

International Journal of Computing and Digital Systems

ISSN (2210-142X)
Int. J. Com. Dig. Sys. 9, No.4 (July-2020)

E-mail: wael.farag@aum.edu.kw, wael.farag@cu.edu.eg

 http://journals.uob.edu.bh

 http://dx.doi.org/10.12785/ijcds/090405

A Comprehensive Vehicle-Detection-and-Tracking
Technique for Autonomous Driving

Wael Farag 1, 2

1College of Eng. & Tech., American University of the Middle East, Kuwait.

2Electrical Eng. Dept., Cairo University, Egypt.

Received 20 Sep. 2019, Revised 11 Nov. 2019, Accepted 1 May 2020, Published 1 Jul. 2020

Abstract: In this paper, an advanced-and-reliable vehicle detection-and-tracking technique is proposed and implemented. The Real-
Time Vehicle Detection-and-Tracking (RT_VDT) technique is well suited for Advanced Driving Assistance Systems (ADAS)
applications or Self-Driving Cars (SDC). The RT_VDT is mainly a pipeline of reliable computer vision and machine learning algorithms
that augment each other and take in raw RGB images to produce the required boundary boxes of the vehicles that appear in the front
driving space of the car. The main contribution of this paper is the precise fusion of the employed algorithms where some of them work
in parallel to strengthen each other in order to produce a precise and sophisticated real-time output. In addition, the RT_VDT provides
fast enough computation to be embedded in CPUs that are currently employed by ADAS systems. Each used algorithm is described in
detail, implemented, its performance is evaluated using actual road images, and videos captured by the front-mounted camera of the
car. The evaluation of the RT_VDT shows that it reliably detects and tracks vehicle boundaries under various conditions.

Keywords: Computer vision, Self-Driving Car, Autonomous Driving, ADAS, Vehicle Detection, Vehicle Tracking.

1. INTRODUCTION
Increasing safety, reducing road accidents and enhancing

comfort and driving experience are the major motivations
behind equipping modern cars with Advanced Driving
Assistance Systems (ADAS) [1, 2]. In the past couple of
decades, major car manufacturers introduce many
sophisticated ADAS functions [3, 4] like Electronic
Stability Control (ESC), Anti-lock Brake System (ABS),
Lane Departure Warning (LDW) [5], Lane Keep Assist
(LKA) [6], etc. These functions represent steady
incremental steps toward a hypothetical future of safe fully
autonomous vehicles [7-11].

Most recent ADAS functions like Collision Avoidance,
Automated Highway Driving (Autopilot), Automated
Urban Driving, Automated Parking and Cooperative
Maneuvering require more and more fast and reliable
detection and tracking for on-road vehicles [12], which is
among the most complex and challenging tasks. In order to
successfully detect the other vehicles on the road, accurate
localization of potential vehicles in camera images or
LiDAR data is required, the relative position of these cars
with respect to the road needs to be determined, and the

vehicle's movement direction should be assessed and
verified as well.

Computer vision techniques are considered the main
tools that provide the capabilities of sensing the
surrounding environment for the detection, identification,
and tracking of moving vehicles. The detection of vehicles
consists mainly of the finding of specific patterns/features
or cues such as edges, gradients, colored segments, and
color distributions in images. Such kind of specification
streamlines or guides the process of vehicle detection. This
paper presents an approach based on sophisticated
computer vision algorithms working together to reach a
real-time robust performance in detection and tracking of
moving vehicles with substantial variations in shapes.

There are currently three main approaches to tackle the
problem of vehicle detection and tracking, that have been
proposed in the literature [13-34]. The first approach is
based on the Camera as the only sensor [18, 19, 22, 23, 28,
29, and 30]. The second one is based on LiDARs or Laser
Range Finders [14, 15, 17, 26, 31, and 34]. Additionally,
the third approach is based on the fusion between Camera
& LiDAR outputs [13].

568 Wael Farag: A Comprehensive Vehicle Detection and Tracking Technique for Autonomous Driving

http://journals.uob.edu.bh

An early endeavor for the third approach has been carried
out by Premebida et al, who proposed a vehicle detection
system that combines both the information provided by
both a LiDAR and a monocular Camera [13]. The system
phases work in the laser space using a Gaussian Mixture
Model classifier and in the vision space using the AdaBoost
classifier. The results are combined using a Bayesian sum
decision rule. The preliminary experimental results show
the effectiveness of 84% hit rate.

Nevertheless, the pioneering work [14, 15] of Anna
Petrovskaya and Sebastian Thrun in the Urban Grand
Challenge [16] has to be highlighted, where they used laser
range finders for reliable tracking of moving vehicles from
a high-speed moving platform. The used approach models
both dynamic and geometric properties of the tracked
vehicles and estimates them using a single Bayes filter [17]
per vehicle. Experimental results have shown the true
positive vehicle detection rate was 97% compared to the
theoretical maximum of 98%.

Moreover, Jazayeri et al [18, 19] modeled the motion
behavior of the vehicles and the background, captured by
the front Camera, probabilistically. The targets got
identified using Hidden Markov Models (HMM) [20, 21].
The results showed that the identification and tracking are
robust to various illumination and environments and the
processing was performed in real-time. However, the
identification was only based on motion only, therefore, the
results of the proposed method should be fused with the
results of shape analysis methods.

In [22], Romera et al proposed a lightweight technique
for vehicle detection and tracking that is implemented on a
smartphone. The technique detects lanes first and
determines the vanishing points based on previous work
[23]. The main pipeline has two stages, the first is the
detection stage utilizing the AdaBoost classifier, and the
second is the tracking stage based on Extended Kalman
Filter implementation. The technique is tested on iPhone 5
and iPhone 6 producing and execution time of 132ms and
76ms respectively.

An interesting study of using deep learning with LiDAR
data is carried out by Ivan del Pino et al [24], who used a
low resolution 3D laser sensor (Velodyne VLP-16 (PUCK)
[25]) to detect and track vehicles on the road, incorporating
a Convolutional Neural Network (CNN) that was
constructed for this purpose and applied to the point cloud
data of the PUCK. Moreover, a Multi-Hypothesis Extended
Kalman Filters (MH-EKF) is utilized as well, to estimate
the actual position and velocities of the detected vehicles.
Comparative studies between the proposed lower
resolution (VLP-16) tracking system and a high-end
system, using Velodyne HDL-64 [26], showing that the
proposed low-resolution VLP-16 Deep Learning
architecture is able to close matching the performance of
the high-end HDL-64 one in close ranges up to half the
distance of the high-end sensor.

An endeavor to implement a real-time car detection and
tracking algorithm on very inexpensive hardware
(Raspberry Pi v3 [27]) is carried out by M. Anandhalli et al
[28]. The proposed algorithm converts the RGB video
frame to the HSV one, and filtering and noise removal, the
detection is mainly based on the color features, and the
tracking by using a Kalman filter with the data association.
The results are then compared with that of rear-view
vehicle detection and tracking method [29] and
morphological operation method [30] with a higher
performance of 6-8%.

To detect several objects on the road not only vehicles,
Abdul Rachman presented an integrated framework of
multi-target object detection and tracking using a 3D
LiDAR geared towards the urban environment [31]. The
framework combines occlusion-aware detection methods,
probabilistic adaptive filtering, and computationally
efficient heuristic logic-based filtering to handle
uncertainties. The framework is tested using real-world
pre-recorded 3D LiDAR data and shows that the proposed
framework is achieving promising real-time tracking
performance (accuracy of 94% and a precision of 92%) in
varying urban driving scenarios.

It is clear from the previous literature that LiDARs have
a major role and potential in accurate vehicle detection and
tracking, however, there are several drawbacks of using
LiDARs in the commercial rollout. The first one is the cost,
as an example, the lower end Velodyne VLP-16 (PUCK)
price is 8000 USD, while the high-end Velodyne HDL-64E
is 100,000 USD. The second drawback is the lack of
reliability in the installation LiDARs in vehicles for
commercial use [32]. The third one is the huge amount of
data resulting from LiDARs that need to be processed to
execute the detection algorithms which requires powerful
dedicated hardware.

Approaches based on neural networks [33] and deep
learning [34, 35], and specifically Convolutional Neural
Networks (CNN) stimulate a promising research direction
despite its overwhelming computational overhead.
However, considering that the vehicle detection runs on
vehicle-based systems, where computation resources are
severely limited, the computational cost of vehicle
detection and tracking method should also be considered as
a key indicator of the overall performance.

Therefore, in this paper, a comprehensive, streamlined,
vehicle detection-and-tracking algorithm is proposed and
implemented. This algorithm is given the name “Real-Time
Vehicle Detection and Tracking” (RT_VDT). RT_VDT is
differentiated from the previously surveyed algorithms in
that it streamlines a pipeline of computer vision and
machine learning algorithms beginning with a camera
calibration algorithm until boxing the identified vehicle. In
between, several edge detection and color identification
techniques are used employing multiple color spaces. The
RT_VDT focuses on both robustness and speed with a
delicate balance. The robustness is achieved by removing

 Int. J. Com. Dig. Sys. 9, No.4, 567-580 (July-2020) 569

http://journals.uob.edu.bh

distortion from images and fusing multiple methods to
extract the vehicle features, working in parallel to strength
each other, and the speed comes from using effective
methods that do not depend on iterative searches but rather
a single scan per camera frame, as well as concentrates the
computation in the image sectors of higher interest.

The next sections will describe the used algorithms in
more detail. RT_VDT represents a further step towards the
prospects of autonomous driving.

2. OVERVIEW OF THE RT_VDT ALGORITHM
The RT_VDT algorithm is designed to utilize a single

Charge-Coupled Device (CCD) camera. This camera
should be mounted on the front-windshield mirror of the
car to capture the road front view. However, stereo cameras
can also be employed, but for the matter of convenience, in
this paper, a single front camera is only considered. In order
to simplify the detection problem, it can be assumed that
the setup makes the baseline horizontal, which assures “the
horizon” is in the image and it is parallel to the X-axis (i.e.
the projected intersection of left and right lines of the
driving lane, after finding them using one of the techniques
developed in [5], is referred to as “the horizon”).
Nevertheless, for the matter of precision, in the RT_VDT,
the image orientation will be adjusted using the calibration
data of the front camera in conjunction with removing the
visual distortions.

In this work, it is assumed that the input to the RT_VDT
algorithm is a 1200x720 RGB color image. Therefore, the
first thing the algorithm does is to remove the distortion and
adjust the orientation using a camera calibration routine
and chessboard images. This camera calibration routine is
only executed once at the initialization of the RT_VDT
algorithmnot with every iteration/frame, hence, not
affecting the real-time performance. Then, the image will
be converted to grayscale as well as several color spaces
[36] (e.g. HSL, HSV, LAB, LUV, YUV, YCrCb, etc. [37]).

After the grayscale and color space conversion, several
features will be extracted from the images such as the
Histogram of Oriented Gradients (HOG) [38], color spatial
features [39] and color histogram features [40]. These
features are combined together to produce what is called
“feature vectors”. These feature vectors are used by a
vehicle/non-vehicle classifier built by the Support Vector
Machine (SVM) algorithm [41] to detect vehicles in
camera images.

After the vehicle/non-vehicle classification, the
vehicles are then detected using the sliding windows
technique, which uses the results produced by the SVM
classifier and scans each image to detect and localize the
vehicle objects. The scan is not implemented of the full
image, however, a Region of Interest (ROI) is defined and
then extracted from each image to perform the exhaustive
search. Therefore, the undesired image details are masked
to improve the focus and accuracy of detecting the vehicle
boundaries. The results of this scanning process are used to

build active heat-maps that produce potential car boxes.
The overlapped detected true-positive car boxes are then
grouped in bigger boxes and labeled accordingly. As a final
step, the labeled boxes are drawn on the original test image
or video frame. For the matter of illustration, working
examples of the resultant road boundary are displayed on
the original color image as shown in Figure 1 and Figure 2.

Figure 1. Detected Vehicle boundaries by the RT_VDT algorithm.

Figure 2. Detected Vehicles’ boundaries by the RT_VDT algorithm.

3. HISTOGRAM OF ORIENTED GRADIENTS
The motivation behind the development of the HOG

algorithm is best described by the authors [38] as:

“Local object appearance and shape can often be
characterized rather well by the distribution of local
intensity gradients or edge directions, even without precise
knowledge of the corresponding gradient or edge positions.
In practice, this is implemented by dividing the image
window into small spatial regions (“cells”), for each cell
accumulating a local 1-D histogram of gradient directions
or edge orientations over the pixels of the cell. The
combined histogram entries form the representation. For
better invariance to illumination, shadowing, etc., it is also
useful to contrast-normalize the local responses before
using them. This can be done by accumulating a measure
of local histogram “energy” over somewhat larger spatial
regions (“blocks”) and using the results to normalize all of
the cells in the block. We will refer to the normalized
descriptor blocks as Histogram of Oriented Gradient
(HOG) descriptors”

570 Wael Farag: A Comprehensive Vehicle Detection and Tracking Technique for Autonomous Driving

http://journals.uob.edu.bh

For instance, to detect a specific object ‘Obj’ in a camera
image the following steps can be followed:

1) The camera image is converted to gray.

2) Start by constructing a rectangle (or square) window
that is 64 pixels tall by 64 pixels wide (the dimensions
of the window are arbitrary depending on the designer
choice).

3) Use it to scan the grey camera image searching for Obj.
The search is done by sliding the window both
horizontally and vertically with a stride of 8 bits (as an
example).

4) The object Obj may have of course different sizes and
occupy a bigger or small part of the image. Therefore,
the analysis should be done not only on the original
starting window (64×64) but also on a series (pyramid)
of windows with an increment of 16 bits (as an
example), like 80×80, 96×96, 112×112, etc. This
pyramid of windows corresponds to larger portions of
the original camera image where Obj or part of it could
be inside one of them.

5) In each step of the windows slide, the HOG features are
computed and get associated with the center position of
the corresponding window as a matter of “feature
localization”.

To compute the HOG features, the input to the
algorithm is expected to be a certain window ‘WI’ from a
gray-level image, possibly from a pyramid, and the
workflow continues as follows and shown in Figure 3. :

1) Calculate the two gradient components Gx and Gy of the
gradient of WI by central differences:

𝐺𝐺𝑥𝑥(𝑟𝑟, 𝑐𝑐) = 𝑊𝑊𝐼𝐼(𝑟𝑟, 𝑐𝑐 + 1) −𝑊𝑊𝐼𝐼(𝑟𝑟, 𝑐𝑐 − 1) (1)

𝐺𝐺𝑦𝑦(𝑟𝑟, 𝑐𝑐) = 𝑊𝑊𝐼𝐼(𝑟𝑟 − 1, 𝑐𝑐) −𝑊𝑊𝐼𝐼(𝑟𝑟 + 1, 𝑐𝑐) (2)

where r and c are the corresponding row and column
numbers of the pixels in window WI.

2) The calculated gradient is then converted to polar
coordinates as below, with the angle constrained to be
between 0º and 180º. As a result, gradients that point in
opposite directions are computed as:

𝐺𝐺 = �𝐺𝐺𝑥𝑥 + 𝐺𝐺𝑦𝑦 (3)

𝜃𝜃 = 180
𝜋𝜋

(𝑡𝑡𝑡𝑡𝑡𝑡2−1 �
𝐺𝐺𝑦𝑦
𝐺𝐺𝑥𝑥
�𝑚𝑚𝑚𝑚𝑚𝑚 𝜋𝜋) (4)

where 𝑡𝑡𝑡𝑡𝑡𝑡2−1 is the four-quadrant inverse tangent,
which yields values between -π and π.

3) Construct the cell orientation histograms by dividing
the window WI into adjacent, non-overlapping cells of
size C×C pixels (could be C = 8). In each cell, calculate
the histogram of gradient orientations that are enclosed
(binned) into B bins (could be B = 9). If the bins are
numbered 0 through B-1 and have width 𝑤𝑤 = 180

𝐵𝐵
, then

bin i has boundaries [wi, w(i + 1)] and center 𝑐𝑐𝑖𝑖 =
𝑤𝑤(𝑖𝑖 + 1

2
). A pixel with magnitude G and orientation θ

contributes a vote of:

𝑣𝑣𝑗𝑗 = 𝐺𝐺
𝑐𝑐𝑗𝑗+1−𝜃𝜃

𝑤𝑤
 𝑡𝑡𝑡𝑡 𝑏𝑏𝑏𝑏𝑏𝑏 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑗𝑗 = �𝜃𝜃

𝑤𝑤
− 1

2
�𝑚𝑚𝑚𝑚𝑚𝑚 𝐵𝐵 (5)

and a vote of:

𝑣𝑣𝑗𝑗+1 = 𝐺𝐺
𝜃𝜃−𝑐𝑐𝑗𝑗
𝑤𝑤

 𝑡𝑡𝑡𝑡 𝑏𝑏𝑏𝑏𝑏𝑏 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 (𝑗𝑗 + 1) 𝑚𝑚𝑚𝑚𝑚𝑚 𝐵𝐵 (6)

This scheme is called voting by bilinear interpolation
and the resulting cell histogram is a vector with B
positive entries.

4) The block normalization step is then carried out by
grouping the cells together into overlapping blocks of
2×2 cells each. Therefore, each block has a size of
2C×2C pixels. Accordingly, each two horizontally or
vertically consecutive blocks overlap by two cells, that
is, the block stride is C pixels. Consequently, each
internal cell is covered by four blocks. The four-cell
histograms in each block are concentred into a single
block feature b and then the block feature ‘b’ get
normalized by its Euclidean norm as:

𝑏𝑏 ← 𝑏𝑏
�‖𝑏𝑏‖2+𝜖𝜖

 (7)

Where ϵ is a small positive constant that prevents
division by zero in gradient-less blocks.

5) The normalized block features are then concatenated
into a single HOG feature vector h, which is normalized
as follows:

ℎ ← ℎ
�‖ℎ‖2+𝜖𝜖

 (8)

ℎ𝑛𝑛 ← min (ℎ𝑛𝑛, 𝜏𝜏) (9)

Here, hn is the nth entry of h and τ is a positive threshold
(τ = 0.2). Clipping the entries of h to be no greater than
τ (after the first normalization) ensures that very large
gradients do not have too much influence—they would
end up washing out all other image detail. The final
normalization makes the HOG feature independent of
overall image contrast. An example of the output of the
algorithm is shown in Figure 4. .

 Int. J. Com. Dig. Sys. 9, No.4, 567-580 (July-2020) 571

http://journals.uob.edu.bh

Figure 3. The Histogram of Oriented Gradiens Workflow.

Figure 4. Results of applying HOG.

4. SUPPORT VECTOR MACHINE CLASSIFIER
Support Vector Machine (SVM) [42] is a supervised

learning model with an associated learning algorithm that
analyzes data used for classification and regression
analysis [43, 44]. Given a set of training examples, each
marked as belonging to one or the other of two categories,
an SVM training algorithm builds a model that assigns new
examples to one category or the other, making it a non-
probabilistic binary linear classifier.

Given a training dataset of n points of the form

(𝑥⃗𝑥1,𝑦𝑦2), … , (𝑥⃗𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖), … , (𝑥⃗𝑥𝑛𝑛,𝑦𝑦𝑛𝑛) (10)

where 𝑦𝑦𝑖𝑖 are either 1 or -1, each indicating the class to
which the point 𝑥⃗𝑥𝑖𝑖 belongs. Each is a p-
dimensional real vector. It is required to find the
"maximum-margin hyperplane" that divides the group of
points 𝑥⃗𝑥𝑖𝑖 for which 𝑦𝑦𝑖𝑖 = 1 from the group of points for
which 𝑦𝑦𝑖𝑖 = −1 , which is defined so that the distance
between the hyperplane and the nearest point 𝑥⃗𝑥𝑖𝑖 from
either group is maximized.

Any hyperplane can be written as the set of points 𝑥⃗𝑥
satisfying

𝑤𝑤��⃗ . 𝑥⃗𝑥 − 𝑏𝑏 = 0 (11)

where 𝑤𝑤��⃗ is the normal vector to the hyperplane. The
parameter 𝑏𝑏

‖𝑤𝑤��⃗ ‖
 determines the offset of the hyperplane from

the origin along the normal vector 𝑤𝑤��⃗ .

If the training data is linearly separable, the optimization
problem can be written as follows:

"𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ‖𝑤𝑤��⃗ ‖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡 𝑦𝑦𝑖𝑖(𝑤𝑤��⃗ . 𝑥⃗𝑥𝑖𝑖 − 𝑏𝑏) ≥ 1,

𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1,2, … ,𝑛𝑛" (12)

The 𝑤𝑤��⃗ and b that solve this problem determine our
classifier, 𝑥⃗𝑥 ↦ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤��⃗ . 𝑥⃗𝑥 − 𝑏𝑏).

If the training data is not linearly separable, the hinge loss
function is introduced as

max�0, 1 − 𝑦𝑦𝑖𝑖(𝑤𝑤��⃗ . 𝑥⃗𝑥𝑖𝑖 − 𝑏𝑏)� (13)

This function is zero if the constraint 𝑦𝑦𝑖𝑖(𝑤𝑤��⃗ . 𝑥⃗𝑥𝑖𝑖 − 𝑏𝑏) ≥ 1 is
satisfied, in other words, if 𝑥⃗𝑥𝑖𝑖 lies on the correct side of the
margin. For data on the wrong side of the margin, the
function's value is proportional to the distance from the
margin. Then the optimization function will be solved:

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 {�
1
𝑛𝑛
�max�0, 1 − 𝑦𝑦𝑖𝑖(𝑤𝑤��⃗ . 𝑥⃗𝑥𝑖𝑖 − 𝑏𝑏)�
𝑛𝑛

𝑖𝑖=1

� + 𝜆𝜆‖𝑤𝑤��⃗ ‖2}

 (14)

where the parameter 𝜆𝜆 plays a role of determining the
tradeoff between two opposing requirements: one is
increasing the margin-size and the other is ensuring that the
 𝑥⃗𝑥𝑖𝑖 lie on the correct side of the margin. Accordingly, for
sufficiently small values of 𝜆𝜆, the second term in the loss
function will become negligible; consequently, it will
perform similar to the hard-margin SVM, if the input data
are linearly classifiable. However, it will still learn if a
classification rule is viable or not.

If a nonlinear classification rule need to be learned, and
which this non-linear rule corresponds to a linear
classification rule for the transformed data points 𝜑𝜑(𝑥⃗𝑥𝑖𝑖).
Additionally, a kernel function k is given which
satisfies 𝑘𝑘�𝑥⃗𝑥𝑖𝑖 , 𝑥⃗𝑥𝑗𝑗� = φ(𝑥⃗𝑥𝑖𝑖).φ�𝑥⃗𝑥𝑗𝑗� . Accordingly, the
classification vector 𝑤𝑤��⃗ in the transformed spaces satisfies

w���⃗ = ∑ 𝑐𝑐𝑖𝑖𝑦𝑦𝑖𝑖 φ(𝑥⃗𝑥𝑖𝑖)𝑛𝑛
𝑖𝑖=0 (15)

where the 𝑐𝑐𝑖𝑖 ’s are obtained by solving the optimization
problem

https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Probabilistic_classification
https://en.wikipedia.org/wiki/Binary_classifier
https://en.wikipedia.org/wiki/Linear_classifier

572 Wael Farag: A Comprehensive Vehicle Detection and Tracking Technique for Autonomous Driving

http://journals.uob.edu.bh

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓(𝑐𝑐𝑖𝑖 … 𝑐𝑐𝑛𝑛)

= �𝑐𝑐𝑖𝑖

𝑛𝑛

𝑖𝑖=1

−
1
2
��𝑦𝑦𝑖𝑖𝑐𝑐𝑖𝑖

𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

𝑘𝑘�𝑥⃗𝑥𝑖𝑖 , 𝑥⃗𝑥𝑗𝑗�𝑦𝑦𝑗𝑗𝑐𝑐𝑗𝑗

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 �𝑐𝑐𝑖𝑖𝑦𝑦𝑖𝑖 = 0
𝑛𝑛

𝑖𝑖=1

,𝑎𝑎𝑎𝑎𝑎𝑎 0 ≤ 𝑐𝑐𝑖𝑖 ≤
1

2𝑛𝑛𝜆𝜆
𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖.

 (16)

The coefficients 𝑐𝑐𝑖𝑖′𝑠𝑠 can be solved using quadratic
programming [45], and then solve

𝑏𝑏 = w���⃗ .φ(𝑥⃗𝑥𝑖𝑖) − 𝑦𝑦𝑖𝑖 = ��𝑐𝑐𝑘𝑘𝑦𝑦𝑘𝑘 𝑘𝑘(𝑥⃗𝑥𝑘𝑘, 𝑥⃗𝑥𝑖𝑖)
𝑛𝑛

𝑘𝑘=1

� − 𝑦𝑦𝑖𝑖

 (17)

Finally, new points (𝑧𝑧) can be classified by computing

𝑧𝑧 ↦ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤��⃗ .φ(𝑥⃗𝑥𝑖𝑖) − 𝑏𝑏)

= 𝑠𝑠𝑠𝑠𝑠𝑠 ���𝑐𝑐𝑘𝑘𝑦𝑦𝑘𝑘 𝑘𝑘(𝑥⃗𝑥𝑘𝑘, 𝑥⃗𝑥𝑖𝑖)
𝑛𝑛

𝑘𝑘=1

� − 𝑏𝑏�

 (18)

5. COLOR SPACES
A color space (model) is a specific organization of colors

that provides a way to categorize colors and represent them
in digital images [36]. It is an abstract mathematical model
describing the colors as tuples of numbers (e.g. triples
in RGB or quadruples in CMYK). This representation is
useful in understanding the color capabilities of a particular
digital device or file (camera images). There are a variety
of color spaces, such as RGB, LUV, YUV, HSV, HLS,
CMY, LAB, etc. The following as some highlights on the
most emphasized color spaces that have been experienced
throughout this work:

1) RGB: is a kind of color space that uses (R=Red,
G=Green, and B=Blue) to elaborate the color model
[30]. Simply, it contains all possible colors, by
combining the three colors with different levels. Each
pixel of an image has three components R, G and B.
Each component is assigned a range of 0→255 of
intensity values. Obviously, it can be said, using only
these three color components, there can be 16,777,216
distinct colors on the screen by different mixing ratios.

2) HSL and HSV: (Hue, Saturation, Lightness) and (Hue,
Saturation, Value) color spaces are both constructed
geometrically from cylindrical structures as shown in
Figure 5. . They are sometimes used to define gradients
for data visualization as a compromise between
effectiveness for segmentation and computational
complexity. Separating hue, lightness, and chroma or
saturation is proven effective in some object detection
applications.

Figure 5. HSL and HSV cylindrical color spaces.

3) LAB: (Lumination, ‘a’ and ‘b’ color channels) as
shown in Figure 6. , is a color model (space) that covers
the whole light spectrum, including as well spectrum
outside of human vision. LAB is very powerful in
identifying a spot color, possibly a focal “brand name”
or “logo” color such as “Pepsi Blue” or “McDonald's
Yellow”. This specific color definition can be used to
specify many items such as vehicles, traffic signs,
trees, buildings, lane markings, etc.

Figure 6. LAB color space structure, channels (L, ‘a’ and ‘b’).

4) LUV: (Lumination, ‘U’ and ‘V’ color channels) is a
color model that uses U and V channels to represent the
chromaticity or color values, which are completely
independent of the L channel. This makes LUV color
space much better suited for image difference
comparisons.

5) YUV: (lumination ‘Y’, ‘U’ and ‘V’ color
differences) is the principal color model used in analog
color TV broadcasting. The luminance channel ‘Y’ can
be calculated as a weighted sum of red, green and blue
color components. Furthermore, the color difference,
or chrominance, components ‘U’ and ‘V’ are formed
by subtracting the channel ‘Y’ (luminance) from blue
and from red components respectively. The principal
advantage of the YUV color space in image processing
is the decoupling of luminance and color information.
The main advantage of this complete separation is that
the luminance component of a certain image can be

https://en.wikipedia.org/wiki/Color

 Int. J. Com. Dig. Sys. 9, No.4, 567-580 (July-2020) 573

http://journals.uob.edu.bh

dealt with without affecting these images’ color
components [46].

6. CAMERA CALIBRATION
The conversion from three dimensional (3D) real-world

scene to a two dimensional (2D) one, exhibits by a camera,
results in image distortion, as the transformation from
3D→2D is not perfect. Actually, the shape and size of
objects get distorted (changed) in the resulting 2D image
from the original 3D appearance. Therefore, before using
the resulting 2D camera images, this distortion needs to be
undone so that the correct and useful information can be
extracted and analyzed.

The construction of real cameras includes using a
curved lens to form an image. The light rays usually bend
around the edges of these lenses with low or high degrees
depends on the focus and position of objects. Therefore,
distortion at the images’ edges happens, in a way that lines
or objects appear to be more or less curved than their actual
reality. This effect is called the “radial distortion”, and
represents the principal source of distortion.

Moreover, there is another main source of distortion
that is the “tangential distortion”. This distortion happens
when the camera’s lens is not perfectly aligned parallel to
the image plane that is associated with the camera sensor.
This produces a tilt effect to the image, which shows
objects nearer or farther away than they actually are.

There are three needed coefficients to correct for radial
distortion: k1, k2, and k3. To correct the appearance of
radially distorted points in an image, one can use a
correction formula.

In the following equations Eq. (19), and Eq. (20), (x,
y) is a point in a distorted image. To undistort these points,
the first step is to use OpenCV [47] to calculate r, which is
the known distance between a point in an undistorted
(corrected) image (xcorrected, ycorrected) and the center of the
image distortion, which is often the center of that image (xc
, yc). This center point (xc, yc) is sometimes referred to as
the distortion center. These points are illustrated below in
Figure 7. .

Figure 7. Points in a distorted and undistorted (corrected) images.

𝑥𝑥𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + (1 + 𝑘𝑘1𝑟𝑟2 + 𝑘𝑘2𝑟𝑟4 + 𝑘𝑘3𝑟𝑟6) (19)

𝑦𝑦𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + (1 + 𝑘𝑘1𝑟𝑟2 + 𝑘𝑘2𝑟𝑟4 + 𝑘𝑘3𝑟𝑟6) (20)

There are two more coefficients that account
for tangential distortion: p1 and p2, and this distortion can
be corrected using a different correction formula as given
by Eq. (21) and (22).

𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑥𝑥 + [2𝑝𝑝1𝑥𝑥𝑥𝑥 + 𝑝𝑝2(𝑟𝑟2 + 2𝑥𝑥2)] (21)

𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑦𝑦 + [2𝑝𝑝1(𝑟𝑟2 + 2𝑦𝑦2) + 2𝑝𝑝2𝑥𝑥𝑥𝑥] (22)

To correct for the mentioned distortions, images of
known shapes (chessboard images) are used. Selected
points in the distorted plans are then mapped to undistorted
plans as shown in Figure 8. . Accordingly, the camera
images will be calibrated. The following procedure is
implemented to undistort the captured camera images and
improve the image quality:

1) Step 1 – finding the chessboard corners: Using 20
chessboard images that have different sizes and
orientations as depicted in Figure 9. , the
“cv2.findChessboardCorners()” function from the
OpenCv3 library [47] is used to locate the chessboard
corners. The detected number of corners is 9x6 as
shown in the 17 out of the 20 images that are depicted
in Figure 9. . In the other 3 images, only 9x5 corners
have been detected. The corners are drawn using the
“cv2.drawChessboardCorners()” function of openCv3.

Figure 8. Mapping from a distorted chessboard image to an

undistorted one.

2) Step 2 – get camera matrices: A test chessboard image
that has not been used before in finding the corners; is
used; after being converted to a greyscale; along with
the found corners in step one; to find the camera
matrices. “cv2.CalibrateCamera()” function is used to
perform this step. To check the quality of the
calibration, the gray test image together with the camera
matrices to remove the distortion of this image as shown
in Figure 10. .

Figure 9. Chessboard images used for calibration with corners drawn.

574 Wael Farag: A Comprehensive Vehicle Detection and Tracking Technique for Autonomous Driving

http://journals.uob.edu.bh

Figure 10. A test chessboard image with distortion removal.

3) Step 2 – saving camera matrices: using Pickle library
[48], the camera data (the camera matrix as well as the
distortion coefficients) are saved in the pickle file
“camera_calibration.p” for easy retrieval later.

Figure 11. provides an example of applying the camera
calibration procedure on one of the test images.

Figure 11. Camera calibration effect (undistortion of images).

7. IMPLEMENTATION OF THE SUPPORT VECTOR
MACHINES CLASSIFIER

In this section, the steps to build a classifier based on
the SVM algorithm described in Section 4 will be
explained in detail, and it is given the abbreviation
“SVMC”.

A. Training Data Preparation
The data preparation steps to train the SVMC is

summarized as follows:

1) The data supplied by Udacity [49, 50]: the Udacity
supplied data have been used throughout this work.
The data consists of almost balanced “non-
vehicles” and “vehicles” images:
a) The “non-vehicles” collections consist of the

“GTI” collection [51] and the “Extras”. Both
contain 8968 RGB images of size (64, 64, 3)
pixels.

b) The “vehicles” collections consist of the “GTI”
collection and the “KITTI” [52]. Both contain
8792 RGB images of size (64, 64, 3) pixels.

2) These collections with an unzipped size of 149MB.
3) Data Augmentation: The data is augmented by

flipping all the images around the “Y” axis. As a
result, the training data become a total of 35,520
images.

B. Training Data Visualization
The following steps describe the implemented data

visualization steps in order of execution:

1) Display of Vehicles Data: 50 randomly selected
images of the vehicle data have been displayed as
shown in Figure 12. . Each image has its order in the
training data as a title.

2) Display of Non-Vehicles Data: 50 randomly
selected images of the non-vehicle data have been
displayed as shown in Figure 13. . Each image has
its order in the training data as a title.

3) Display of HOG features of Vehicles Data: A
selected image of the vehicle data has been used to
extract its hog features after converting it to
grayscale. Moreover, the hog features of non-
vehicle examples are also extracted, and the result of
both is shown in Figure 14. .

C. Training Data Visualization
The following steps describe the implemented images

feature extraction functions in order of execution:

1) Color Spatial Features: a function is implemented to
extract the contribution of different color channels
in each image. Or in other words, to compute the
binned color features. The channel of each image is
resized to (32, 32) and then raveled.

2) Color Histogram Features: a function is
implemented to compute the histogram of each color
channel in each image with a designated number of
pins, and then concatenate them.

3) HOG Features: a function is implemented to
compute the histogram oriented gradients of each
image channel separately and then can use them
separately or append them together if this option is
selected. The SciKit-Image function “hog” [53] is
used in the implementation of this function.

Figure 12. Visualization of 50 randomly selected vehicle images.

 Int. J. Com. Dig. Sys. 9, No.4, 567-580 (July-2020) 575

http://journals.uob.edu.bh

Figure 13. Visualization of 50 randomly selected non-vehicle images.

4) Combining All: The above feature extraction
functions produce the following feature vectors:

a) Using the color spatial features and ‘spatial size
= (32, 32)’ results in a feature vector of
32×32×3 = 3072 elements.

b) Using the color histogram features and
‘histogram bins = 32’ results in a feature vector
of 32×3 = 96 elements.

c) Using the HOG features and ‘gradient
orientations cells = 9’, ‘pixels per cell = 8×8’,
‘cells per block = 2×2’, and using all hog
channels results in a feature vector of
7×7×2×2×9 = 1764×3 = 5292 elements.

d) If all the above functions are used the resulting
feature vector will be of the following length:
3072+96+5292 = 8460 elements.

D. Training The Classifier
The following steps are used to build up and train the

vehicle/non-vehicle SVMC classifier:

1) Compiling a training data set “X” of 35,520×8,460
size which includes 35,520 vehicle/nonvehicle
feature vectors of length 8,460 each. This training
set represents the input to the classifier.

2) The feature sets must be scaled; before combining
them together; using the SciKit-Learn
“StandardScaler().fit()” function [46]. Figure 15.
shows the visualization of raw and normalized
feature vectors for two-vehicle images.

3) Compiling an output training set “Y” of a 35,520×1
size in which each element is of a Boolean value of
1=>vehicle or 0=>non-vehicle.

4) Shuffle the training sets randomly and split them to
80% for training and 20% for testing using the
SciKit-Learn “train_test_split()” function.

Figure 14. Visualization of HOG features for vehicles and non-vehicle
images.

Figure 15. Visualization of feature vectors for vehicles’ images.

5) Using a Linear Space Vector Machine Classifier
function “LinearSVC()” of the Sci-Kit Learn library
[55], the model got trained with high accuracy
(above 97.7%) in almost all the selected parameters
combinations. Then the trained model is tested on
the prepared test images. The results were not good
in several cases. Extreme experimentations have
been done with many parameter combinations,
however, the results still were not acceptable.

6) After several trials and errors, it is found that the
color spatial features are taking a significant portion
of the feature vector length (>36%) without adding
a real value (sometimes even represents a confusing
element) to the distinction between the vehicles /
non-vehicles. Moreover, the color histogram
features are of a very insignificant contribution (~
1.1%) of the feature vector as well as to the
distinction between vehicles / non-vehicles.

7) Therefore, both the color special and histogram
features have been removed from the feature vector

576 Wael Farag: A Comprehensive Vehicle Detection and Tracking Technique for Autonomous Driving

http://journals.uob.edu.bh

and keeping only the HOG features. By doing that,
this results in a reduction in the length of the feature
vector from 8,460 to 5,292 features only. This is off
course simplifies the training and the real-time
application of the algorithm, and results in a huge
reduction of processing and training time.

8) The new Linear SVC classifier with a training data
set of size = 35,520×5,292 is constructed using
several color spaces with the training results shown
in Table 1.

9) Almost all the color spaces produced comparable
results except the “RGB”. The “LAB” color space
produces the fastest performance in both training
and prediction with second to highest accuracy
behind the “YUV”. However, while testing on test-
images “YUV” produced false positives more than
“LAB”. Therefore, “LAB” color space is selected
for the next steps.

TABLE I. LINEARSVC TRAINING RESULTS.

Colour
Space

Training
Time
(Sec)

Prediction Time
for 10 Labels (Sec) Test

Accuracy

RGB 19.5 0.01563 0.9716
HSV 8.94 0.001 0.9865
HLS 8.83 0.0015 0.9831
LUV 8.79 0.002 0.9876

YCrCb 7.76 0.002 0.9899
YUV 8.34 0.003 0.9918
LAB 5.7 0.001 0.9916

8. VEHICLE DETECTION AND TRACKING PIPELINE
The following steps constitute the pipeline used in the

detection and tracking of other vehicles on the road
(RT_VDT). These steps are presented in order of execution:

1) Finding lane lines: this function is mainly to detect
the road boundaries (in other words, the lane lines in
front of the car) which represent the driving space
(shown in green in Figure 1.). This function is fully
implemented in [2] and used here for convenience.

2) Detecting vehicles by sliding windows technique: a
dedicated function is implemented and called for
each camera frame and used the following
parameters:

a) “orient = 9” defining the number of histogram
bins per cell and it is used for the HOG feature
extraction for images or video frames.

b) “pix_per_cell = 8” defining the number of HOG
pixels/cell. In this case, the cell will be 8×8
pixels.

c) “cell_per_block = 2” defining the number of
HOG cells/block. In this case, the cell will be
2×2 cells.

d) xstart, xstop, ystart, ystop: these 4 parameters define a
rectangular area on the image or frame that
represents the region of interest (ROI) in which
the function searches for a vehicle by the sliding
windows technique.

e) “step_size = 2” defining how many cells to step
(or to slide) to construct a new search window
that will overlap with the previous search
window.

f) “Scale_Step = 0.25” defining the step at which
the search window sizes increments from one
search scan to the next.

g) Scale_Multiplier_Start, Scale_Multiplier_End:
two parameters defining the starting and
stopping of the windows sizes increment while
scanning the ROI area.

The function uses the trained SVMC classifier
model and applies it to each constructed search
window. Sliding windows with different sizes are
being constructed to cover the defined ROI as shown
in Figure 16. . This function as well may be applied
several times with a different set of “a→g”
parameters based on if it found necessary.

3) Building active heat-maps: The goal is to construct
a heat-map for each found car box during the search
of a sliding-windows scan. This heat-maps is used
to filter out (try to minimize) the false-positive
boxes. A dedicated parameter
“HEAT_THRESHOLD” is used to only pass (based
on its value) the car boxes with multiple hits (true-
positive boxes) as shown in Figure 17.

4) Labeling car boxes: the overlapped true-positive
vehicle boxes are then grouped in bigger boxes and
labeled using the “label()” function from the Sci-Kit
Learn library.

5) Drawing the labeled car boxes: as a final step, the
labeled boxes are drawn on the original test image
or video frame as shown by the red boxes in Figure
1. and Figure 2. .

Figure 18. & Figure 19. show examples of the results
after the execution of the above pipeline on the test images
that include shadow patterns that usually confuse vision-
based algorithms.

Figure 16. Sliding windows with different sizes scanning the ROI.

 Int. J. Com. Dig. Sys. 9, No.4, 567-580 (July-2020) 577

http://journals.uob.edu.bh

Figure 17. Detected vehicle boxes and the resulted heat-maps.

9. TESTING AND VALIDATION
The developed RT_VDT algorithm is further tested on

various images representing different scenarios. The results
show that the algorithm performs very well under different
conditions (at full sunrise, at sunset, with shadows, without
shadows, with cars on the other lanes and without).
Furthermore, for robustness testing and validation of the
developed pipeline, the algorithm is applied to several real-
time video samples representing different driving
conditions. The RT_VDT proved to be very robust in all the
pre-mentioned conditions as shown in Figure 1. and Figure
2. However, the scattered areas of shadows have an effect
on the precision of producing the vehicles’ boundary boxes
as shown in Figure 18. and Figure 19. . However, the
results are still acceptable and produce functional results.

Figure 18. The execution of vehicle detection and tracking pipeline.

Figure 19. The execution of vehicle detection and tracking pipeline.

As shown in Figure 1 , Figure 2 , Figure 18 and Figure
19 the images include as well lane detection results from
the work in [6].

The pipeline proved to be acceptably fast in execution
in real-time. Using an Intel Core i5 with 1.6 GHz and 8 GB
RAM which very moderate computational platform, the
following measurements are collected for two testing video
streams:

TABLE II. COMPUTATION SPEED FOR THE RT_VDT ALGORITHM.

Sample Name No. of
Frames

Total Time
Min:Sec

Frame per
Sec

Challenge Video 485 00:39 12.52
Challenge Video +

Lane Detection 485 01:24 5.77

Project Video 1261 02:06 10.01
Project Video +
Lane Detection 1261 03:26 6.11

The lowest measured processing speed is 10.01 frames
per second, which is considered just adequate as per the
recommended performance for this application [56].
Therefore, the more powerful computational hardware if
employed should significantly enhance the real-time
performance of the proposed pipeline [57].

10. DISCUSSION OF THE IMPLEMENTED
APPROACHES

The following points shed some light on some technical
tricks and aspects that have been tried or implemented in
the described pipelines:

1) Color spaces: around 7 different color spaces have been
tried on both testing images and videos. Throughout the
experimentation, both HSV and LAB produced the best
results in both vehicle finding and lower false positives.
The other color spaces like YUV, LUV, YCrCb, HLS
produces comparable results. However, RGB produced
the worst results among them by far. Therefore, HSV
and LAB are adopted during the development and
testing phases.

2) Decision function: After applying the trained SVMC
model on every constructed sliding widow to search for
vehicles, the decision function [54] (from the SciKit-
Learn library) [52] is used instead of simple prediction
function. The decision function returns the probability
of the object being a vehicle or not [58]. So, positive
probabilities mean that the object is at least 50% a
vehicle, and accordingly, negative probabilities mean it
is more than 50% non-vehicle object. By defining a new
parameter “Confidence_score” which identifies the
confidence for an object of being a vehicle. The higher
the positive value the higher the confidence for the
object of being a car. Using decision function helped
reducing false positives significantly.

3) Heat-maps filtering: the calculated heat-maps on each
frame are not used directly, however, they will be been
filtered using an FIR filter. This FIR is designed to use
the current and the previous values of the previous four
frames, before applying a threshold. This technique
helped to smooth out the constructed vehicle windows
and helped in reducing false positives as well.

578 Wael Farag: A Comprehensive Vehicle Detection and Tracking Technique for Autonomous Driving

http://journals.uob.edu.bh

4) Vehicle box vertices filtering: Similar to the heat-maps
filtering, the constructed vehicle boxes are also filtered
out using FIRs. The calculated vertices are not used
directly but got filtered first using the calculated values
of the previous three frames. This technique helped to
reduce the jitter of the position and the size of the
identified final car boxes for each frame.

5) Identification of the regions of interest: the RT_VDT
pipeline has been constructed to include the designation
of several ROI search areas by both x and y-axis. This
approach helped to more accurately identify search
areas, reduces the search time, improve search
performance and eliminates undesired false positives.

6) Frame sampling: throughout the experimentation, it is
found that it is not necessary to search for vehicles
every frame at the current sampling rate of the camera
(25 fps), as the movement of vehicles from frame to
frame is not that fast. Therefore, the active search for
vehicles is restricted to every other frame, which
reduces the video processing time by half and almost
didn’t affect the result at all.

7) Sanity checks: some sanity checks are used to improve
the identified vehicle boxes like:

a) Vehicle box size: the identified vehicle box size is
being measured and checked out before it is being
drawn to the image or video frame. This is done by
measuring the diagonal of the identified box and
compare it with certain specified constraints.

b) Vehicle box position: some checks are added to
validate the position of the identified car boxes. For
example, in the test images, vehicle boxes can’t be
found at a position lower than “y = 400”.

11. CONCLUSION
In this paper, reliable and sophisticated vehicle

detection and tracking technique based on computer-
vision algorithms are developed, presented thoroughly and
given the name RT_VDT. RT_VDT uses a pipeline of well-
known color spaces such as LAB, YUV, LUV, etc.
Additionally, it uses computer-vision algorithms like
HOG features, and machine learning algorithms like
Support Vector Machines. Moreover, the pipeline uses a
comprehensive image distortion suppression and camera
calibration techniques to produce undistorted road images
suitable for more accurate vehicle detection. In addition to
that, several sanity-check tricks are exercised to improve
the robustness of the techniques used. The proposed
RT_VDT technique needs only raw RGB images from a
single CCD camera mounted behind the front windshield
of the vehicle. The performance of the RT_VDT algorithm
is tested and evaluated using many stationary images and
several real-time videos. The validation results show a
fairly accurate and robust detection with slight

insignificant deviation in one scenario where complex
shadow patterns exist. The measured throughput
(execution time) using an affordable CPU proved that the
RT_VDT is very suitable for real-time vehicle detection if
more processing power, like GPUs, is added. Therefore,
the proposed technique is well suited to be used in
Advanced Driving Assistance Systems (ADAS) or self-
driving cars.

ACKNOWLEDGMENT
This work used the High-Performance Computing

(HPC) facilities of the American University of the Middle
East, Kuwait.

REFERENCES
[1] Wael Farag, “Traffic signs classification by deep learning for

advanced driving assistance systems”, Intelligent Decision
Technologies, IOS Press, vol. 13, no. 3, pp. 215-231, (2019).

[2] Wael Farag, Zakaria Saleh, "Road Lane-Lines Detection in Real-
Time for Advanced Driving Assistance Systems", Intern. Conf. on
Innovation and Intelligence for Informatics, Computing, and
Technologies (3ICT'18), Bahrain, 18-20 Nov., (2018).

[3] Karim Mansour, Wael Farag, “AiroDiag: A Sophisticated Tool that
Diagnoses and Updates Vehicles Software Over Air”, 2012 IEEE
Intern. Electric Vehicle Conference (IEVC), TD Convention Center
Greenville, SC, USA, March 4, 2012, ISBN: 978-1-4673-1562-3.

[4] Wael Farag, “CANTrack: Enhancing automotive CAN bus security
using intuitive encryption algorithms”, 7th Inter. Conf. on Modeling,
Simulation, and Applied Optimization (ICMSAO), UAE, March
2017.

[5] Wael Farag, “A Comprehensive Real-Time Road-Lanes Tracking
Technique for Autonomous Driving”, International Journal of
Computing and Digital Systems (IJCDS), vol. 9 (3), pp. 349-362,
(2020).

[6] Wael Farag, Z. Saleh, "An Advanced Road-Lanes Finding Scheme
for Self-Driving Cars", Smart Cities Symposium (SCS'19), IET
Digital Library, Bahrain, 24-26 March, (2019).

[7] Wael Farag, Zakaria Saleh, "Behavior Cloning for Autonomous
Driving using Convolutional Neural Networks”, Intern. Conf. on
Innovation and Intelligence for Informatics, Computing, and
Technologies (3ICT'18), Bahrain, 18-20 Nov., (2018).

[8] Wael Farag, “Recognition of traffic signs by convolutional neural
nets for self-driving vehicles”, International Journal of
Knowledge-based and Intelligent Engineering Systems, IOS Press,
vol. 22, no: 3, pp. 205 – 214, (2018).

[9] Wael Farag, Zakaria Saleh, "Tuning of PID Track Followers for
Autonomous Driving", Intern. Conf. on Innovation and Intelligence
for Informatics, Computing, and Technologies (3ICT'18), Bahrain,
18-20 Nov., (2018).

[10] Wael Farag, “Safe-driving cloning by deep learning for
autonomous cars”, International Journal of Advanced Mechatronic
Systems, Inderscience Publishers, vol. 7, no. 6, pp. 390-397,
(2019).

[11] Wael Farag, "Cloning Safe Driving Behavior for Self-Driving Cars
using Convolutional Neural Networks", Recent Patents on
Computer Science, Bentham Science Publishers, The Netherlands,
Vol. 12, No. 2, pp. 120-127(8), (2019).

[12] Wael Farag and Zakaria Saleh, “An Advanced Vehicle Detection
and Tracking Scheme for Self-Driving Cars”, 2nd Smart Cities
Symposium (SCS’19), IET Digital Library, Bahrain, 24-26 March,
(2019).

[13] C. Premebida, G. Monteiro, U. Nunes, and P. Peixoto, “A Lidar and
Vision-based Approach for Pedestrian and Vehicle Detection and

https://ieeexplore.ieee.org/abstract/document/7934878/
https://ieeexplore.ieee.org/abstract/document/7934878/
https://www.inderscienceonline.com/doi/abs/10.1504/IJAMECHS.2017.099318
https://www.inderscienceonline.com/doi/abs/10.1504/IJAMECHS.2017.099318

 Int. J. Com. Dig. Sys. 9, No.4, 567-580 (July-2020) 579

http://journals.uob.edu.bh

Tracking”, 2007 IEEE Intelligent Transportation Systems
Conference, 30 Sept.-3 Oct. 2007, Seattle, WA, USA.

[14] Anna Petrovskaya and Sebastian Thrun, “Model Based Vehicle
Tracking for Autonomous Driving in Urban Environments”,
Robotics: Science and Systems 2008, Zurich, CH, June 25-28, 2008.

[15] Anna Petrovskaya and Sebastian Thrun, “Model Based Vehicle
Detection and Tracking for Autonomous Urban Driving”,
Autonomous Robots (2009) 26: 123-139.

[16] DARPA Grand Challenge (2007),
https://en.wikipedia.org/wiki/DARPA_Grand_Challenge_(2007),
retrieved on 17th Oct. 2018.

[17] Anna Petrovskaya and Sebastian Thrun, “Efficient Techniques for
Dynamic Vehicle Detection”, In: Khatib O., Kumar V., Pappas G.J.
(eds) Experimental Robotics, 2009. Springer Tracts in Advanced
Robotics, vol 54, Springer, Berlin, Heidelberg.

[18] A. Jazayeri, H. Cai, J.Y. Zheng, “Motion-Based Vehicle
Identification in Car Video”, 2010 IEEE Intelligent Vehicles
Symposium, San Diego, CA, USA, 21-24 June 2010.

[19] A. Jazayeri, H. Cai, J.Y. Zheng, and M. Tuceryan, “Vehicle
Detection and Tracking in Car Video Based on Motion Model”,
IEEE Trans. on Intelligent Transportation Systems, Vol. 12(2),
June 2011.

[20] X. Huang, A. Acero, and H.-W. Hon, “Spoken Language
Processing”, Prentice-Hall, 2001, ISBN -013-022616-5.

[21] G. D. Forney, “The Viterbi algorithm”, Proceedings of the IEEE,
61 (3): 268-278, March 1973.

[22] E. Romera, L.M. Bergasa and R. Arroyo, “A Real-Time Multi-scale
Vehicle Detection and Tracking Approach for Smartphones”, 2015
IEEE 18th Inter Conf. on Intelligent Transportation Sys., 15-18
Sept. 2015, Las Palmas, Spain.

[23] L. M. Bergasa, D. Almer´ıa, J. Almaz´an, J. J. Yebes, and R.
Arroyo, “Drivesafe: an app for alerting inattentive drivers and
scoring driving behaviors”, IEEE Intelligent Vehicles Symp. (IV),
2014, pp. 240–245.

[24] I. del Pino et al., “Low Resolution Lidar-Based Multi-Object
Tracking for Driving Applications”, 3rd Iberian Robotics
Conference, ROBOT 2017, pp 287-298, Springer.

[25] Velodyne VLP-16 (PUCK), https://velodynelidar.com/vlp-
16.html, retrieved on 17th Oct. 2018.

[26] Velodyne HDL-64, https://velodynelidar.com/hdl-64e.html,
retrieved on 17th Oct. 2018.

[27] Raspberry Pi v3, https://www.raspberrypi.org/products/raspberry-
pi-3-model-b/, retrieved on 17th Oct. 2018.

[28] M. Anandhalli, V. Baligar, “A novel approach in real-time vehicle
detection and tracking using Raspberry Pi”, Alexandria
Engineering Journal, Elsevier, July 2017.

[29] B. Tian, Y. Li, B. Li, and D. Wen, “Rear-view vehicle detection
and tracking by combining multiple parts for complex urban
surveillance”, IEEE Trans. on Intelligent Transportation Systems,
vol.15, no.2, pp. 597–606 (April 2014).

[30] Z. Zheng, G. Zhou, Y. Wang, Y. Liu, X. Li, X. Wang and L. Jiang,
“A novel vehicle detection method with high-resolution highway
aerial image”, IEEE J. of Selected Topics in Applied Earth
Observations and Remote Sensing, 6(6), pp. 2338–43 (Dec. 2013).

[31] A.S. Abdul Rachman, “3D-LIDAR Multi Objet Tracking for
Autonomous Driving”, M.Sc. Thesis, Delft University of
Technology, Nov. 2017.

[32] R. Vivacqua , R. Vassallo and F. Martins, “A Low-Cost Sensors
Approach for Accurate Vehicle Localization and Autonomous
Driving Application”, Sensors, 17(2359), October 2017.

[33] Wael A Farag, VH Quintana, G Lambert-Torres, “Genetic
algorithms and back-propagation: a comparative study”, IEEE
Canadian Conf. on Elec. and Comp. Eng., vol. 1, pp. 93-96,
Waterloo, Ontario, Canada, (1998).

[34] M. Siam, S. Elkerdawy, M. Jagersand, and S. Yogamani, “Deep

Semantic Segmentation for Automated Driving: Taxonomy,
Roadmap and Challenges”, arXiv:1707.02432v2, IEEE 20th Intern.
Conf. on Intelligent Transportation Sys. (ITSC), Oct. 2017.

[35] D. Feng, L. Rosenbaum, K. Dietmayer, “Towards Safe
Autonomous Driving: Capture Uncertainty in the Deep Neural
Network For Lidar 3D Vehicle Detection”, 21st IEEE Intern. Conf.
on Intelligent Transportation Sys. (ITSC), Hawaii, USA, Nov.
2018.

[36] “Color Space”, https://en.wikipedia.org/wiki/Color_space,
retrieved on 28th Oct., (2018).

[37] “List of color spaces and their uses”,
https://en.wikipedia.org/wiki/List_of_color_spaces_and_their_use
s, retrieved on 28th Oct. 2018.

[38] N. Dalal and B. Triggs, “Histograms of oriented gradients for
human detection”, IEEE Computer Society Conf. on Computer
Vision and Pattern Recog. (CVPR'05), 20-25 June 2005, San
Diego, CA, USA.

[39] MS Kankanhallia, BM Mehtreb, and HY Huang, “Color and spatial
feature for content-based image retrieval”, Pattern Recognition
Letters, Elsevier, Vol. 20, Issue 1, Jan. 1999, Pages 109-118.

[40] Szabolcs Sergyan, “Color histogram features based image
classification in content-based image retrieval systems”, 6th
International Symposium on Applied Machine Intelligence and
Informatics, 21-22 Jan. 2008, Herlany, Slovakia.

[41] C. Cortes, VN Vapnik, "Support-vector networks", Machine
Learning, 20 (3): 273–297, 1995, doi:10.1007/BF00994018.

[42] A. Ben-Hur, D. Horn, H. Siegelmann, and VN Vapnik, "Support
vector clustering", Journal of Machine Learning Research, 2: 125–
137, 2001.

[43] Wael Farag, Ahmed Tawfik, “On fuzzy model identification and
the gas furnace data”, Proceedings of the IASTED International
Conference Intelligent Systems and Control, Honolulu, Hawaii,
USA, August 14-16, (2000).

[44] Support vector machine,
https://en.wikipedia.org/wiki/Support_vector_machine, retrieved
on Nov. 1st, 2018.

[45] Jorge Nocedal, J. Stephen Wright, “Numerical Optimization”, (2nd
ed.), Berlin, New York: Springer-Verlag, p. 449, ISBN 978-0-387-
30303-1, 2006.

[46] “Developer Reference for Intel - Integrated Performance Primitives
2019”, https://software.intel.com/en-us/ipp-dev-reference-color-
models, retrieved on (22 Sept. 2018).

[47] OpenCV Python Library, https://opencv.org/, retrieved on (22 Sept.
2018).

[48] “Python Pickle Module”,
https://docs.python.org/3.1/library/pickle.html, retrieved on (24
Sept. 2018).

[49] Udacity vehicles data, https://s3.amazonaws.com/udacity-
sdc/Vehicle_Tracking/vehicles.zip, retrieved on (24 Sept. 2018).

[50] Udacity non-vehicles data, https://s3.amazonaws.com/udacity-
sdc/Vehicle_Tracking/non-vehicles.zip, retrieved on (24 Sept.
2018).

[51] GTI vehicle image database,
http://www.gti.ssr.upm.es/data/Vehicle_database.html, retrieved
on (24 Sept. 2018).

[52] KITTI vision benchmark suite,
http://www.cvlibs.net/datasets/kitti/, retrieved on (24 Sept. 2018).

[53] The HOG feature descriptor, http://scikit-
image.org/docs/dev/auto_examples/features_detection/plot_hog.ht
ml, retrieved on (24 Sept. 2018).

[54] SciKit-Learn StandardScaler Function, http://scikit-
learn.org/stable/modules/generated/sklearn.preprocessing.Standar
dScaler.html, retrieved on (24 Sept. 2018).

https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4357618
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4357618
https://en.wikipedia.org/wiki/DARPA_Grand_Challenge_(2007)
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5535007
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5535007
https://velodynelidar.com/vlp-16.html
https://velodynelidar.com/vlp-16.html
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://arxiv.org/search/cs?searchtype=author&query=Feng%2C+D
https://arxiv.org/search/cs?searchtype=author&query=Rosenbaum%2C+L
https://arxiv.org/search/cs?searchtype=author&query=Dietmayer%2C+K
https://en.wikipedia.org/wiki/Color_space
https://en.wikipedia.org/wiki/List_of_color_spaces_and_their_uses
https://en.wikipedia.org/wiki/List_of_color_spaces_and_their_uses
https://www.sciencedirect.com/science/journal/01678655/20/1
https://en.wikipedia.org/wiki/Machine_Learning_(journal)
https://en.wikipedia.org/wiki/Machine_Learning_(journal)
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1007%2FBF00994018
https://en.wikipedia.org/wiki/Support_vector_machine
https://software.intel.com/en-us/ipp-dev-reference-color-models
https://software.intel.com/en-us/ipp-dev-reference-color-models
https://opencv.org/
https://docs.python.org/3.1/library/pickle.html
https://s3.amazonaws.com/udacity-sdc/Vehicle_Tracking/vehicles.zip
https://s3.amazonaws.com/udacity-sdc/Vehicle_Tracking/vehicles.zip
https://s3.amazonaws.com/udacity-sdc/Vehicle_Tracking/non-vehicles.zip
https://s3.amazonaws.com/udacity-sdc/Vehicle_Tracking/non-vehicles.zip
http://www.gti.ssr.upm.es/data/Vehicle_database.html
http://www.cvlibs.net/datasets/kitti/
http://scikit-image.org/docs/dev/auto_examples/features_detection/plot_hog.html
http://scikit-image.org/docs/dev/auto_examples/features_detection/plot_hog.html
http://scikit-image.org/docs/dev/auto_examples/features_detection/plot_hog.html
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html

580 Wael Farag: A Comprehensive Vehicle Detection and Tracking Technique for Autonomous Driving

http://journals.uob.edu.bh

[55] Linear SVM Classifier Function, http://scikit-
learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html,
retrieved on (24 Sept. 2018).

[56] Jan Botsch, “Real-time lane detection and tracking on high-
performance computing devices”, Bachelor's Thesis in Informatics,
Technische Universitat, Munchen, Germany, March 2015.

[57] M. Nagiub and W. Farag, “Automatic selection of compiler options
using genetic techniques for embedded software design”, IEEE 14th
Inter. Symposium on Comp. Intelligence and Informatics (CINTI),
Budapest, Hungary, Nov. 19, (2013).

[58] Wael Farag, “Synthesis of intelligent hybrid systems for modeling
and control”, Ph.D. Thesis, University of Waterloo, Canada, (1998).

Wael Farag earned his Ph.D.
from the University of Waterloo,
Canada in 1998; M.Sc. from the
University of Saskatchewan,
Canada in 1994; and B.Sc. from
Cairo University, Egypt in 1990.
His research, teaching and
industrial experience focus on
embedded systems, mechatronics,
autonomous vehicles, renewable

energy, and control systems. He has combined 17 years of
industrial and senior management experience in Automotive
(Valeo), Oil & Gas (Schneider) and Construction Machines
(CNH) positioned in several countries including Canada, USA &
Egypt. Moreover, he has 10 Years of academic experience at
Wilfrid Laurier University, Cairo University, and the American
University of the Middle East. Spanning several topics of
electrical and computer engineering. He is the holder of 2 US
patents; ISO9000 Lead Auditor Certified and Scrum Master
Certified.

http://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
http://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html

	1. Introduction
	2. Overview of the RT_VDT Algorithm
	3. Histogram of Oriented Gradients
	4. Support Vector Machine Classifier
	5. Color Spaces
	6. Camera Calibration
	7. Implementation of the Support Vector Machines Classifier
	A. Training Data Preparation
	B. Training Data Visualization
	C. Training Data Visualization
	D. Training The Classifier

	8. Vehicle Detection and Tracking Pipeline
	9. Testing and Validation
	10. Discussion of The Implemented Approaches
	11. Conclusion
	Acknowledgment
	References

