

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 9, No.3 (May-2020)

E-mail: wael.farag@aum.edu.kw

 http://journals.uob.edu.bh

A Comprehensive Real-Time Road-Lanes Tracking

Technique for Autonomous Driving

Wael Farag 1, 2

1College of Eng. & Tech., American University of the Middle East, Kuwait.

2Electrical Eng. Dept., Cairo University, Egypt.

Received 20 Sep. 2019, Revised 26 Jan. 2020, Accepted 1 Mar. 2020, Published 1 May 2020

Abstract: In this paper, an advanced-and-reliable road-lanes detection and tracking solution is proposed and implemented. The

proposed solution is well suited for use in Advanced Driving Assistance Systems (ADAS) or Self-Driving Cars (SDC). The main

emphasis of the proposed solution is the precision and the predictability in identifying the driving-lane boundaries (linear or curved)

and tracking it throughout the drive. Moreover, the solution provides fast enough computation to be embedded in affordable CPUs that

are employed by ADAS systems. The proposed solution is mainly a pipeline of reliable computer-vision algorithms that augment each

other and take in raw RGB images to produce the required lane boundaries that represent the front driving space for the car. The main

contribution of this paper is the precise fusion of the employed algorithms where some of them work in parallel to strengthen each

other in order to produce a sophisticated real-time output. Each used algorithm is described in detail, implemented and its performance

is evaluated using actual road images and videos captured by the front-mounted camera of the car. The whole pipeline performance is

also tested and evaluated on real videos. The evaluation of the proposed solution shows that it reliably detects and tracks road

boundaries under various conditions.

Keywords: Computer vision, Self-Driving Car, Autonomous Driving, ADAS, Lane Detection, Lane Finding.

1. INTRODUCTION

Increasing safety, reducing road accidents and
enhancing comfort and driving experience are the major
motivations behind equipping modern cars with Advanced
Driving Assistance Systems (ADAS) [1]. These
motivations represent incremental steps toward a
hypothetical future of safe fully autonomous vehicles [3].

In the past couple of decades, major car manufacturers
introduce many sophisticated ADAS functions like
Electronic Stability Control (ESC), Anti-lock Brake
System (ABS), Lane Departure Warning (LDW), Lane
Keep Assist (LKA), etc. Both LDW and LKA functions
are examples of how important for the car to detect and
track the road lane lines or the road boundaries accurately
and in real-time. Future ADAS functions like Collision
Avoidance, Automated Highway Driving (Autopilot),
Automated Parking and Cooperative Manoeuvring require
more and more fast and reliable road boundaries detection,
which is among the most complex and challenging tasks.
In order to successfully detect the lane boundaries,
accurate localization of the road is required, the relative
position of the car with respect to road lane needs to be

determined, and the vehicle heading direction should be
measured and analyzed as well [9].

Computer-vision techniques are considered the main
tools that provide the capabilities of sensing the
surrounding environment for the detection, identification,
and tracking of road-lane lines. The detection of lanes
consists mainly of the finding of specific patterns/features
such as the lane markings (colored segments) on painted
road surfaces. Such kind of specification streamlines or
guides the process of lane detection. However, there are
some situations, when it happens, can obstruct the lane
detection. As an example, the existence of other cars on
the same lane that hides out, fully or partially, the lane
markings ahead of the ego car. Another example is the
existence of scattered shadow regions caused by highway
walls, buildings, trees, etc. This paper presents an
approach based on refined computer-vision algorithms
working together to reach a real-time performance in
detection and tracking of structured road boundaries
(painted or faintly painted lane markings) with substantial
curvature, which is robust enough in presence of shadow
conditions.

http://dx.doi.org/10.12785/ijcds/090302

350 Wael Farag: A Comprehensive Road-Lanes Tracking for Autonomous Driving

http://journals.uob.edu.bh

There are currently several vision-based road lane
detection algorithms proposed in the literature to improve
driving and avoid fatal driving accidents [10]. One of these
early endeavors is what is called the “GOLD” system,
which is developed by Brogg [10]. In this system, the lane
detection is performed based on edge detection. The
captured image is transformed to a new mapping based
bird’s eye view of the road. In this view, the lane
boundaries or dashed lines appear very close to vertical
lines with contrast color on a dark background. An
adaptive filtering method is employed to detect and isolate
vertical line segments that can be interpolated to construct
longer lane lines.

Moreover, concurrently, the LOIS algorithm is
proposed by Kreucher et al [11], which is based on a
deformable template approach. All possible forms that
lane markings can take place in an image are
parameterized as a collection of shapes. Then, an
evaluation function is constructed to give a numerical
value to how well a particular lane shape/marking is
matching the pre-specified parameterized lane forms.
Then, the maximum value of this function, at a particular
position in the image, is used to highlight that a lane is
detected.

An earlier endeavor is carried out by Carnegie Mellon
University by developing a system called AURORA [12].
This system uses a color camera mounted on the side of
the car and pointed downwards the road. The camera is
used to track the lane markings that exist in a structured
road surface. AURORA uses only a single scan line and
applied it to the image to detect the lane markings.

Ran et al in [13] proposed an algorithm that can deal
with painted and unpainted roads. The algorithms use
some color cues to perform image segmentation and
remove shadows. Specifically, Hough transformation [14]
is used and applied to edged images to detect the lane
boundaries with the assumption that the lane lines are long
enough with soft curving.

Hough transform is used again by Assidiq et al [15] in
his proposed vision-based lane detection algorithm.
Assidiq et al tried to reach real-time performance with
adequate robustness for lighting change and to perform
well in images with shadow areas. The algorithm used a
pair of hyperbolas that are fitted to the lane edge positions.

M. Aziz et al [16] discussed, in recent work, the results
of the implementation of a lane detection algorithm on toll
roads using classical computer-vision algorithms like
Canny [17] and Hough Transform [15][19]. The authors
concluded that adaptive methodologies need to be
integrated into the methods used to compensate for the

change in lighting conditions.

Approaches based on neural networks [20] and deep
learning [21], and specifically Convolutional Neural
Networks (CNN) stimulate a promising research direction
despite its overwhelming computational overhead.

However, considering that the lane detection runs on
vehicle-based systems, where computation resources are
severely limited, the computational cost of a lane detection
method should also be considered as a key indicator of the
overall performance.

In this paper, a comprehensive, streamlined, vehicle-
based lane boundary detection solution is implemented.
This algorithm is given the name Lane Boundary Detection
(LaneBD). LaneBD is differentiated from the previously
surveyed algorithms in that it streamlines a pipeline of
computer vision algorithms beginning with a camera
calibration algorithm until highlighting the identified lane
as well as measuring the curvature of the road. In between,
several edge detection and color identification techniques
are used employing multiple color spaces. The LaneBD
focuses on both robustness and speed with a delicate
balance. The robustness is achieved by removing distortion
from images and using multiple methods to extract lane
boundaries working in parallel to strength each other, and
the speed comes from using effective methods that do not
depend on iterative searches but rather on a single scan per
camera frame, as well as concentrates the computation in
the portion in the image with higher interest. Next sections
will describe the used algorithms in more detail.

2. OVERVIEW OF THE LANEBD ALGORITHM

The LaneBD algorithm is designed to utilize a single
CCD camera. This camera should be mounted on the front-
windshield mirror of the car to capture the road front view.
However, stereo cameras can also be utilized, but for the
matter of convenience, in this paper, a single front camera
is only considered. In order to simplify the detection
problem, it can be assumed that the setup makes the
baseline horizontal, which assures the horizon is in the
image and it is parallel to the X-axis (i.e. the projected
intersection of the left and right lane line segments, when
determined, is referred to as the horizon). Nevertheless, for
the matter of precision, in the LaneBD, the image
orientation will be adjusted using the calibration data of
the front camera in conjunction with removing the visual
distortions.

In this work, it is assumed that the input to the
LaneBD algorithm is a 1200x720 RGB color image.
Therefore, the first thing the algorithm does is to remove
the distortion and adjust the orientation using a camera
calibration routine and chessboard images. This camera
calibration routine is only executed once at the
initialization of the LaneBD algorithm not with every
iteration/frame, hence, not affecting the real-time
performance. Then, the image will be converted to several
color spaces [24] (e.g. HSL, HSV, LAB, LUV, YUV,
etc. [25]) and the associated channels are used to extract
both white and yellow lane-boundary markings from the
images. Each lane boundary marking, usually, a rectangle
(or approximate) forms a pair of edge lines.

 Int. J. Com. Dig. Sys. 9, No.3, 349-362 (May-2020) 351

http://journals.uob.edu.bh

In addition to the color space conversion, the raw
images are processed by multiple Sobel operators
(Magnitude Gradients, Absolute Gradients, and Direction
Gradients) [26] in order to produce images that emphasize
edges. These detected edges will contribute as well in the
detection of the lane boundary markings. Simply, the
result of applying the Sobel operators [27] will be
combined with the results of applying the color spaces to
produce a more precise and complete detection of lane
boundary markings.

The Region of Interest (ROI) is then extracted from
the edged image, and the undesired image details are
masked to improve the focus and accuracy of finding the
lane boundaries. Furthermore, the Perspective
Transform [28] is applied to this ROI to produce what is
called Perspective ROI (PROI). The resultant image with
PROI is denoted as the “warped image”. The warped
image is a binary image where it has the lane lines stand
out brightly and clearly.

In the “warped image”, there is a need to decide
explicitly which pixels are part of the lane lines and more
explicitly, which belong to the left line and which belong
to the right line. Therefore, the next step is plotting the
histogram of the “warped image” where the binary
activations occur across the image to identify the peaks. So
the two most prominent peaks in this histogram will be
good indicators of the x-position of the base of the lane
lines. These points can be used as a starting point for where
to search for the lane lines (and their associated pixels).
From that point, a sliding window can be used, placed
around the line centers, to find and follow the lines up to
the top of the frame (image) to determine where the lane
lines go.

Figure 1. Detected lane boundaries by the LaneBD algorithm.

Now, since almost all the pixels belonging to each
lane line have been found through the sliding window
method, a polynomial should be fitted to this
line [29]. Next, the radius of the curvature of this fit as well
as its center are calculated. Then the image is unwrapped
to return back to the original view, and the identified lane
boundaries are drawn in a different color, with the area
between the boundaries to be highlighted in green. For the
matter of illustration, a working example of the resultant

road boundary is displayed on the original color image as
shown in Figure 1.

3. SOBEL OPERATOR

The Sobel operator [30] performs a two-dimensional
spatial gradient computation on a given image and
emphasizes regions of high spatial gradient that
correspond to edges. Typically, it is used to find the
approximate absolute gradient magnitude at each point in
an input greyscale image. Compared to other edge
operators [31], Sobel has two main advantages:

1. The operator includes an averaging mechanism,
therefore, it has some smoothing effect on the image’s
random noise.

2. The operator includes as well as the differentiation of
two rows or two columns, therefore, the edge elements
on both sides are significantly enhanced, and
consequently, the edge looks thick and bright.

The Sobel operator is mainly a discrete differential
operator. It utilizes two 3x3 kernels (this is the minimum
size, but the kernel size can be an arbitrary odd number),
as shown in Figure 1, which are convolved with the
original image to calculate approximations of
the derivatives (e.g. gradients).

Taking the gradient in the x-direction (Gx)
emphasizes edges closer to vertical. Alternatively, taking
the gradient in the y-direction (Gy) emphasizes edges
closer to horizontal. Both Gx and Gy can be positive or
negative; for that reason, the algorithm deals mostly with
the absolute values |Gx| and |Gy|, and they then can be
denoted as the absolute gradients.

At each given point, the magnitude of the gradient (G),
as well as the orientation (direction) θ, can be
approximated as:

𝐺 = √𝐺𝑥
2 + 𝐺𝑦

2 (1)

𝜃 = tan−1 𝐺𝑦

𝐺𝑥
 (2)

Figure 1. Sobel operator uses a 3x3 kernel mask.

Sobel operator is less sensitive to the existing noise in
images as it has a smoothing effect (Gaussian filtering).
However, this smoothing affects the accuracy of edge
detection. Consequently, the Sobel operator does not
provide very high accuracy for edge detection in images,
nevertheless, the produced quality is considered adequate
enough for proper use in a wide variety of applications.

https://en.wikipedia.org/wiki/Kernel_(image_processing)#Convolution
https://en.wikipedia.org/wiki/Image_Derivatives

352 Wael Farag: A Comprehensive Road-Lanes Tracking for Autonomous Driving

http://journals.uob.edu.bh

Usually, thresholds are used with the Sobel operator to
identify the sharp edges from the weak ones (noise).
Finding out the suitable threshold for each kind of gradient
operator (Gx, Gy, G, θ) is critical for the proper application
of this operator.

In the case of lane lines detection, the emphasis will be
on the edges of a particular orientation. So the direction, or
orientation, of the gradient as given by Eq. (2) here is of
specific interest. After the application of the directional
gradient, each pixel of the resulting image contains a value
for the angle of the gradient away from the vertical axis in
radians, covering a range of -π/2 → π/2. An orientation of
0 implies a vertical line and orientations of ± π/2 imply
horizontal lines.

4. PERSPECTIVE TRANSFORM

A perspective transform maps the points in a given
image to different and desired image points with a new
perspective [32]. The perspective transform that is being
most emphasized here, is a bird’s-eye view transform,
which lets a lane be viewed from above. This particular
view will be useful for fitting the lane polynomial and
calculating more precisely the radius of the lane curvature.
Aside from creating a bird’s eye view representation of an
image, a perspective transform can also be used for all
kinds of different viewpoints.

Figure 2 shows 4 points (𝑃1
′, 𝑃2

′ , 𝑃3
′ 𝑎𝑛𝑑 𝑃4

′) on a 2D
plane to be transformed into their corresponding
perspective points (P1, P2, P3, and P4). The perspective
transformation is calculated in homogeneous coordinates
and defined by a 3x3 matrix M. The calculation for a single
point would be:

[

𝑀11 𝑀12 𝑀13

𝑀21 𝑀22 𝑀23

𝑀31 𝑀32 𝑀33

] ∗ [
𝑃1

′. 𝑥

𝑃1
′. 𝑦
1

] = [
𝑤 ∗ 𝑃1. 𝑥
𝑤 ∗ 𝑃1. 𝑦

𝑤 ∗ 1
] (3)

Figure 2. Perspective Transform of four points on a plane.

To calculate all points simultaneously, all the points
are grouped together in one matrix A, and analogously for
the transformed points in a matrix B, as follows in Eq. (4)
and (5) respectively:

𝐴 = [
𝑃1

′. 𝑥 𝑃2
′ . 𝑥 𝑃3

′ . 𝑥

𝑃1
′. 𝑦 𝑃2

′ . 𝑦 𝑃3
′ . 𝑦

1 1 1

𝑃4
′. 𝑥

𝑃4
′. 𝑦
1

] (4)

𝐵 = [
𝑃1. 𝑥 𝑃2. 𝑥 𝑃3. 𝑥
𝑃1. 𝑦 𝑃2. 𝑦 𝑃3. 𝑦

1 1 1

𝑃4. 𝑥
𝑃4. 𝑦

1

] (5)

𝑀 = [

𝑀11 𝑀12 𝑀13

𝑀21 𝑀22 𝑀23

𝑀31 𝑀32 𝑀33

] (6)

𝑊 = [

𝑊1 0 0
0 𝑊2 0
0 0 𝑊3

0
0
0

0 0 0 𝑊4

] (7)

𝐵 ∗ 𝑊 = 𝑀 ∗ 𝐴 (8)

or 𝑀 = 𝐵 ∗ 𝑊 ∗ 𝐴−1 (9)

where W represents a scaling matrix that can be an
identity matrix. Likewise, the inverse perspective
transform (shown in Figure 3) can be implemented using
the same technique as above.

Figure 3. Inverse Perspective Transform of four points on a plane.

5. MEASURING LANE CURVATURE

After extracting the pixels that belong to lane
boundary (e.g. left and right lane-line segments shown in
red and blue respectively in Figure 4) from the camera
image, a polynomial can be fitted to those pixel positions
to approximate lane boundaries in a concrete mathematical
form as shown in Figure 4. Usually, 2nd or 3rd order
polynomials are adopted for this approximation. Based on
those polynomials, the radius of curvature of them will be
computed [33].

 Int. J. Com. Dig. Sys. 9, No.3, 349-362 (May-2020) 353

http://journals.uob.edu.bh

Figure 4. Fit Left and Right lane lines with 2nd order polynomials.

The following equation represents the general form of
2nd order polynomial that approximate a curved lane line
in a broader sense, where A, B, and C are the coefficients
to be found by fitting the polynomial to the extracted lane-
line pixel positions:

𝑓(𝑦) = 𝐴𝑦2 + 𝐵𝑦 + 𝐶 (10)

The variable “y” is used instead of “x” as the lane lines
in the warped image are near vertical, and may have the
same x value for more than one y value.

The radius of curvature at any arbitrary point x of the
function “x=f(y)” is calculated as follows [25]:

𝑅𝑐𝑢𝑟𝑣𝑒 =
[1+(

𝑑𝑥

𝑑𝑦
)

2
]

3
2

|
𝑑2𝑥

𝑑𝑦2|
 (11)

In the case of the second-order polynomial as above,
the first and second derivatives are given as follows:

𝑓′(𝑦) =
𝑑𝑥

𝑑𝑦
= 2𝐴𝑦 + 𝐵 (12)

𝑓′′(𝑦) =
𝑑2𝑥

𝑑𝑦2 = 2𝐴 (13)

Therefore, the equation for the radius of curvature
becomes:

𝑅𝑐𝑢𝑟𝑣𝑒 =
(1+(2𝐴𝑦+𝐵)2)

3
2

|2𝐴|
 (14)

As shown in Eq. (14), the radius of curvature is a
function of ’y’. As the ‘y’ values of the image increase
from top to bottom, so if, for example, the radius of
curvature closest to the vehicle needed to be measured, the
formula above could be evaluated at the y value
corresponding to the bottom of the image.

The computed radius of curvature is in pixels,
however, to calculate it in actual units (meters) as the real
world, a reference needs to be set in order to convert the
dimensions in pixels to real dimensions in meters. This
reference is selected to be the width of the lane. By
knowing or measuring out the physical lane width, and
comparing it with the projected one in warped images, the

conversion ratio can be determined. The US
regulations [34] requires a minimum lane width of 12 feet
or 3.7 meters, which also can be taken as the required
reference. For example, if the measured width in the
warped image is 700 pixels, then the conversion ratio will
be 3.7/700 meter per pixel. This ratio can then be used to
convert the radius of curvature from pixels to meters.

6. CAMERA CALIBRATION

The conversion from three dimensional (3D) real-
world scene to a two dimensional (2D) one, exhibits by a
camera, results in image distortion, as the transformation
from 3D→2D is not perfect. Actually, the shape and size
of objects get distorted (changed) in the resulting 2D
image from the original 3D appearance. Therefore, before
using the resulting 2D camera images, this distortion needs
to be undone so that the correct and useful information can
be extracted and analyzed.

The construction of real cameras includes using a
curved lens to form an image. The light rays usually bend
around the edges of these lenses with low or high degrees
depends on the focus and position of objects. Therefore,
distortion at the edges of the image happens, in a way that
lines or objects appear to be more or less curved than their
actual reality. This effect is called the “radial distortion”,
and represents the principal source of distortion.

Moreover, there is another main source of distortion
which is the “tangential distortion”. This distortion
happens when the camera’s lens is not perfectly aligned
parallel to the image plane that is associated with the
camera sensor. This produces a tilt effect to the image,
which shows objects nearer or farther away than they
actually are.

There are three needed coefficients to correct
for radial distortion: k1, k2, and k3. To correct the
appearance of radially distorted points in an image, one
can use a correction formula.

In the following equations Eq. (10), and Eq. (11), (x,
y) is a point in a distorted image. To undistort these points,
the first step is using OpenCV [35] to calculate r, which is
the known distance between a point in an undistorted
(corrected) image (xcorrected, ycorrected) and the center of the
image distortion, which is often the center of that image (xc

, yc). This center point (xc, yc) is sometimes referred to as
the distortion center. These points are illustrated below in
Figure 5.

Figure 5. Points in a distorted and undistorted (corrected) images.

354 Wael Farag: A Comprehensive Road-Lanes Tracking for Autonomous Driving

http://journals.uob.edu.bh

𝑥𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑒𝑑 = 𝑥𝑖𝑑𝑒𝑎𝑙 + (1 + 𝑘1𝑟2 + 𝑘2𝑟4 + 𝑘3𝑟6) (10)

𝑦𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑒𝑑 = 𝑦𝑖𝑑𝑒𝑎𝑙 + (1 + 𝑘1𝑟2 + 𝑘2𝑟4 + 𝑘3𝑟6) (11)

There are two more coefficients that account
for tangential distortion: p1 and p2, and this distortion can
be corrected using a different correction formula as given
by Eq. (12) and (13).

𝑥𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑥 + [2𝑝1𝑥𝑦 + 𝑝2(𝑟2 + 2𝑥2)] (12)

𝑦𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑦 + [2𝑝1(𝑟2 + 2𝑦2) + 2𝑝2𝑥𝑦] (13)

To correct for the mentioned distortions, images of
known shapes (chessboard images) are used. Selected
points in the distorted plans are then mapped to undistorted
plans as shown in Figure 6. Accordingly, the camera
images will be calibrated. The following procedure is
implemented to undistort the captured camera images and
improve the image quality:

1) Step 1 – finding the chessboard corners: Using 20
chessboard images that have different sizes and
orientations as depicted in Figure 7, the
“cv2.findChessboardCorners()” function from the
OpenCv3 library [35] is used to locate the chessboard
corners. The detected number of corners is 9x6 as
shown in the 17 out of the 20 images that are depicted
in Figure 7. In the other 3 images, only 9x5 corners have
been detected. The corners are drawn using the
“cv2.drawChessboardCorners()” function of openCv3.

2) Step 2 – get camera matrices: A test chessboard image
that has not been used before in finding the corners; is
used; after being converted to a greyscale; along with
the found corners in step one; to find the camera
matrices. “cv2.CalibrateCamera()” function is used to
perform this step. To check the quality of the
calibration, the gray test image together with the camera
matrices to remove the distortion of this image as shown
in Figure 8.

Figure 6. Mapping from a distorted chessboard image to an undistorted

one.

Figure 7. Chessboard images used for calibration with corners drawn.

Figure 8. A test chessboard image with distortion removal.

3) Step 2 – saving camera matrices: using Pickle
library [36], the camera data (the camera matrix as well
as the distortion coefficients) are saved in the pickle file
“camera_calibration.p” for easy retrieval later.

Figure 9 provides an example of applying the camera
calibration procedure on one of the test images.

Figure 9. Camera calibration effect (undistortion of images).

7. IMAGE PROCESSING PIPELINE

The pipeline is implemented using Python and
OpenCV computer vision library [35] and the following
steps describe the implemented pipeline in order of
execution:

1. HLS conversion: the images which are received in RGB
color space are converted to HLS color space using the
“cv2.cvtColor(img, cv2.COLOR_RGB2HLS)” OpenCV
function. Then the “S” (saturation) channel is then
extracted and stored in a specific image file. A threshold
value of “170” is used to filter out weak associations
with white or yellow color segments.

2. HSV conversion: the images which are received in
RGB color space are converted to HSV color space
using the “cv2.cvtColor(img,
cv2.COLOR_RGB2HSV)” openCV function. Then, the
“V” (value) channel is extracted.

 Int. J. Com. Dig. Sys. 9, No.3, 349-362 (May-2020) 355

http://journals.uob.edu.bh

3. LAB conversion: the RGB images are converted to
LAB color space using the “cv2.cvtColor(img,
cv2.COLOR_RGB2LAB)” OpenCV function. Then the
“B” (color b) channel is then extracted and stored in a
specific image file. A threshold value of “170” is used
to filter out weak associations with yellow color
segments as shown in Figure 10.

4. YUV conversion: the RGB images are converted to
YUV color space using the “cv2.cvtColor(img,
cv2.COLOR_RGB2YUV)” OpenCV function. Then the
“Y” (color b) channel is then extracted and stored in a
specific image file. A threshold value of “200” is used
to filter out weak associations with white color
segments as shown in Figure 11.

5. LUV conversion: the RGB images are converted to
LUV color space using the “cv2.cvtColor(img,
cv2.COLOR_RGB2LUV)” OpenCV function. Then the
“L” (color b) channel is then extracted and stored in a
specific image file. A threshold value of “200” is used
to filter out weak associations with both white and
yellow color segments as shown in Figure 10.

Figure 10. LUV (L-channel), and LAB (B-channel) images.

6. Absolute Sobel Gradients: the absolute Sobel gradient
is implemented using the OpenCV “cv2.Sobel()”
function. It is applied in the pipeline for both the x and
y-axis. The used minimum and maximum thresholds for
the Sobelx is ‘20’ and ‘200’ respectively. Moreover, the
used minimum and maximum threshold for the Sobely
is ‘150’ and ‘180’ respectively.

7. Magnitude Sobel Gradients: the magnitude Sobel
gradient is implemented from the results of applying
Sobel gradients on both the x and y-axis, by using Eq.
(1). It is applied in the pipeline with a kernel value of
‘9’. The used minimum and maximum thresholds are
‘100’ and ‘200’ respectively.

8. Direction Sobel Gradients: the direction Sobel gradient
is implemented from the results of applying Sobel
gradients on both the x and y-axis, by using Eq. (2). It is
applied in the pipeline with a kernel value of ‘3’. The
used minimum and maximum thresholds are ‘0.7’ and
‘1.3’ radians respectively.

9. Color Extraction in RGB images: White color is
masked as well by filtering the RGB color space using
thresholds of “202→255” for the three color channels.
Moreover, the yellow color is masked by filtering the
HSV color space using thresholds of “20→38” on the
“H” channel, “60→174” on the “S” channel and

“60→250” on the “V” channel. The resultant binary
image of the combined white any yellow filtering is
shown below in Figure 12. Additionally, the resultant
image of all the techniques combined is shown in the
same figure.

10. Combining All: After applying the above operations,
the combined results produces an output represented by
Figure 12.

Figure 11. YUV (Y-channel), and “Sobel + Color Mapping” images.

Figure 12. White and Yellow Masked, and the Combined Techniques

images.

8. THE LANE-BOUNDARY DETECTION PIPELINE

Like the previous one, this pipeline is also
implemented using Python and OpenCV computer vision
library [31], and the following steps describe the
implemented pipeline in order of execution:

1. Undistorting the image: removing the distortion of the
captured images using the described technique in
Section 6. Figure 9 shows the effect before and after the
execution.

2. Applying the image processing pipeline: the image
processing pipeline described in Section 7 is executed
sequentially. The resultant binary image is shown in
Figure 12. The results are due to the several color
masking and extraction techniques as well as applying
multiple Sobel operators (Absolute (x and y),
Magnitude & Direction).

3. Identifying the region of Interest (ROI): after
exhaustive trials and errors, the region of interest has
been identified and applied to the resulting image of
step 2 as shown in Fig. 13. The vertices of the ROI are:
the upper-left => (620, 420), the upper-right => (680,
420), the lower-right => (1200, 720), and the lower-left
=> (150, 720).

356 Wael Farag: A Comprehensive Road-Lanes Tracking for Autonomous Driving

http://journals.uob.edu.bh

Fig. 13 Identification and application of the Region of Interest.

4. Mask the undesired image details: The regions other
than the region of interest are then masked (as shown in
Figure 14) to give the LaneBD algorithm more focus.

5. Identifying and applying the Perspective Region of
Interest (PROI): after exhaustive trials and errors, the
perspective region of interest has been identified and
applied on (warping) the resulting image of step 1 (the
undistorted image) as shown in 0. The vertices of the
PROI are: the upper left => (575, 465), the upper right
=> (010, 465), the lower right => (1050, 680), and the
lower-left => (260, 680).

6. Applying Sliding Windows Search and Fit
Polynomials: A sliding windows search algorithm has
been implemented. The algorithm takes the “Warped
PROI image” (shown in Figure 15) and produces the
histogram and the left and right fit polynomials shown
in Figure 16. The purpose of this step is the initial
identification of lane lines points.

Figure 14. Masking other than the Region of Interest.

Figure 15. Identification and application of the Perspective Region of

Interest.

7. Applying Recursive Search: A recursive fine search
algorithm has been implemented. The algorithm takes
the “Warped PROI image” (shown in Figure 15) and the
initial left and right polynomial coefficients found in

step 6, or from the previous iteration (recursive), and
produces the refined left and right fit polynomials as
shown in Figure 17. The purpose of this step is
essentially the recursive identification of lane lines
points, which consumes less computational overhead
than the windows based one.

Figure 16. Histogram and sliding window search and the fitting left and

right lane polynomials.

8. Measuring lane curvature and center: the curvature of
both the left and right lanes is then calculated as well as
the position of the car with respect to the center of the
lane. These calculations have been performed as per the
description in Section 5.

9. Unwarping the image: the resulting image from step 7
(Figure 17) is being unwrapped using the
“cv2.warpPerspective()” function and the calculated
inverse warp Matrix “Minv” from step 5.

10. Highlight the identified lane: as the final step in the
finding lanes pipeline, the unwrapped lane lines are
drawn back on the undistorted image (Figure 9) with the
area between the identified lane lines been highlighted
in green as shown in Figure 18. The values of the lane
curvatures and the distance of the car from the lane
center is printed at the top of the image.

Figure 17. Recursive fine search and the fitting left and right lane

polynomials.

 Int. J. Com. Dig. Sys. 9, No.3, 349-362 (May-2020) 357

http://journals.uob.edu.bh

Figure 18. Identified lane lines highlighted in green and the measured

lane curvatures.

9. PARAMETER TUNING

The parameters of the LaneBD pipeline can be
categorized into three main categories: the color-spaces
category, the Sobel-operators category, and the region-of-
interest category. The following analysis shed the light on
the procedures used to find and fine-tune these parameters.

1.1. Setting the parameters of color spaces

The LaneBD algorithm uses several color spaces to
extract the road-lines segments from road images.
Filtering the selected color spaces requires setting several
parameters to effectively extract the lanes segments either
“white” or “yellow”. In this work, the white road-lines
segments are extracted from: 1) The S channel of HLS, 2)
The V channel of HSV, 3) The Y channel of YUV, 4) The
L channel of LUV, 5) The R, G, and B channels of RGB.
Likewise, the yellow road-lines segments are extracted
from: 1) The S channel of HLS, 2) The V channel of HSV,
3) The B channel of LAB, 4) The L channel of LUV, 5)
The R, G, and B channels of RGB.

The multiple filters (e.g. 5 filters) used for the
extraction of each color are strengthening each other to
improve the robustness of the algorithm. The filters
parameters (mainly threshold values) are set and tuned
using a guided trial-and-error procedure. In the following
steps, the procedure is illustrated in the HLS color space
(as an example):

1. Convert several test images (like the ones in Fig. 21 →
Fig. 28) from RGB to HLS color space using the
“cv2.cvtColor(img, cv2.COLOR_RGB2HLS)”
OpenCV function.

2. Isolate the 3 channels of the HLS (Hue, Lumination,
and Saturation) and save them in three separate channel
images using the “cv2.inRange(hls, lower, upper)”
OpenCV function.

3. An inspection software tool is developed to allow
displaying the values of a certain pixel (either hue,
lumination, or saturation) of the selected image, after
moving the cursor on this pixel and clicking on it.

4. By visual inspection of the resulted channel images,
and directing the cursor towards the areas of lane-lines
segments, the feasible range of values of the “hue”,
“lumination”, and “saturation” of the segments can be
determined.

5. Based on these observations, it is found that the “S”
channel is the most effective in isolating both the white
and yellow segments than the other channels.
Therefore, only the “S” channel images are kept and
the other channel images are discarded.

6. A threshold is created to filter out weak associations
with white or yellow color segments. After several
trials-and-errors experimentations, the threshold is
fine-tuned to “170”.

The above procedure is repeated to tune the
parameters of the other color spaces LAB, HSV, YUV,
RGB, etc. additionally, these threshold values are inserted
in the header files of the code so they can be tweaked as
needed.

1.2. Setting the parameters of Sobel Operators

All the Sobel operators (Absolute, Magnitude, and
Direction) depend on thresholds’ values to filter out the
noise and weak gradients in order to provide robust edge
detection functionality. In this work, finding out the
optimal (or in other words, the most suitable) threshold
value for each operator is done through a guided trial-and-
error procedure. The guidance is carried out using a
numerical performance indicator developed based on
Tsallis entropy [37]. The optimal threshold value t* can be
found by [38]

𝑡∗(𝑞) = 𝐴𝑟𝑔𝑡∈𝐺𝑚𝑎𝑥[𝑆𝑞
𝐴(𝑡) + 𝑆𝑞

𝐵(𝑡) + (1 −

𝑞). 𝑆𝑞
𝐴(𝑡). 𝑆𝑞

𝐵(𝑡)] (14)

where t is an arbitrary luminance level (threshold value),
G is the set of all grayscale levels {0,1,2, … ,255}, “A”
denotes class A that represents the pixels associated with
the background of the image, and “B” denotes class B that
represents the pixels associated with the edges in the
image. 𝑆𝑞

𝐴 is the Tsallis entropy of class A of order q.

Likewise, 𝑆𝑞
𝐵 is the Tsallis entropy of class B of order q.

The Threshold Tuning procedure to select the most
suitable (i.e. optimal) threshold value t* and q can now be
described as follows:

Procedure Threshold Tuning,

Input: An RGB color image “C” of size M×N×3.
Output: The suitable threshold t* value of “C”, for q
≥ 0.

Begin
1. Convert“C” to a grayscale image “A” of size

M×N.
2. Let f(x, y) be the original gray value of the pixel at

the point (x, y), x=1... M, y=1… N.
3. Construct the histogram h(i) for i ∈ G from all the

pixels of image “A”.

358 Wael Farag: A Comprehensive Road-Lanes Tracking for Autonomous Driving

http://journals.uob.edu.bh

4. Calc. the probability distribution 𝑝𝑖 =
ℎ(𝑖)

𝑀×𝑁
 , 𝑖 ∈ 𝐺.

5. For all t ∈ G
i. Construct the probability distribution set of class

A: 𝑝𝐴 = {
𝑝0

𝑃𝐴
,

𝑝1

𝑃𝐴
, … ,

𝑝𝑡

𝑃𝐴
 }, where 𝑃𝐴 = ∑ 𝑝𝑖

𝑡
𝑖=0 .

ii. Construct the probability distribution set of class

B: 𝑝𝐵 = {
𝑝𝑡+1

𝑃𝐵
,

𝑝𝑡+2

𝑃𝐵
, … ,

𝑝255

𝑃𝐵
 }, where 𝑃𝐵 =

∑ 𝑝𝑖
255
𝑖=𝑡+1 .

iii. Calculate the entropy of order q for class A:

𝑆𝑞
𝐴(𝑡) =

1

𝑞−1
(1 − ∑ (𝑝𝐴

𝑖)
𝑞𝑡

𝑖=0).

iv. Calculate the entropy of order q for class B:

𝑆𝑞
𝐵(𝑡) =

1

𝑞−1
(1 − ∑ (𝑝𝐵

𝑖)
𝑞255

𝑖=𝑡+1).

v. Calculate the entropy of order q: 𝑆𝑞(𝑡) =
𝑆𝑞

𝐴(𝑡) + 𝑆𝑞
𝐵(𝑡) + (1 − 𝑞). 𝑆𝑞

𝐴(𝑡). 𝑆𝑞
𝐵(𝑡).

6. 𝑡∗(𝑞) = 𝐴𝑟𝑔𝑡∈𝐺𝑚𝑎𝑥[𝑆𝑞(𝑡)]
End.

The above procedure should be repeated several times
for different values of q. In this work, values from 0.25 →
4.0 have been tried following the work in [37], and finally,
q = 3.0 is selected. The above procedure is also used to
find all the threshold values for all Sobel operators.

1.3. Selecting the Region of Interest (ROI) vertices

To make the LaneBD robust and computationally
effective, the portion of the image which includes the lane
lines should only be considered. This portion is
determined by finding the horizon (i.e. the projected
intersection of the left and right lane line segments, when
determined, is referred to as the horizon). By examining
many camera images, the region of interest is found to be
the lower 60% of the examined images. To be more
specified and focus only on the front drivable lane, not any
other neighboring lanes, therefore, the ROI used by the
LaneBD takes the form of a trapezoidal shape not a
rectangular. Based on a camera image of size 1200×720,
the identified ROI vertices are: the upper left => (620, 420),
the upper right => (680, 420), the lower right => (1200,
720), and the lower-left => (150, 720) as shown in Figure
16.

10. TESTING AND VALIDATION

The developed LaneBD algorithm is further tested on
many images representing different scenarios. Samples of
the results of the testing are shown in Figure 19, Figure 20,
Figure 21, Figure 22, Figure 23 and Figure 24. The
presented results show that the algorithm performs very
well under different conditions (at full sunrise, at sunset,
with shadows, without shadows, with cars on the other
lanes and without). Furthermore, for robustness testing
and validation of the developed pipeline, the algorithm is
applied to several real-time video samples representing
different driving conditions. The LaneBD proved to be
very robust in all the pre-mentioned conditions. However,
the scattered areas of shadows have some effect on the
precision of producing the lane boundaries as shown in

Figure 22. However, the output is still acceptable and
produce functional results.

The pipeline proved to be acceptably fast in execution
to be used in real-time. Using an Intel Core i5 with 1.6
GHz and 8 GB RAM which is a very moderate
computational platform, the following measurements
(Table 1) are collected for two testing video streams:

TABLE 1 COMPUTATION SPEED FOR THE LANEBD ALGORITHM.

Sample Name No. of
Frames

Total Time
Min:Sec

Frame per
Sec

Challenge Video 485 00:46 10.70

Project Video 1261 02:05 10.12

The lowest measured processing speed is 10 Frames
Per Second (FPS), which is considered just adequate as per
the recommended performance for this application [39].
However, more powerful computational hardware is
required to promote the presented real-time
performance [40], which mandates testing the
performance with GPUs.

The pipeline is executed as well on google Colab
cloud platform [41] in three different modes: CPU (Intel
Xeon Processor @2.3GHz (1 core, 2 threads), 13GB
RAM), GPU (NVIDIA Tesla K80, 13GB RAM) and TPU
(v2) [41]. Table 2 shows the results of these trials
indicating that not much difference in performance is
taking place compared to the previous results. The
existence of the GPU added only an improvement of 17%
in computational speed, while the TPU is adding only
1.5%. The justification for these results is that the GPU is
mainly speeding the matrix operations and the developed
pipeline does involve much of matrix operations.
Moreover, the TPU is mainly designed to speed up
computation based on tensors which are not used in the
formulation of the LaneBD algorithm.

TABLE 2 COMPUTATION SPEED ON GOOGLE COLAB.

Sample Name
No. of
Frames

FPS
CPU

FPS
GPU

FPS
TPU

Challenge Video 485 11.70 13.90 11.94

Project Video 1261 11.42 13.43 11.54

Harder Challenge

Video
1200 10.08 12.03 10.35

Challenge 251 10.93 12.51 11.11

SolidWhiteRight 222 11.38 13.04 11.51

SolidYellowLeft 682 11.56 13.64 11.56

 Int. J. Com. Dig. Sys. 9, No.3, 349-362 (May-2020) 359

http://journals.uob.edu.bh

Figure 19. Test image with solid yellow and dotted white lane lines

(bright sunny road (at noon), left lane with cars).

The LaneBD is compared with the LaneRTD
algorithm proposed in [42]. The LaneRTD is mainly based
on Canny edge detection [18] followed by Hough
transform [14]. The results in Table 3 show that LaneRTD
algorithm is faster as it utilizes much simpler pipeline,
however, in terms of robustness, the current LaneBD,
which is a more complex and comprehensive pipeline, is
significantly more robust especially in unfavorable
conditions like scattered shadows as shown by the
comparison between Figure 22 and Fig. 28.

TABLE 3 SPEED COMPARISON BETWEEN LANERTD AND LANEBD.

Sample Name No. of
Frames

FPS
LaneRTD

FPS
LaneBD

Challenge 251 10.93 12.51

SolidWhiteRight 222 25.60 13.04

SolidYellowLeft 682 18.76 13.64

Figure 20. Test image with solid yellow and dotted white lane lines

segments (road at sunset (dusk), left lane with no cars).

Figure 21. Test image with solid yellow and dotted white lane lines

segments (left turning lane at dusk with cars).

Figure 22. Test image with solid yellow and dotted white lane lines

segments (left turning lane with scattered shadows, and cars) using

LaneBD.

Figure 23. Test image with solid yellow and dotted white lane lines

segments (left turning lane with scattered shadows, and cars).

360 Wael Farag: A Comprehensive Road-Lanes Tracking for Autonomous Driving

http://journals.uob.edu.bh

Figure 24. Test image with solid while and dotted white lane lines

segments (right straight lane at sunset, and no cars).

Figure 25. Test image with solid yellow and dotted white lane lines

segments (left turning lane with scattered shadows, and cars) using

LaneRTD [43].

11. TESTING AND VALIDATION

The following points shed some light on some
technical tricks and aspects that have been tried or
implemented in the described pipelines:

1) HSV color space: The channels H, S and V, have been
extracted and tried to investigate the worthiness of
adding any of them to the final overall combination.
However, we find out that the S channel is exactly the
same as the one in the HSL color space, so no need for
duplication. The H and V channels, when got combined
separately or together with the overall combination, do
not add significant value to the final result or sometimes
they make it worse. As a result, it has been decided not
to integrate the HSV color space in the final
combination.

2) S-channel of HLS: It is observed that using the S
channel in the final pipeline, causes jittering in video
streams especially in areas with fragmented shades.
Therefore, using it in the pipeline could be avoided.

3) B-channel of LAB: The B channel of the LAB color
space; has proved very effective in extracting the
yellow color or in other words the yellow segments as
shown in Figure 10.

4) L-channel of LUV: The L channel of the LUV color
space; has proved very effective as well in extracting
both the white and the yellow lane lines as shown in
Figure 10.

5) Y-channel of YUV: The Y channel of the YUV color
space; has proved very effective in extracting the white
lane lines as shown in Figure 11.

6) Perspective Region Of Interest (PROI): some trials are
carried out to define the lane region of interest of the
image (ROI) the same as the perspective region of
interest (PROI). However, these trials were not
successful, and it has been decided to define them
separately for accurate perspective transformation.

7) Sanity Checks: several sanity checks, have been used
throughout the pipeline, trying to prevent bad lines from
reaching the final image. The following are a list of
them:

a) Order of the fitted left and right lines: in order to
ensure that the fitted left and right polynomials have
intercepts with the x-axis in the right order, this
check is implemented in the code.

b) Update of the left and right lines: during video
testing, both the right and left lane polynomial
coefficients are getting updated each frame.
Logically, the change of these coefficients should be
small and if it is found big, this indicated that this
line fit is not good enough and should be discarded.
This check is done for the left and right lane
separately in the implemented code.

c) Check on the right and left lanes curvatures:
logically, the right and left lanes radius of curvatures
should be almost identical all the time. However,
doing these checks to separate good and bad line fits
proved very tricky especially when the actual lane
lines are vertical with no curves. The use of this
method is not robust and can result in the rejection
of many good lines. Therefore, it is not applied.

8) Applying Resets: the initial lane line fits is being
determined using the sliding windows search function
mentioned in step 6 of the pipeline in Section 8. Then,
the recursive fine search function; that is mentioned in
step 7 of the pipeline; kicks in to calculate the line fits
for the next frames. However, after several frames, the
estimation errors accumulate, and the found lines
diverge and become unrealistic. For this reason, the
sliding windows function has to be utilized again to
determine the lane lines from the raw undistorted
images. In order to avoid this problem, and to make this
procedure more systematic, a reset procedure is being
adopted. For each number of frames (determined by
trial and error, and has been set to “8” in the current
implementation), the sliding windows function kicks in
and then followed by the recursive search function for
several frames. In our current code, “the reset span = 8”,

 Int. J. Com. Dig. Sys. 9, No.3, 349-362 (May-2020) 361

http://journals.uob.edu.bh

which means that the sliding windows function will
work for the first frame and then followed by a
recursive search function for the next 7 frames, and so
on, etc. This implemented technique works very well to
avoid divergence and at the same time, reduces the
video processing time.

9) Smoothing using FIR filtering: after calculating the left
or the right fit polynomials on a certain frame, instead
of using it directly, we average the results over the last
3 samples to smooth out the determined values and
reduces noise and unexpected jitters in directions [44].
This step is done for both the left and right lanes in the
implemented code.

10) Lanes data acquisition: In order to perform a thorough
analysis of the results, a class (data structure) called
“Line()” has been constructed and used in the code.
Using this class, several useful information has been
recorded regarding the fitted left and right lanes. The
collected information proved very effective in many
tasks of the pipeline like “smoothing and FIR filtering”,
“sanity checks” … etc.

12. CONCLUSION

In this paper, a reliable-and-sophisticated lane-
boundaries detection-and-tracking solution based on
computer-vision algorithms is developed, presented
thoroughly and given the name LaneBD. The main
contribution of the LaneBD algorithm is the sophisticated
fusion of color spaces such as LAB, YUV, LUV, etc., and
computer-vision algorithms like Sobel operators and
Perspective Transform to produce a robust fast output.
Additionally, the pipeline uses a comprehensive image
distortion suppression and camera calibration techniques
to produce undistorted road images suitable for more
accurate lane detection. Moreover, several sanity-check
tricks are exercised to improve the robustness of the
techniques used. The proposed LaneBD technique needs
only raw RGB images from a single CCD camera mounted
behind the front windshield of the vehicle. The
performance of the LaneBD is tested and evaluated using
many stationary images and several real-time videos. The
validation results show a fairly accurate and robust
detection with slight insignificant deviation in one
scenario where complex shadow patterns exist. The
measured throughput (execution time) using an affordable
CPU proved that the LaneBD is very suitable for real-time
lane detection. Therefore, the proposed technique is well
suited for use in advanced driving assistance systems or
self-driving cars. A comprehensive discussion and
analysis regarding the usefulness and the shortcomings of
the proposed technique are presented.

ACKNOWLEDGMENT

This work used the High-Performance Computing
(HPC) facilities of the American University of the Middle
East, Kuwait.

REFERENCES

[1] Wael Farag, “Traffic signs classification by deep learning for
advanced driving assistance systems”, Intelligent Decision
Technologies, IOS Press, vol. 13, no. 3, pp. 215-231, (2019).

[2] Wael Farag, Zakaria Saleh, "Road Lane-Lines Detection in Real-
Time for Advanced Driving Assistance Systems", Intern. Conf. on
Innovation and Intelligence for Informatics, Computing, and
Technologies (3ICT'18), Bahrain, 18-20 Nov., (2018).

[3] Wael Farag, Zakaria Saleh, "Behavior Cloning for Autonomous
Driving using Convolutional Neural Networks”, Intern. Conf. on
Innovation and Intelligence for Informatics, Computing, and
Technologies (3ICT'18), Bahrain, 18-20 Nov., (2018).

[4] Wael Farag, “Recognition of traffic signs by convolutional neural
nets for self-driving vehicles”, International Journal of
Knowledge-based and Intelligent Engineering Systems, IOS Press,
vol. 22, no: 3, pp. 205 – 214, (2018).

[5] Wael Farag, Zakaria Saleh, "Tuning of PID Track Followers for
Autonomous Driving", Intern. Conf. on Innovation and Intelligence
for Informatics, Computing, and Technologies (3ICT'18), Bahrain,
18-20 Nov., (2018).

[6] Wael Farag, “Safe-driving cloning by deep learning for
autonomous cars”, International Journal of Advanced Mechatronic
Systems, Inderscience Publishers, vol. 7, no. 6, pp. 390-397,
(2019).

[7] Wael Farag and Zakaria Saleh, “An Advanced Vehicle Detection
and Tracking Scheme for Self-Driving Cars”, 2nd Smart Cities
Symposium (SCS’19), IET Digital Library, Bahrain, 24-26 March,
(2019).

[8] Wael Farag and Zakaria Saleh, “MPC Track Follower for Self-
Driving Cars”, 2nd Smart Cities Symposium (SCS’19), IET Digital
Library, Bahrain, 24-26 March, (2019).

[9] Wael Farag, Z. Saleh, "An Advanced Road-Lanes Finding Scheme
for Self-Driving Cars", Smart Cities Symposium (SCS'19), IET
Digital Library, Bahrain, 24-26 March, (2019).

[10] B. M, Broggi, “GOLD: A parallel real-time stereo vision system for
generic obstacle and lane detection”, IEEE Transactions on Image
Processing, 1998, pp. 4-6.

[11] C. Kreucher, S. K. Lakshmanan, “A Driver warning System based
on the LOIS Lane Detection Algorithm”, in the IEEE Intern. Conf.
On Intelligent Vehicles, Stuttgart, Germany, 1998, pp. 17 -22.

[12] M. Chen., T. Jochem D. T. Pomerleau, “AURORA: A Vision-
Based Roadway Departure Warning System”, in the IEEE
Conference on Intelligent Robots and Systems, 1995.

[13] B. Ran and H. Xianghong, “Development of A Vision-based Real-
Time lane Detection and Tracking System for Intelligent Vehicles”,
In 79th Annual Meeting of Transportation Research Board,
Washington DC, 2000.

[14] R.O. Duda, and P. E. Hart, "Use of the Hough Transformation to
Detect Lines and Curves in Pictures”, Comm. ACM, Vol. 15, pp.
11–15 (January 1972).

[15] A. Assidiq, O. Khalifa, M. Islam, S. Khan, “Real-time lane
detection for autonomous vehicles”, in the Intern. Conf. on
Computer and Communication Eng., May 13-15, 2008 Kuala
Lumpur, Malaysia.

[16] M. Aziz, A. Prihatmanto, and H. Hindersah, “Implementation of
lane detection algorithm for self-driving car on toll road cipularang
using Python language”, 4th Intern Conf. on Electric Vehicular
Technology (ICEVT), Bali, Indonesia, Oct. 2017.

[17] Wikipedia, https://en.wikipedia.org/wiki/Canny_edge_detector,
(retrieved 8/23/18).

[18] J. Canny, “A Computational Approach To Edge Detection”, IEEE
Trans. Pattern Analysis and Machine Intelligence, 8(6):679–698,
1986.

https://www.inderscienceonline.com/doi/abs/10.1504/IJAMECHS.2017.099318
https://www.inderscienceonline.com/doi/abs/10.1504/IJAMECHS.2017.099318
https://en.wikipedia.org/wiki/Canny_edge_detector

362 Wael Farag: A Comprehensive Road-Lanes Tracking for Autonomous Driving

http://journals.uob.edu.bh

[19] Jasmine Wadhwa, G.S. Kalra and B.V. Kranthi, “Real-Time Lane
Detection in Autonomous Vehicles Using Image Processing”,
Research Journal of Applied Sciences, Engineering and
Technology 11(4): 429-433, 2015. DOI: 10.19026/rjaset.11.1798.

[20] Wael A Farag, VH Quintana, G Lambert-Torres, “Genetic
algorithms and back-propagation: a comparative study”, IEEE
Canadian Conf. on Elec. and Comp. Eng., vol. 1, pp. 93-96,
Waterloo, Ontario, Canada, (1998).

[21] S. Lee, I. Kweon, J. Kim, J. Yoon, S. Shin, O. Bailo, N. Kim, T.-H.
Lee, H. Hong, and S.-H. Han, “Vpgnet: Vanishing point guided
network for lane and road marking detection and recognition”, In
2017 IEEE Intern. Conf. on Computer Vision (ICCV), pp. 1965–
73., 2017.

[22] J. Li, X. Mei, D. Prokhorov, and D. Tao, “Deep neural network for
structural prediction and lane detection in traffic scene”, IEEE
Transactions on Neural Networks and Learning Systems,
28(3):690–703, 2016.

[23] X. Dong, Z. Yu, W. Cao, Y. Shi, QianliMA, “A survey on ensemble
learning”, Frontiers of Computer Science, Springer, August,
(2019).

[24] “Color Space”, https://en.wikipedia.org/wiki/Color_space,
retrieved on 15th Sept. 2018.

[25] “List of color spaces and their uses”,
https://en.wikipedia.org/wiki/List_of_color_spaces_and_their_use
s, retrieved on 15th Sept. 2018.

[26] R. Duda and P. Hart, “Pattern Classification and Scene Analysis”,
John Wiley and Sons, 1973, pp. 271-2.

[27] Irwin Sobel, 2014, “History and Definition of the Sobel Operator”,
https://www.researchgate.net/publication/239398674_An_Isotropi
c_3_3_Image_Gradient_Operator, retrieved on 15th Sept. 2018.

[28] Ingrid Carlbom, Joseph Paciorek, "Planar Geometric Projections
and Viewing Transformations", ACM Computing Surveys, 10 (4):
465–502, (1978), DOI:10.1145/356744.356750

[29] “Polynomial regression”,
https://en.wikipedia.org/wiki/Polynomial_regression, retrieved on
16th Sept. 2018.

[30] I. Sobel, “An isotropic 3×3 gradient operator,” in Machine Vision
for Three-Dimensional Scenes, H. Freeman, Ed., pp. 376–379,
Academic Press, New York, NY, USA, 1990.

[31] Raman Maini, Himanshu Aggarwal, “Study and Comparison of
Various Image Edge Detection Techniques”, Intern J. of Image
Processing (IJIP), Vol. 3, Issue 1, 2009.

[32] S. Tan, J. Dale, A. Anderson, A. Johnston, “Inverse Perspective
Mapping and Optic Flow: A Calibration Method and a Quantitative
Analysis”, Image Vision Comput. 2006, 24, 153-165.

[33] “Radius of Curvature”, https://www.intmath.com/applications-
differentiation/8-radius-curvature.php, retrieved on (24 Sept.
2018).

[34] “U.S. government specifications for highway curvature”,
http://onlinemanuals.txdot.gov/txdotmanuals/rdw/horizontal_align
ment.htm#BGBHGEGC, retrieved on (26 Sept. 2018).

[35] OpenCV Python Library, https://opencv.org/.

[36] “Python Pickle Module”,
https://docs.python.org/3.1/library/pickle.html, retrieved on (24
Sept. 2018).

[37] MP De Albuquerque, IA Esquef, ARG Mello, “Image thresholding
using Tsallis entropy”, Pattern Recognition Letters, Elsevier, vol.
25 (9), pp. 1059-1065, (2004).

[38] M. A. El-Sayed, “A New Algorithm Based Entropic Threshold for
Edge Detection in Images”, IJCSI International Journal of
Computer Science Issues, Vol. 8, Issue 5, No 1, September, (2011).

[39] Jan Botsch, “Real-time lane detection and tracking on high-
performance computing devices”, Bachelor's Thesis in Informatics,
Technische Universitat, Munchen, Germany, March 2015.

[40] M. Nagiub and W. Farag, “Automatic selection of compiler options
using genetic techniques for embedded software design”, IEEE 14th
Inter. Symposium on Comp. Intelligence and Informatics (CINTI),
Budapest, Hungary, Nov. 19, (2013).

[41] “Google Colaboratory”,
https://colab.research.google.com/notebooks/welcome.ipynb,
accessed on (5 April 2019).

[42] Wael Farag and Zakaria Saleh, “Road Lane-Lines Detection in
Real-Time for Advanced Driving Assistance Systems”, Intern.
Conf. on Innovation and Intelligence for Informatics, Computing,
and Technologies (3ICT 2018), Bahrain, 18-20 Nov., 2018.

[43] Wael Farag, “Real-Time Detection of Road Lane-Lines for
Autonomous Driving”, Recent Patents on Computer Science,
Bentham Science Publishers, Vol. 12, Issue 4, 2019.

[44] Wael Farag, Ahmed Tawfik, “On fuzzy model identification and
the gas furnace data”, Proceedings of the IASTED International
Conference Intelligent Systems and Control, Honolulu, Hawaii,
USA, August 14-16, (2000).

Wael Farag earned his Ph.D. from

the University of Waterloo, Canada

in 1998; M.Sc. from the University

of Saskatchewan, Canada in 1994;

and B.Sc. from Cairo University,

Egypt in 1990. His research,

teaching and industrial experience

focus on embedded systems,

mechatronics, autonomous vehicles,

renewable energy, and control

systems. He has combined 17 years

of industrial and senior management experience in Automotive

(Valeo), Oil & Gas (Schneider) and Construction Machines

(CNH) positioned in several countries including Canada, USA &

Egypt. Moreover, he has 10 Years of academic experience at

Wilfrid Laurier University, Cairo University, and the American

University of the Middle East. Spanning several topics of

electrical and computer engineering. He is the holder of 2 US

patents; ISO9000 Lead Auditor Certified and Scrum Master

Certified.

https://en.wikipedia.org/wiki/Color_space
https://en.wikipedia.org/wiki/List_of_color_spaces_and_their_uses
https://en.wikipedia.org/wiki/List_of_color_spaces_and_their_uses
https://www.researchgate.net/publication/239398674_An_Isotropic_3_3_Image_Gradient_Operator
https://www.researchgate.net/publication/239398674_An_Isotropic_3_3_Image_Gradient_Operator
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1145/356744.356750
https://en.wikipedia.org/wiki/Polynomial_regression
https://www.intmath.com/applications-differentiation/8-radius-curvature.php
https://www.intmath.com/applications-differentiation/8-radius-curvature.php
http://onlinemanuals.txdot.gov/txdotmanuals/rdw/horizontal_alignment.htm#BGBHGEGC
http://onlinemanuals.txdot.gov/txdotmanuals/rdw/horizontal_alignment.htm#BGBHGEGC
https://opencv.org/
https://docs.python.org/3.1/library/pickle.html
https://colab.research.google.com/notebooks/welcome.ipynb

