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Abstract: Electrocardiogram (ECG) is a graphical representation and bio-signal recording of cardiac electrical activity. It conveys a 

great amount of information regarding structural and functional performance of the heart. Hence, ECG plays an essential role in the 

cardiac assessment, abnormality detection and clinical diagnosis. A clean ECG signal plays an imperative and vital role in the 

primary clinical analysis and diagnosis of cardiac diseases. Unfortunately, the greatest obstacle in analyzing and interpreting an ECG 

signal is the presence of unwanted artifacts and noises as they contaminate and degrade the quality of the ECG signals. As a result, 

removal of unwanted artifacts and noises from an ECG signal becomes an indispensable task to ensure an accurate and reliable ECG 

analysis could be performed. In this study, many ECG noise reduction and enhancement methods based on various digital filter 

designs, as well as discrete wavelet transform with various mother wavelets, are modelled to investigate and benchmark their 

performance in term of Signal-to-Noise Ratio (SNR) and Root Mean Square Error (RMSE). This testing are based on ten randomly 

selected ECG datasets acquired from ECG-ID Database (ecgiddb) which available in PhysioNet. Based on structured qualitative and 

quantitative performance analysis, results conclude that the discrete wavelet transform with db8 as mother wavelet outperforms the 

Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) digital filter designs in de-noising and enhancing a raw ECG 

signal with highest SNR value of 4.4148, at the same time achieve significant lowest RMSE value of 4.0767. This is due to the 

reason that discrete wavelet transform method has advantages in analyzing the ECG signal in both time and frequency domain, thus 

causing less distortion to ECG signal. 

 

Keywords: Cardiovascular diseases, Digital filter designs, Discrete wavelet transform, Electrocardiogram (ECG), Noise reduction 

and enhancement, Mother wavelets function. 

1. INTRODUCTION 

According to the World Health Organization (WHO) 
in 2016, an estimated 17.9 million people died due to the 
cardiovascular diseases (CVDs), which occupied about 
31% of all causes of deaths [1-3]. CVDs refer to a class of 
malfunction or diseases that related to the heart and blood 
vessels, such as coronary heart disease, cerebrovascular 
disease, peripheral arterial disease, rheumatic heart 
disease and congenital heart disease. These can cause 
acute and deadly cardiac events, for example heart attacks, 
strokes, arrhythmias and sudden cardiac death. Among 
these deaths, approximately 60% occurred outside of the 
hospital [4]. In addition, over three quarters of CVDs 
deaths occurred in low- and middle-income countries [5].  

Hence, it is vital to highlight the severity of this 
worldwide health issue and more attention should be paid 
to investigation of computerized CVDs detection, 
prediction and diagnostic approach that able to assist the 
cardiologists in saving the patient’s life. 

Electrocardiography is an established non-invasive 
diagnostic tool which is widely used for screening, 
observing and recording the electrical activity of the heart. 
The electrical activity of the heart is represented by a 
biosignal, so-called Electrocardiogram (ECG), by 
measuring the potential difference between the leads or 
electrodes attached on the surface of the body. In other 
words, ECG signal is a graphical representation of the 
electrical changes that arise from the contraction of 

http://dx.doi.org/10.12785/ijcds/090404 
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myocardial muscles in initiating the cardiac depolarization 
and repolarization process. Thus, ECG conveys a great 
amount of information about the structural and functional 
performance of the heart as well as to identify cardiac 
abnormalities and diseases [6, 7]. It plays an essential role 
in the cardiac assessment, abnormality detection and 
clinical diagnoses. 

However, an ECG signal is inexorably corrupted and 
degraded by several noise sources during ECG acquisition 
and transmission process. This cause a huge complication 
in analyzing and identifying the ECG abnormalities [8]. 
ECG noises that commonly encountered includes 
powerline interference [9-13], baseline wander [14-17], 
electromyography noise [18, 19], and electrode motion 
noise [20-26]. The ECG analysis can be challenging with 
the existence of these artifacts as the chance of 
misinterpretation increase, subsequently lead to the 
inaccurate clinical analysis and diagnosis result. Hence, it 
is crucial to reduce, suppress and eliminate the unwanted 
artifacts in a raw ECG signal while preserving the 
important ECG characteristics. As a result, ECG noise 
reduction and signal enhancement become an important 
and indispensable prerequisite task to ensure the reliability 
and accuracy of the following clinical analysis and 
diagnosis process is guaranteed. This task is never 
considered as a trivial procedure due to the nature non-
stationary characteristics of an ECG signal, and the noises 
might lie within the similar frequency spectrum range 
with the significant ECG characteristics feature. Thus, an 
effective ECG noise reduction and signal enhancement 
approach is essential to achieve satisfactory noise 
reduction performance while maintaining minimal loss of 
noteworthy ECG features. 

Through the topic of ECG noise reduction and signal 

enhancement has been widely studied and well-

established, to the authors’ best knowledge, there is no 

literature reported comparison between different digital 

filter designs and discrete wavelet transform with different 

mother wavelet functions using structured approach for 

systematic benchmarking in this topic yet. This article is 

an extension of work reported in [27] which aims to 

explore various aforementioned ECG noise reduction and 

signal enhancement techniques using systematic 

quantitative and qualitative approach based on standard 

dataset for fair comparison and benchmarking. This article 

also briefly discusses the ECG morphology and the 

characteristics of the ECG noises that frequently 

encountered with. 

This article consists of seven sections which begin 

with an introduction of ECG and its challenges in ECG 

analysis. Section 2 briefly describes the future trends in 

ECG de-noising and enhancement based on 

comprehensive literature review. The basic morphological 

characteristics of the ECG are briefly described in Section 

3. Section 4 presents the theoretical knowledge of various 

digital filter designs which includes FIR and IIR filters. 

Section 5 presents the discrete wavelet transform and 

wavelet decomposition method with various mother 

wavelets. The methodology of comparing and 

benchmarking of ECG noise reduction and enhancement 

methods based on several types of digital filter designs 

and mother wavelets are presented in section 6. Section 7 

presents and discusses the experimental result and 

performance benchmarking of various noise reduction 

methods based on common dataset. Lastly, section 8 

concludes the whole finding.  

2. FUTURE TRENDS IN ECG DE-NOISING 

Over the last decades, there have been a rapid 

advancement in big data analysis, artificial intelligence, 

deep learning and machine learning, in various fields 

including biomedical signal processing research. This 

phenomenon has also been extended to the fields of ECG 

signal pre-processing and de-noising which enables an 

accurate, precise and significant information to be 

provided to clinicians with greater insights for decision 

making within short periods of time. Besides that, an 

effective and efficient ECG de-noising and filtering 

method are extremely crucial especially for those 

portable and wearable ECG devices for remote or 

continuous heart monitoring. A raw ECG signal that 

acquired by these devices was normally contaminated by 

a lot of unwanted noises, especially electromyogram 

(EMG) and electrode motion noise. Electromyogram and 

electrode motion noise are the ECG noises difficult to be 

filtered or removed by conventional de-noising 

approaches. Hence, the emerging machine learning and 

deep learning based on neural network would be future 

trends in ECG de-noising and filtering. There are few 

ECG filtering and de-noising algorithm based on 

different structure of neural network have been proposed 

in the most recent literature which would be briefly 

discussed in this section. 

In 2016, Xiong et al. [28] proposed a novel deep 

neural network (DNN) method to de-noise and eliminate 

the noises that manifest with ECG morphology waveform 

in the frequency domain. The DNN-based de-noising 

technique is created based on an improved de-noising 

auto-encoder (DAE) which reformed with the wavelet 

transform method. The wavelet based adaptive 

thresholding method will first eliminates most of the 

ECG noises and artifacts, followed by the improved 

DNN-based DAE to remove and eliminate the remaining 

complex ECG noises and artifacts with unknown 

frequency distribution. The proposed method was 

evaluated by the ECG recording acquired from the MIT-

BIH Arrhythmias Database, whereas the noise and 

artifact signal were obtained from the MIT-BIH Noise 

Stress Test Database.  The proposed novel DNN method 
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obtained significant improvement and outperformed 

individual wavelet processing or de-noising auto-encoder 

method in terms of SNR and RMSE value. Hence, it 

proves a promising approach by applying a DNN model 

in ECG signal de-noising and signal enhancement.  

However, this approach demands a very comprehensive 

and carefully selected features as the learning DNN 

model is based on well-defined training samples [28]. 

Antczak [29] proposed a novel ECG de-noising 

approach based on a deep recurrent neural network 

(DRNN) by utilizing a transfer learning technique which 

pre-trained with the synthetic data. The synthetic data are 

generated by a dynamic ECG model and fine-tuned with 

the real ECG data. The proposed DRNN method contains 

two distinct features which consist of multiple layers 

stacked together and able to preserve its internal state 

over time. The proposed ECG de-noising method based 

on four-layer deep recurrent neural network outperforms 

the reference methods that based on the bandpass filter 

and undecimated wavelet transform (UWT) methods. It 

was tested and evaluated on the real ECG dataset with 

various amounts of noise.  The experiment results show 

that DRNN based de-noising method obtains effective 

7.71 dB SNR from the input signal over -8.82 dB SNR 

produced by the reference methods [29].  

Arsene et al. [30] have also proposed two deep 

learning models, which are convolutional neural network 

(CNN) and long short-term memory (LSTM), to de-noise 

and filter a raw ECG signal. There are three different 

datasets, which consists of two synthetic datasets and one 

real dataset were used to evaluate the performance of the 

proposed deep learning based ECG de-noising approach. 

The experiment results show that the CNN model is 

superior compared to LSTN model in terms of processing 

time and root mean square value and its capability in 

rejecting high level of ECG noises [30].  

It could be foreseen that more artificial intelligence 

based ECG filtering and de-noising approaches are 

developed and proposed in the near future to allow the 

computational intelligent way to enhance and optimize 

the current ECG filtering and de-noising methods. 

3. ELECTROCARDIOGRAM AND ITS MORPHOLOGY 

In this section, the basic morphology of ECG is briefly 
presented. ECG is a graphical representation of cardiac 
electrical activity which provides significant information 
of the cardiac electrophysiological characteristics. Its 
frequency bandwidth is ranging from 0.05Hz to 100Hz, 
yet the significant features are mainly located between 
0.5Hz to 45Hz with greatest possible peak amplitude of 
1mV [31-33].  

A typical ECG signal consists of several basic 
morphological features, so-called P-wave, QRS complex, 
T-wave and U-wave as shown in Figure 1 [34]. P-wave 
represents the atrial depolarization which occurs when the 
sinoatrial node firing electrical impulse and spread 
through the walls of atria and causing them to contract. 
The electrical impulse is then transmitted throughout the 
atria to the atrioventricular node, a cluster of cells in the 
center of the heart between atria and ventricles. The 
atrioventricular node delays the impulse by approximately 
0.12 seconds to ensure the ventricles have enough time to 
be fully filled with blood [35]. This delay is denoted by 
the isoelectric line, PR segment just after the P-wave. The 
impulse is continuing to transmit from the AV node to the 
ventricles via His bundle, bundle branches and Purkinje 
fibers. These impulses cause the ventricles to contact and 
allows the blood to be pumped out from the ventricles and 
circulates into lungs and other parts of the body. This 
process, known as ventricular depolarization, is denoted 
by the greatest deflection, so-called QRS complex. 

 

 

 

 

 

 

 

 

 

 

Figure 1.  ECG waveform of healthy adult [34]. 

The QRS complex is then followed by an isoelectric 
line, known as ST segment. It is located between J point 
and T-wave, which results from the long plateau period of 
myocardial cells. It represents the interval between 
ventricular depolarization and ventricular repolarization 
process. Ventricular repolarization is the recovery or 
relaxation process of ventricular muscle which denoted by 
T-wave. Additionally, U-wave may appear or visibly after 
the T-wave, but not always. The cardiac cycle end with 
the sinoatrial node firing another new electrical impulse.  

These ECG morphological features are highly 
significant as the right understanding and accurate 
interpretation allows the identification of various cardiac 
malfunctions and abnormalities. As a result, it is essential 
to reduce, suppress and eliminate noises from an ECG 
signal to allow accurate clinical interpretation and avoid 
misdiagnosis of the cardiovascular diseases. 
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4. DIGITAL FILTER DESIGNS 

Digital filter is a system which computes 
mathematical operation on a discrete and sampled time 
signal with the purpose of enhancing and improving 
certain aspects of the signal. It is different with the 
conventional analogue filters as it uses finite precision to 
represent signals and coefficients, as well as finite 
precision arithmetic to compute the filter response. The 
basic method of implementing a digital filter is by 
performing convolution to the input signal with the 
impulse response of the filter, or multiply the signal with 
the frequency domain impulse response of the filter. 
Digital filters can be categorized into Finite Impulse 
Response (FIR) filter and Infinite Impulse Response (IIR) 
filter. Both FIR and IIR filters will be briefly described in 
the following subsection. 

A. Finite Impulse Response (FIR) 

The FIR filter is one of the basic elements in a digital 
signal processing system. It guarantees a strict linear 
phase frequency characteristic with any kind of amplitude 
frequency characteristic. As its impulse response is finite, 
it is a stable digital system [36]. FIR filter is a filter 
having a transfer function of a polynomial in z-plane and 
is an all-zero filter with no poles in the sense that the 
zeroes in the z-plane determine the frequency response 
magnitude characteristic. The system transfer function of 
the FIR filter is given as:  

                                             (1) 

where L is the length of the filter and h(n) is the impulse 
response with finite duration N.  

Windowing is one of the ways to design an FIR filter. 
The impulse response, h(n), can be obtained by the 
product of {hd[n]} and a window function {w[n]} as 
described in the following mathematical equation:  

                                (2) 

 

                                            (3) 

Some common windowing functions are described as 
follows: 

1) Rectangular Window 

 

                                                (4) 

2) Bartlett Window 

 

                                  (5) 

3) Hanning Window 
 

                                        (6) 

4) Hamming Window 
 

                         (7) 

5) Blackman Window 
 

               (8) 

6) Blackman-Harris Window 
 

                        (9) 

 

where  and wR(n) is the length of zero-phase 
rectangular window. 

7) Kaiser Window 

 

                   (10) 

 

where I0(x) is modified zero-order Bessel function, 

 

There are several attractive characteristics of the FIR 
filters, such as simple to implement, inherently stable, 
easy to attain linear phase, simple extension to adaptive 
filter and relatively flexible to obtain the designs that 
match to custom magnitude responses [37]. However, FIR 
filter does have its limitations which include 
computationally expensive, long transient response and 
require large filter order to accomplish the task given.  

B. Infinite Impulse Response (IIR) 

IIR filter is the most efficient filter in digital signal 
processing. It is the digital filter with infinite impulse 
response and recursive structured filter with the feedback 
loop. The impulse applied to the filter with the response 
will never decays to zero due to its recursive design. 
Hence, IIR filter have better frequency response and 
relatively small delay compared to the FIR filters due to 
its shorter transient response. Unlike FIR filter, the phase 
characteristic of IIR filters is not perfectly linear [38]. The 
system transfer function of IIR filters and its frequency 
response are defined as below:  

                           (11) 

                        (12) 
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where at least one of the ai or bi is nonzero and the 
impulse response h(n)  must obey the following rules: 

 

                                       (13) 

There are four different basic and classic designs of 
IIR filters, known as Butterworth, Chebyshev type I, 
Chebyshev type II and Elliptic which will be briefly 
described in the following subsections. 

1) Butterworth filter 

 
Butterworth filter is a filter that characterized with the 

maximally-flat frequency response in the passband and 
stopband. The frequency response of the Butterworth 
filter is defined as: 

                                        (14) 

where N is the order of the filter and wc is the cutoff 

frequency. 

 
The maximally-flat properties of the Butterworth filter 

cause the transition band to be very wide and does not 
have the sharp cutoff. The filter order, however, can be 
increased to reduce the transition width, which at the same 
time increases the sharpness of the transition as show in 
Figure 2 [39]. The frequency response can approach an 
ideal condition when the filter order approaches infinity. 
In addition, the Butterworth filter has the least amount of 
phase distortion among the IIR filters.  

 

 

 

 

 

 

 

 
 

Figure 2.  Frequency response of Butterworth filter [39]. 

2) Chebyshev type I filter 
 

Chebyshev type I filter is a filter designed which allow 
ripples in the passband, and can attain a slightly shaper 
transition compared to Butterworth filter as shown in 
Figure 3 [39]. The frequency response of Chebyshev type 
I filter is defined as: 

                                            (15) 

where N is the filter order,  is the passband ripple factor, 
and TN(x) is the Nth order Chebyshev polynomial given by: 
 

                  (16) 

where . 

 

 

 

 

 

 

 

 

Figure 3.  Frequency response of Chebyshev type I filter [39]. 

With the fixed filter order, the trade-off of 

Chebyshev type I filter is between the transition width 

and the amount of ripple or phase distortion. 

3) Chebyshev type II filter 
 

Chebyshev Type II filter, also known as inverse 
Chebyshev, is a filter design which allow the maximally-
flat passband and the ripples in the stopband as shown in 
Figure 4 [36]. It minimizes the peak error in the stopband 
instead of the passband, which have the advantage of 
shaper transition between passband and stopband with a 
lower filter order when compared to Butterworth and 
Chebyshev Type I filter. The frequency response of the 
Chebyshev type II filter is defined as: 

                                         (17) 

 

 

 

 

 

 

 

 

 

 

Figure 4.  Frequency response of Chebyshev type II filter [36]. 
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4) Elliptic filter 

Elliptic filter, also known as Cauer filter, is a filter that 
generalizes both Chebyshev and Butterworth filters by 
allowing ripple in both passband and stopband as shown 
in Figure 5 [39]. The frequency response of Elliptic filter 
is defined as: 

                                                 (18) 

where N is the filter order,  is the ripple factor and is 
the Nth order Jacobian elliptic function. 

The Elliptic filter can restrict the amount of ripples, 
and can achieve the minimum order of filter or sharpest 
transition band for the given specification with minimal 
phase delay. In other words, Elliptic filter is the optimal 
IIR filter that has smaller filter order to achieve the 
specification given when compared to other IIR filters. 

 

 

 

 

 

 

 

 

 

Figure 5.  Frequency response of Elliptic filter [39]. 

5. DISCRETE WAVELET TRANSFORM 

Discrete wavelet transform is a robust multiresolution 
analysis of a signal in both time and frequency domain. It 
was first introduced by Mallat [40]. A wavelet is a small 
wave having the energy concentrated in time to allow the 
analysis of transient and nonstationary properties of a 
signal [41]. In other words, the discrete wavelet transform 
decomposes a signal into elementary frequency bands that 
localized in both time and frequency scales. The low 
frequency component does appear in high scale, whereas 
the high frequency component appears in low scale. In 
this way, discrete wavelet transform able to provide 
excellent time-frequency resolution [42]. Hence, it is an 
important and useful tool in the application of digital 

signal and image processing. Wavelet function,  is 
defined in a space of measurable functions which are 
absolute and square integral as follows [42]:  

                                                (19) 

                                                     (20) 

 

The wavelet function should satisfy the following 
conditions of zero mean and one for square norm as 
follows: 

                                                   (21) 

                                                 (22)          

 

The discrete wavelet transform of a function,  is 
described as: 

                    (23) 

where a is the scale factor, b is the dilation or translation 

factor, and  is the complex conjugation sign. 
 

The wavelet transform realizes that the signal to be 

analyzed  is convolved with a dilated mother 

wavelet . It is capable of signifying the signal in 
different resolution by compressing and dilating its basic 
function. If a < 1, the wavelet is compressed and the 
transformation provides the finer detail of the signal. On 
the other hand, if a > 1, the wavelet is dilated and the 

transformation provides a coarse view of the signal. In the 
discrete time circumstance, the wavelet transform can be 
realized through the implementation of the filter bank tree 
with high pass filter (HPF) and low pass filter (LPF).  

The wavelet coefficients are obtained by passing the 
input signal, x(n), through the bank of filters as shown in 
Figure 6 [43]. The wavelet decomposition is achieved 
where each level is decomposed into approximation and 
detailed coefficient. The approximate coefficient (CA) is 
the coefficient corresponding to the low pass filter, 
whereas the detailed coefficient (CD) is the coefficient 
corresponding to the high pass filter. The cutoff frequency 
for each level is the half of the input signal frequency. The 
signal frequency is then down sampled by 2 for the next 
level of decomposition which implies the reduction of 
sampling frequency. The following consecutive 
decomposition level decomposes the approximate 
coefficient of the previous level into approximate and 
detailed coefficients. The signal f(t) can be reconstructed 
from the wavelet coefficients by applying the inverse 
wavelet transform. 

The advantages of discrete wavelet transform are its 
linearity, scale covariance, shift covariance, redundancy, 
zooming, time and frequency localization ability and 
computational complexity [42, 44]. Besides that, there are 
numerous types of mother wavelet generally available, 
such as Haar, Daubechies, Coiflets, Symlets, Biorthogonal, 
Morlet, Mexican Hat and Meyer. The higher the similarity 
of the mother wavelet function to the wavelet coefficient 
of the signal, the more precise the signal of interest can be 
isolated and identified, to reduce and suppress most of the 
unwanted noise [32]. Hence, the selection of the mother 
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wavelet function also play an imperative role in the noise 
reduction application [45]. As a result, the wavelet 
transform is quickly emerging as a useful tool for noise 
reduction of the non-stationary signals like ECG and 
electroencephalogram (EEG) signals because of its 
advantage and simplicity. 

 

 

 

 

 

 

 

 

 

 

Figure 6.  Filter bank structure of the discrete wavelet transform [43]. 

6. METHODOLOGY 

This section presents the methodology of ECG noise 
reduction and signal enhancement modelling based on 
various digital filter designs and discrete wavelet 
decomposition with different mother wavelets. This study 
applies the ECG-ID Database (ecgiddb) which acquired 
from PhysioNet database as a common dataset to test all 
ECG noise reduction and signal enhancement methods for 
quantitative and qualitative performance benchmarking 
[46, 47]. It consists of 310 sets ECG recording that 
acquired from 90 subjects, with each record contains  
20 seconds ECG lead I signal sampled at the frequency of 
500Hz. The ecgiddb is chosen in this study instead of the 
famous MIT-BIH database due to the availability of both 
raw (Signal 0) and filtered ECG signal (Signal 1) as 
annotated in PhysioNet database. The raw ECG signal is 
the noisy ECG signal with the presence of various low 
and high frequency artifacts and noises. Whereas, the 
filtered clean ECG signal is the ECG signal that has been 
filtered and free from noises. The performance 
benchmarking of various ECG noise reduction methods is 
based on calculation of Signal-to-Noise Ratio (SNR) and 
Root Mean Square Error (RMSE) value from 10 sets of 
randomly selected ECG recording. All the experiments 
are performed in MATLAB environment. 

The ECG noise reduction based on several digital 
filter designs is first modelled. The selected FIR filter 
designs are Rectangular Window, Bartlett Window, 
Hanning Window, Hamming Window, Blackman 
Window, Blackman-Harris Window and Kaiser Window. 
On the other hand, the selected IIR filter designs consists 
of Butterworth, Chebyshev type I, Chebyshev type II and 
Elliptic filters. The ECG noise reduction algorithm is 
designed with the combination of high pass filter, low 

pass filter and notch filter with the aim of reducing and 
suppressing the unwanted ECG noises.  

The order of FIR filters is fixed at 50 whereas the 
order of IIR filters is fixed at 2. The high pass filter with 
0.4Hz cutoff frequency is modelled to reduce and 
suppress the ECG baseline wandering while avoiding the 
loss of low frequency ECG information. It is due to the 
reason that the ECG significant information do present at 
the frequency of 0.5Hz and above. In addition, the low 
pass filter with the cutoff frequency of 60Hz is modelled 
to remove the unwanted high frequency noises. 
Meanwhile, the notch filter with the cutoff frequency of 
50Hz is implemented to remove the powerline 
interference as the ECG signal obtained from ecgiddb 
databases is distorted by the powerline interference at the 
frequency of 50 Hz. Furthermore, the passband ripple is 
set to 1 decibels whereas the stopband ripple is set to 20 
decibels for all related filter design such as Chebyshev 
type I, Chebyshev type II and Elliptic filter designs. 

For the discrete wavelet transform modelling to 
remove unwanted noises incurred during the signal 
acquisition and transmission process, a raw ECG signal is 
decomposed into nine levels of decomposition with the 
discrete wavelet transform. The frequency range of each 
decomposition level for approximately coefficient and 
detail coefficient is as shown in Figure 7.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.  Wavelet decomposition. 
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Certain wavelet coefficients corresponding to the 
noises are discarded to suppress and eliminate the 
unwanted ECG noises. For instance, CA1, CD1, CD2 and 
CD3 are discarded to eliminate the unwanted high 
frequency and muscle noises. CA3 and CA9 are also 
discarded to eliminate the powerline interference and 
baseline wander noise, respectively. The remaining 
wavelet coefficients are used to reconstruct the resulting 
ECG signal by applying the inverse discrete wavelet 
transform.  

In order to search for the most suitable and reliable 
mother wavelet for the ECG noise reduction and 
enhancement, the modelling experiment is repeated with 
different mother wavelets. The selected mother wavelet 
for investigation in this study includes Daubechies (db2, 
db3, db4, db5, db6, db7, db8, db9, db10), Coiflets (coif1, 
coif2, coif3, coif4, coif5) and Symlets (sym2, sym3, sym4, 
sym5, sym6, sym7, sym8). The selected wavelet families 
of the Daubechies, Coiflets and Symlets are as shown in 
Figure 8 [36]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.  Filter Daubechies (db), Coiflets (coif) and symlets (sym) 

family wavelets [36]. 

  Lastly, the performance of the ECG noise reduction 
method based on various digital filters and the discrete 
wavelet transform with different mother wavelets are 
analyzed and compared in terms of SNR and RMSE 
measurement. SNR is defined as the ratio of signal power 
to noise power as expressed in equations (24) and (25), 
respectively, which indicates the quality of signal. The 
higher the SNR value represents the better the quality of 
the signal, as well as better efficiency of the ECG noise 
reduction and signal enhancement method. The ECG 
noise can be estimated by subtracting the filtered ECG 
signal from the raw ECG signal as both of them are 
available in ecgiddb database. Besides that, RMSE is used 
to measure the distortion of the noise reduction and signal 

enhancement process. The smaller the RMSE value is, the 
lesser the distortion of the signal after the noise reduction 
process and closer to the noiseless signal. The 
mathematical definition of RMSE is expressed in (26). 

                                       (24) 

                                          (25) 

                             (26) 

where s(n) is the noiseless ECG signal and  is the 
de-noised ECG signal. 

In brief, the larger SNR value and the smaller RMSE 
value indicate a dedicated ECG noise reduction and 
enhancement method have better performance in reducing 
and suppressing the ECG unwanted noises, while good in 
preserving the significance ECG characteristics, such as P, 
QRS and T waves. The performance of ECG noise 
reduction and signal enhancement method based on 
different digital filter designs and various mother wavelet 
functions are therefore can be fairly evaluated and 
benchmarked to each other. This aims to identify the most 
suitable digital filter design and mother wavelet function 
for processing a raw ECG signal. Moreover, the SNR and 
RMSE value are calculated before and after the noise 
reduction and enhancement process to measure the 
effectiveness and reliability of the selected methods. 

7. EXPERIMENTAL RESULTS AND EVALUATION 

In this section, the experimental results and 
performance evaluation of the ECG noise reduction and 
enhancement method based on various digital filter 
designs and discrete wavelet transform based on various 
mother wavelets are presented and discussed. The total of 
10 sets raw ECG recordings are randomly selected from 
the ecgiddb database which acquired from PhysioNet [43, 
44] are used to evaluate, compare and benchmark the 
ECG noise reduction and enhancement methods. The 
significance of ECG noise reduction and enhancement 
method is measured by means of obtaining the higher 
SNR and minimal RMSE value. The SNR and RMSE 
value for the raw ECG datasets and its average value are 
shown in Table I. Meanwhile, the quality of the ECG 
signal is evaluated and compared by averaging both SNR 
and RMSE value after processed with various digital filter 
designs based ECG noise reduction and enhancement 
method for ten datasets used as shown in Table II. 

Form Table I and II, the experimental results shown 
that the ECG signal do improved after the ECG noise 
reduction and enhancement process based on both FIR 
and IIR digital filter designs. Among various FIR digital 
filter designs, the rectangle window achieves the highest 
average SNR value with 0.5397 and lower average RMSE 
value with 76.9816 compared to other FIR digital filter 
designs. However, the performance of the FIR digital 
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filter designs and signal quality improvement still remain 
insignificant by comparing their average SNR and RMSE 
value before and after noise reduction and enhancement 
process. 

TABLE I.  SNR AND RMSE FOR THE RAW ECG DATASETS AND ITS 

AVERAGE VALUE 

 

TABLE II.  AVERAGE SNR AND RMSE VALUE AFTER ECG NOISE 

REDUCTION AND ENHANCEMENT PROCESS BASED ON VARIOUS DIGITAL 

FILTER DESIGNS 

 

As aforementioned, the negative SNR value signifies 
that the signal consists a lot of noises as the noise power is 
greater than the signal power, while the large RMSE 

signifies the large distortion after noise reduction and 
enhancement process. The experimental results are 
verified with the visual comparison between the filtered 
noiseless ECG signal which provided by the ecgiddb 
database and de-noised ECG signal obtained after the 
ECG noise reduction and enhancement process as shown 
in Figure 9. All the visual comparison is based on the 
ECG dataset data 6 as an illustration example. 

Besides that, the ECG noise reduction and 
enhancement method based on IIR digital filter designs 
achieve much optimize performance in term of average 
SNR and RMSE value. The Chebyshev type I achieve 
higher average SNR value with 5.4995, while the 
Butterworth is having the lowest average RMSE value 
with 7.7629 among the IIR digital filter designs. This 
indicates that the ECG noise reduction method based on 
IIR digital filter designs outperforms the FIR digital filter 
designs and achieve more significant performance in 
eliminating the unwanted ECG noise distortion which  can 
be visualized in Figure 9. Furthermore, the average SNR 
and RMSE value for ten ECG datasets after processing 
with the noise reduction and enhancement method based 
on discrete wavelet transform with 22 different mother 
wavelet functions are shown in Table 3. 

Among 22 mother wavelets, db8, coif5 and sym7 have 
obtained the best ECG noise reduction and enhancement 
performance by achieving lower RMSE value within their 
wavelet family. The resulting ECG signal after noise 
reduction and enhancement with db8, coif5 and sym7 can 
be visualized in Figure 10. 

 

 

 

 

 

 

Figure 10.  Visual comparison between the noiseless ECG signal 

(blue) which provided by the ecgiddb database and de-noised ECG 
signal (red) obtained after ECG noise reduction based on discrete 

wavelet transform with mother wavelet of db8, coif5 and sym7. 

8. CONCLUSION 

In this study, the quantitative and qualitative 
performance comparison and benchmarking of the ECG 
noise reduction and signal enhancement methods based on 
various digital filter designs and mother wavelets using 
common ecgiddb database have been clearly presented.  

The experimental result shows that the IIR digital 
filter can greatly reduce the noises and able to retain the 
significance ECG morphology features effectively. It can 
be concluded that the IIR digital filter designs outperform 
the FIR digital filter designs in ECG noise reduction and 
signal enhancement. 

Dataset Name Dataset label SNR RMSE 

Person_02  Data 1 -0.3131 43.1255 

Person_03 Data 2 -0.4772 67.1515 

Person_05 Data 3 -0.0431 164.6364 

Person_06 Data 4 -0.2819 42.4304 

Person_08 Data 5 -0.0297 284.555 

Person_09 Data 6 -0.7489 38.7486 

Person_10 Data 7 -0.8661 39.6826 

Person_11 Data 8 -0.3391 36.5351 

Person_13 Data 9 -0.0651 84.1185 

Person_16 Data 10 -1.3147 28.3782 

Average value -0.44789 82.93618 

Digital Filter 
Average 

SNR RMSE 

Least Square 0.0592 85.4115 

Constrained Least Square 0.0432 84.9333 

Rectangular Window 0.5397 76.9816 

Bartlett Window -0.1874 89.0911 

Hanning Window 0.0077 85.5842 

Hamming Window 0.0508 84.854 

Blackman Window -0.0176 85.9844 

Blackman-Harris Window -0.0485 86.5241 

Kaiser Window 0.5141 77.3811 

Butterworth 4.7327 7.7629 

Chebyshev type I 5.4995 8.7724 

Chebyshev type II 4.9548 7.8074 

Elliptic 5.4861 9.2758 

              (a)                                    (b)                                   (c) 
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Figure 9.  Visual comparison between the noiseless ECG signal (blue) which provided by the ecgiddb database and de-noised ECG signal (red) 

obtained after ECG noise reduction and enhancement based on various FIR and IIR digital filter designs. 

This can be observed qualitatively and quantitatively 
as the FIR digital filter designs are unable to effectively 
suppress and remove the unwanted ECG noises, such as 
the powerline interference, baseline wander and high 
frequency noises, even though the filter order is set to 50. 
Besides that, FIR digital filter designs also cause serious 
issue of phase shifting due to its larger filter order. Its 
performance also reflected by the lower SNR and higher 
RMSE value quantitatively in comparison with IIR filters. 
On the other hand, the phase shifting or delay of the IIR 
filter designs are approximately zero, hence it is tolerable. 
Moreover, it is a computational effective approach as it 
only requires the filter order of 2.  

Nevertheless, the ECG noise reduction and signal 
enhancement methods based on IIR digital filter still 
suffers from suppressing and removing the unwanted 
noises that lies within the similar frequency range with the 
significant ECG morphology features, such as electrode 
motion noise and electromyography noise. This can be 
solved by using the discrete wavelet transform which 
analyze an ECG signal in both time and frequency domain. 
The selection of proper mother wavelets does influence 
the performance and efficiency of the ECG noise 

reduction and enhancement method. Lastly, this article 
has highlighted the contribution by presenting a structured 
qualitative and quantitative analysis of the ECG noise 
reduction and signal enhancement method based on 
various digital filter designs and the discrete wavelet 
transform with various mother wavelets using common 
dataset for systematic performance benchmarking. It is 
hoped that the advanced ECG noise reduction and signal 
enhancement method based on artificial intelligence or 
machine learning could further assist the accurate ECG 
signal analysis in detecting, predicting and diagnosing the 
cardiac abnormalities and life-threatening diseases. 

TABLE III.  AVERAGE SNR AND RMSE AFTER ECG NOISE 

REDUCTION AND ENHANCEMENT PROCESS BASED ON VARIOUS MOTHER 

WAVELET FUNCTIONS 

Mother 

wavelets 

Average Value 

SNR RMSE 

db1 4.35497 10.58172 

db2 4.42932 7.84888 

db3 4.38736 6.28766 

                   (a)                                                         (b)                                                        (c)                                                      (d) 

                   (e)                                                           (f)                                                       (g)                                                      (h) 

                        (i)                                                         (j)                                                          (k) 
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db4 4.41898 4.90001 

db5 4.44123 5.21812 

db6 4.43808 5.56058 

db7 4.42493 5.0377 

db8 4.41481 4.07699 

db9 4.42838 4.87475 

db10 4.41376 5.53935 

coif 1 4.38822 7.18038 

coif 2 4.41365 5.37712 

coif 3 4.42372 5.03287 

coif 4 4.41636 4.69886 

coif 5 4.42444 4.66161 

sym2 4.42932 7.84988 

sym3 4.38736 6.28766 

sym4 4.40788 5.14143 

sym5 4.4466 5.94994 

sym6 4.40928 4.81891 

sym7 4.43083 4.39965 

sym8 4.41427 4.78434 
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