝑐𝑒 = 2(𝐴 ∩ 𝐵)/(𝐴 + 𝐵)                           (4) 

where A represents the ground-truth label map delineated 

by an expert radiologist and B represents the results using 

the preprocessing-based iterative region-growing 

approach. 

 

B. Evaluation and comparison methods 

In this work, we used iterative region-growing 

preprocessing-based techniques for PLN segmentation. A 

thorough demonstration was conducted to determine the 

interest of iterative region-growing when using the first 

pre-processing approach. Figure 9 displays our semi-

automatic segmentation results as well as the manual 

segmentation for a selection of five representative PLNs 

from our database after using the first preprocessing 

approach (P- Method 1). We determined the Dice 

coefficient to evaluate the correspondence between 

  
Figure 9. Segmentation results of five PLNs of our database using 

iterative region-growing technique. Comparison methods: (1) 

region-growing without initial point optimization (K=1), (2) 

iterative region-growing with seed point optimization (K=2), (3) 

iterative region-growing with seed point optimization (K=3), (4) 

ground-truth: PLN segmented by an expert. 
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iterative region-growing segmentation and manual 

segmentation. Our experimental results are reported in 

Figure 9 and Table 1. We compared the proposed 

iterative approach of region-growing: (1) region-growing 

without the optimization of the initial-seed point (K = 1), 

(2) region-growing with optimization of the initial seed-

point (K = 2), and (3) region-growing with two 

optimizations of the initial seed-point (K = 3). The 

various experiments showed that the segmentation results 

remained the same and that the improvement of the 

precision of the segmentation became negligible starting 

from K = 3. The proposed method yielded better results 

(p <0.05) compared to the conventional and iterative 

region-growing method for K = 2. We observe a 

significant increase in the average Dice coefficient from 

64.68% when using the region-growing method to 

66.00% when using the iterative region-growing method 

(K = 3). Our segmentation method also improved PLN 

detection and significantly boosted the performance of 

the conventional region-growing method. 

TABLE I.  PLN SEGMENTATION RESULTS USING ITERATIVE 

REGION-GROWING AND HISTOGRAM-BASED PREPROCESSING APPROACH 

Method 
Mean Dice (%) ± 

standard deviation 

Region-growing (K=1) 64.68% ± 0.2219 

Iterative region-growing (K=2) 65.98% ± 0.2140 

Iterative region-growing (K=3) 66.00% ± 0.2094 

 

For PLNs 1, 2 and 4 in (Fig. 9), the segmentation 

results with three iterations were close to the ground-

truth. For the segmentation of the PLN3 in Figure 2, we 

noted the same segmentation result for iterations 2 and 3. 

In other cases, segmentation remained the same for 

iterations 1, 2 and 3 (for PLN 5 in Fig. 9).  
Fig. 10 reproduces our preprocessing-based iterative 

region-growing PLN segmentation results along with 

ground-truth segmentation for a selection of 5 

representative PLNs. We determined the Dice coefficient 

using the manually labeled PLNs to evaluate the 

correspondence between the preprocessing-based 

iterative region-growing segmentation and the manual 

segmentation. Our experimental results are reported in 

Fig. 10 and Table 2. We compared the proposed region-

growing preprocessing-based techniques with: (1) region-

growing with-out preprocessing, (2) iterative region-

growing without preprocessing, (3) region-growing with 

histogram-based image preprocessing, (4) iterative 

region-growing with histogram-based image 

preprocessing, (5) region-growing with smoothing-and-

adjustment based image preprocessing, (6) iterative 

region-growing with smoothing-and-adjustment based 

image preprocessing, (7) region-growing with 

morphological image pre-processing, (8) iterative region-

growing with morphological image preprocessing, and 

(9) region-growing preprocessing-based. The proposed 

method significantly performed better than all 

comparison approaches (p<0.05) and produced the best 

segmentation results. The proposed preprocessing-based 

iterative region-growing PLN segmentation approach 

achieves the highest average Dice compared to other 

conventional methods.   
We observe a significant increase in the average Dice 

ratio from 61.37% by region-growing to 66.53% when 

applying all preprocessing approaches before the 

paralleled preprocessing-based iterative region-growing 

algorithm. We note that we use the same initial seed 

point for all methods. Our segmentation method was also 

able to improve PLN boundary detection and 

significantly (p=0.001) enhanced the performance when 

only using region-growing method. The performance can 

be con-firmed with a larger dataset. In our future work, 

we will evaluate our method on larger pelvic datasets.  

TABLE II.  PLN SEGMENTATION RESULTS USING ITERATIVE 

REGION-GROWING PREPROCESSING-BASED APPROACH 

Method 
Mean Dice (%) ± 

standard deviation 

(1) Region-growing without 

preprocessing [39] 61.37 ±  0.2045 

(2) Iterative region-growing 

without preprocessing (K=3) 61.58 ±  0.2078 

(3) Region-growing with  

P-Method 1 64.68 ±  0.2219 

(4) Iterative region-growing 

with P-Method 1 (K=3) 66.00 ±  0.2094 

(5) Region-growing with  

P-Method 2 62.07 ±  0.2566 

(6) Iterative region-growing 

with P-Method 2 (K=3) 62.48 ±  0.2538 

(7) Region-growing with  

P-Method 3 61.95 ±  0.2062 

(8) Iterative region-growing 

with P-Method 3 (K=3) 62.02 ±  0.2044 

(9) Region-growing 

preprocessing-based 64.91 ±  0.2042 

(10) Iterative region-growing 

preprocessing-based (K=3) 66.53 ±  0.1852 

 

Then, we used our segmentation results to classify 

each PLN as suspect or non-suspect. We note that we did 

not post-process the PLN boundary outputted by all 

methods to keep the appearance of PLN since PLNs with 

lobulated or spiculated contours are more suspect than 

those with smooth contours [55]. Table 3 recapitulates 

our PLN classification results. By adding the intensity 

criterion of the fused image, we produced a better result. 

The combination of morphological features (size, shape, 

contour and heterogeneous appearance) and the intensity 
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(of the merged image) feature extracted from our iterative 

region-growing preprocessing-based techniques for PLN 

segmentation boosted the classification accuracy up to 

78.50%, in comparison to 71.96% obtained when using 

morphological features and the intensity of the T2-w 

image, as well as 76.64% obtained when combining 

morphological features and the intensity of registered 

DW image. The proposed approach significantly 

(p<0.05) improved PLNs classification results when only 

using the morphological features combined with the 

intensity features derived from (T2-w image/ registered 

DW image). 

TABLE III.  PLN CLASSIFICATION RESULTS. 

SVM classification using Accuracy 

(Morphological features + intensity 

feature) (T2-w image) 71.96 % 

Morphological features (T2-w image) + 

intensity feature (registered DW image) 76.64 % 

Morphological features (T2-w image) + 

intensity feature (Fused T2-w & 

registered DW image) 78.50 % 

 

4. CONCLUSION 

PLNs play an important key in the clinical assessment 

of pelvic cancer. Semi-automatic and automatic PLN 

classification, as normal or abnormal is highly desired in 

order to assess the evolution of the disease and treatment 

planning. In this paper, we proposed a computer-aided 

pelvic framework using multimodal MR images (axial 

T2-w and DW) to segment and stratify PLNs as suspect 

or non-suspect. Our ensemble preprocessing boosting 

strategy provided three iterative region-growing 

segmentation results, each leveraging a specific image 

preprocessing technique to improve the PLN tissue 

labeling results and optimize the conventional region-

growing method. Our framework produced a 

segmentation accuracy of 66.53% and classification 

accuracy of 78.50%. In our future work, we will extract 

more valuable information such as the tumor size from 

the sagittal T2-w image to enrich our feature set and 

improve the classification accuracy since PLNs get 

enlarged with pelvic cancer progression. We will also 

extend our framework into a fully-automatic approach 

using advanced methods such as deep learning. 
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Figure 10: PLN segmentation results for five representative patients using iterative region-growing preprocessing based technique. Comparison 
methods: (1) region-growing without preprocessing, (2) histogram-based with region-growing, (3) smoothing-based with region-growing, (4) 

morphological operations with region-growing, (5) all preprocessed with region-growing results aggregated using majority voting, (6) all 

preprocessed with iterative region-growing results aggregated using majority voting, and (7) ground-truth delineated by an expert radiologist. 
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