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Abstract: This paper proposes a robust solution for the design and stability of nonlinear aeroelastic airfoils of fixed-wing drones that 

are widely exploited in many fields such as meteorology and surveillance. Therefore, conventional sliding mode and fuzzy sliding 

mode control algorithms are suggested for the stabilization of a multi-input-multi-output nonlinear aeroelastic model. The 

aerodynamic lift and moment are expressed based on the Wagner’s function for unsteady aerodynamics, and the flight dynamic 

model describes the plunge and pitch motions of the aircraft wing section with trailing- and leading-edge control surfaces. The 

selected two-degree of freedom model that includes aerodynamic and structural nonlinearities interactions, exhibits instability 

phenomena such as flutter and Limit Cycle Oscillations (LCOs) beyond a critical free-stream velocity. The contribution of this work 

is to design control algorithms in order to improve the critical flutter speed for the aeroelastic model in which unsteady aerodynamics 

is introduced. The control laws permit to drive the plunge displacement and pitch angle trajectories to the origin in finite time, and to 

guarantee a chattering-free system. The obtained results confirm that the established controllers effectively accomplish suppression 

of LCOs and lead the state trajectories to the origin despite nonlinearities and gust loads. 

 

Keywords: Nonlinear Aeroservoelasticity, Sliding Mode Control, Fuzzy Logic Controller, Flutter, Limit Cycle Oscillatory, 

Chattering, Unsteady Aerodynamic Model, Wagner’s Function. 

1. INTRODUCTION  

Nonlinear aeroelasticity is the study of the interactions 
between elastic, inertia, and aerodynamic forces applied 
on an aeroelastic system in a flow field, taking in account 
structural and aerodynamic nonlinearities that can be 
present in many forms [1]. These interactions lead to 
undesired phenomena in a form of increasing amplitude 
oscillations known as flutter, or constant high amplitude 
ones known as Limit Cycle Oscillations (LCOs); both of 
them cause major structural failure [1, 2]. 

A special focus is given to the investigation of 
aeroelastic modeling and flutter analysis for an aircraft or 
a wing in both subsonic and supersonic flows for quasi-
steady or unsteady aerodynamics [3- 7]. Structural and 
aerodynamic nonlinearities in a subsonic unsteady flow 
were investigated by Lee, Price, and Wong for studying 
LCOs, bifurcation and chaos [3]. Later, [4, 5] analyzed 
nonlinear aeroelastic-wing stability in unsteady 
incompressible flow via the Wagner’s function, 
combining the structural and the aerodynamic models. 
Iannelli, Marcos, and Lowenberg discussed a general 
approach for modeling an aeroelastic system with 
unsteady aerodynamic loads, and a unified framework of 
robust modeling taking in consideration the advantages of 
both frequency and state space modeling methods was 
proposed [6]. And Xiang, Yan, and Li [7] presented in 
detail the recent advance and challenges in aircraft 

nonlinear aeroelasticity for 2-D airfoils, high-aspect-ratio 
wings, and full aircrafts, including strip theory and vortex-
lattice aerodynamic modeling methods. 

In order to eliminate flutter and LCOs exposed in the 

mentioned studies, and to avoid their catastrophic 

influence on the systems structures, flutter prediction and 

elimination methods have to be utilized. Firstly, passive 

techniques based essentially on imparting more stiffness 

to the structure were used, but this method caused 

problems of weight and cost and then, the techniques of 

Active Flutter Suppression (AFS) took place [8]. Many 

active controllers were designed for aeroelastic nonlinear 

systems with only one control surface (Trailing Edge 

Control Surface TECS) [9- 12], or with both Trailing- and 

Leading-Edge Control Surfaces (TLECS) [13- 17]. Bruce 

and Jinu investigated many researchers’ contributions in 

AFS field. They presented the development of the 

solutions for aeroelasticity problems through the time 

from passive to active ones, arriving to AFS techniques, 

and validated their effectiveness using LQG and LQR 

controllers [8]. Stability analysis for a thin triangular wing 

with only TECS in unsteady flow was studied in [9]. The 

study showed that the use of only one TECS leads to 

stabilization problems that have been fixed by numerical 

optimization. Wang, Behal and Marzocca [14] presented 

the recent advance in adaptive and robust control used in 
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lifting nonlinear aeroelastic wings having only one TECS 

or with TLECS, for quasi-steady and unsteady models in 

subsonic and supersonic flows. They examined the 

aeroelastic system response to ephemeral, steady-stained, 

and time-varying disturbances using state estimation, and 

stability analysis methods. Structural nonlinearities with 

unknown system parameters were investigated in [15] to 

design an adaptive and neural controller. 

Teng [16] used the µ-method to predict robust stability 

of a nonlinear aeroservoelastic system with TLECS for 

quasi-steady aerodynamic model. This method is based on 

introducing uncertainties parameters to dynamic pressure, 

stiffness and damping. Also, Fatehi, Moghaddam, and 

Rahim [17] used the µ-analyses method for flutter 

analysis and control of a wing section with TLECS in a 

quasi-steady flow, by considering uncertainty parameters 

associated with dynamic pressure, structural stiffness and 

damping, and their influence on flutter and stability 

margins. The studies [16] and [17] showed an agreement 

between predicted and experimental results, but, it is 

noticed that the µ-method did not increase the critical 

flutter velocity in a significant way. Also, this method can 

be used only for linear systems. 

The main challenges of many studies in active control 
field are about the controllers’ robustness and the 
improvement of the systems’ performances. For this end, 
Sliding Mode Control (SMC) is extensively studied and 
widely used [18, 19]. 

SMC is a special class of variable-structure systems 
[20]. The main advantages of SMC are its simplicity, 
robustness against parameters’ variation, perturbations’ 
rejection, and high accuracy [20]. In the other hand, the 
SMC unignorable inconvenient is known as the chattering 
phenomenon that has a negative influence on the system’s 
performances and the associated actuators [21]. 

 To overcome chattering and ensure a finite-time fast 
system stabilization, SMC is combined with many other 
controllers [21- 26]. Second order SMC was combined 
with the backstepping technique in [22] by adding a 
disturbance and uncertainty compensator term in the 
controller’s expression, and a modified high order SMC 
containing a time continuous function describing 
nonlinearities was proposed in [23]. Both studies were 
effective in removing LCOs and stabilizing the system in 
a finite time. Liu and Wang [25] exposed many possible 
Classical Sliding Mode Control (CSMC) combinations, 
from which Fuzzy Sliding Mode Control (FSMC) is 
presented as a solution to have chattering-free systems. 
They gave also various examples of FSMC such as FSMC 
based on equivalent control, and SMC based on fuzzy 
switch-gain regulation. 

Fuzzy Logic Controller (FLC) uses linguistic 
information and rule-based algorithms. It has a control 

structure which is simple and easy to design, and does not 
require a full knowledge of the system model [27]. It is 
commonly used in several domains and for different 
purposes [27- 30]. But, FLC depends on the human 
knowledge and expertise about the studied case when 
choosing membership functions and fuzzy rules [31]. 
Thus, FSMC is chosen for its ability to fulfill the needed 
systems’ fast convergence ensured by the SMC, with the 
chattering suppression guaranteed by the FLC. 

The main contributions of this work are: 

 To introduce unsteady aerodynamics in the 
nonlinear aeroelastic system model using the 
Wagner’s function. Thing that has not been 
investigated in the previous works in AFS field 
like in [22] and [23]. 

 To suppress LCOs with improved system 
performances and increased critical flutter-speed 
margin via the designed controllers, and to 
remove the chattering phenomenon completely. 

 To confirm the controllers’ effectiveness by 
exposing and discussing the obtained simulation 
results. 

This work is organized as follows. The nonlinear 

aeroelastic model is established in Sect. 2. In Sect. 3, the 

proposed CSMC and FSMC laws are designed. 

Simulation results are presented in Sect. 4, and a 

conclusion is given in Sect. 5. 

2. MATHEMATIC MODEL 

Fig. 1 presents the considered prototypical aeroelastic 
wing section with TLECS. 

The equations of motion are [13]: 

[
𝑚𝑇 𝑚𝑤 𝑥𝛼𝑏

𝑚𝑤𝑥𝛼𝑏 𝐼𝑒𝑎
] [ℎ̈

𝛼̈
] +  [

𝐶ℎ 0
0 𝐶𝛼

] [ℎ̇
𝛼̇

] + [
𝑘ℎ 0
0 𝑘𝛼(𝛼)

] [
ℎ
𝛼

] = [
−𝐿
𝑀

] 

Where mT is the total mass of main wing and its support 

structure, mw is the mass of the main wing, b is the mid-

chord distance, Iea is the mass moment of inertia about 

the elastic axis, xa represents the nondimensionalized 

distance between the center of mass and elastic axis, Ch 

and Cα are the plunge displacement and pitch angle 

structural damping coefficients, respectively, kh and kα(α) 

are the plunge and pitch stiffness coefficients 

respectively, h and α are the plunge displacement and 

pitch angle, respectively, L and M are aerodynamic lift 

and moment, respectively. kα(α) is a nonlinear term 

having this expression [15]: 

 𝑘𝛼(𝛼) = 12.77 +  53.47 ⍺ +  1003⍺2

The aerodynamic lift L(t) and moment M(t) acting on 
a 2-D wing airfoil in an incompressible unsteady flow are 
developed via the Wagner's function [2], and given by: 
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Figure 1.  The aeroelastic model. 



𝑀(𝑡) = 𝜋𝜌𝑏3𝑠 [𝑎ℎ̈ − 𝑏 (
1

8
+ 𝑎2) 𝛼̈ − 𝑉 (

1

2
− 𝑎) 𝛼̇] + 2𝜋𝜌𝑉𝑏2𝑠 (

1

2
+

𝑎) [ℎ̇(0) + 𝑉𝛼(0) + 𝑏 (
1

2
− 𝑎) 𝛼̇(0)] 𝜑(𝑡) + 2𝜋𝜌𝑉𝑏²𝑠 (

1

2
+

𝑎) ∫ 𝜑(𝑡 − 𝜎)
𝑡

0
[ℎ̈ + 𝑏 (

1

2
− 𝑎) 𝛼̈ + 𝑉𝛼̇] 𝑑𝜎 + 𝜌𝑉2𝑏²𝑠𝐶𝑚𝛽𝛽 +

𝜌𝑉²𝑏²𝑠𝐶𝑚𝛾𝛾                                                                       (4) 

With ρ is the air density, V is the freestream velocity, s is 
the wing section surface, a is the dimensionless distance 
between the elastic axis and the mid-chord, β and 𝛾 are 
respectively the trailing- and leading-edge control 
surfaces deflections, Clα, Clβ, Cl𝛄 and Cmα, Cmβ, Cm𝛄 are the 
lift and the moment coefficients derivatives per α, β and 𝛾 
respectively, and 𝜑(𝑡) is the Wagner’s function given as 
follows [32]. 

 𝜑(𝑡) = 1 − 𝐶1𝑒−𝜀1(𝑉/𝑏)𝑡 − 𝐶2𝑒−(𝑉/𝑏)𝜀2𝑡

Where:  C1 = 0.165; C2 = 0.335; ε1 = 0.0455 and ε2 = 0.3  

In order to simplify the numerical integration of the 
integro-differential equations (3) and (4), another form of 
equations has been derived by Lee, Price, and Wong who 
introduced four new variables [3]: 

𝐿(𝑡) =  𝜋𝜌𝑏2𝑠[ℎ̈ − 𝑎𝑏𝛼̈] − 2𝜋𝜌𝑉𝑏𝑠 [ℎ(0) + 𝑏 (
1

2
− 𝑎) 𝛼(0)] 𝜑̇(𝑡) +

2𝜋𝜌𝑉𝑏𝑠 {𝜑(0)ℎ̇ + 𝑏 (
1

2
− 𝑎) [𝜑(0) +

1

1−2𝑎
] 𝛼̇ + 𝜑̇(0)ℎ + [𝑉𝜑(0) +

𝑏 (
1

2
− 𝑎) 𝜑̇(0)] 𝛼} – 2𝜋𝜌𝑉𝑏𝑠[𝜆ℎ1 𝑤1 + 𝜆ℎ2

 𝑤2 − 𝜆𝛼1
 𝑤3 − 𝜆𝛼2

 𝑤4] +

 𝜌𝑉2𝑏𝑠𝐶𝑙𝛽𝛽 + 𝜌𝑉²𝑏𝑠𝐶𝑙𝛾𝛾                                                                 (6) 

𝑀(𝑡) = 𝜋𝜌𝑏3𝑠 [𝑎ℎ̈ − 𝑏 (
1

8
+ 𝑎²) 𝛼̈] − 2𝜋𝜌𝑉𝑏2𝑠 (

1

2
+ 𝑎) [ℎ(0) +

𝑏 (
1

2
− 𝑎) 𝛼(0)] 𝜑̇(𝑡)  + 2𝜋𝜌𝑉𝑏2𝑠 (

1

2
+ 𝑎) {𝜑(0)ℎ̇ + 𝑏 (

1

2
−

𝑎) [𝜑(0) −
1

1−2𝑎
] 𝛼̇ + 𝜑̇(0)ℎ} + 2𝜋𝜌𝑉𝑏2𝑠 (

1

2
+ 𝑎) {[𝑉𝜑(0) +

𝑏 (
1

2
− 𝑎) 𝜑̇(0)] 𝛼} − 2𝜋𝜌𝑉𝑏2𝑠 (

1

2
+ 𝑎) [𝜆ℎ1 𝑤1 + 𝜆ℎ2

 𝑤2 − 𝜆𝛼1
 𝑤3 −

 𝜆𝛼2
 𝑤4] + 𝜌𝑉2𝑏²𝑠𝐶𝑚𝛽𝛽 + 𝜌𝑉²𝑏²𝑠𝐶𝑚𝛾𝛾                                            (7) 

With: 

𝑤1 =  ∫ 𝑒−𝜀1(𝑡−𝜎) ℎ(𝜎) 𝑑𝜎
𝑡

0
                           𝑤2 =  ∫ 𝑒−𝜀2(𝑡−𝜎) ℎ(𝜎) 𝑑𝜎

𝑡

0
 

𝑤3 =  ∫ 𝑒−𝜀1(𝑡−𝜎) 𝛼(𝜎) 𝑑𝜎
𝑡

0
                           𝑤4 =  ∫ 𝑒−𝜀2(𝑡−𝜎) 𝛼(𝜎) 𝑑𝜎

𝑡

0
 

And: 

𝜆ℎ1
=  𝐶1(𝑉/𝑏)𝜀²1                          𝜆𝛼1

=  𝐶1(𝑉/𝑏)𝜀1 [𝑉 − 𝜀1𝑏 (
1

2
− 𝑎)] 

𝜆ℎ2
=  𝐶2(𝑉/𝑏)𝜀²2                         𝜆𝛼2

=  𝐶2(𝑉/𝑏)𝜀2 [𝑉 − 𝜀2𝑏 (
1

2
− 𝑎)] 

The state-space representation for the nonlinear 
aeroelastic system with unsteady aerodynamics is 
obtained by substituting (6) and (7) in (1), the two 
obtained equations are reorganized so that the nonlinear-
system state representation is the following: 

[𝑥1  𝑥2  𝑥3  𝑥4  𝑥5  𝑥6  𝑥7  𝑥8]𝑇 = [ℎ  ℎ̇   𝛼   ⍺̇   𝑤1  𝑤2 𝑤3 𝑤4]𝑇    (8) 

Where: 

𝑥̇1 = 𝑥2

𝑥̇2 =  𝑎31𝑥1 + 𝑎32𝑥3 + 𝑎33𝑥2 + 𝑎34𝑥4 + 𝑎35𝑥5 + 𝑎36𝑥6 + 𝑎37𝑥7

+𝑎38𝑥8 + 𝑏31𝛽 + 𝑏32𝛾

𝑥̇3 = 𝑥4

𝑥̇4 = 𝑎41𝑥1 + 𝑎42𝑥3 + 𝑎43𝑥2 + 𝑎44𝑥4 + 𝑎45𝑥5 +  𝑎46𝑥6 + 𝑎47𝑥7

+𝑎48𝑥8 +  𝑏41𝛽 + 𝑏42𝛾

𝑥̇5 =  𝑥1− 𝜀1𝑥5

𝑥̇6 =  𝑥1 − 𝜀2𝑥6

𝑥̇7 = 𝑥3 − 𝜀1𝑥7

𝑥̇8 =  𝑥3 −  𝜀2𝑥8

   (9) 

The coefficients of (9) are the following: 

𝑎31 =  [[−2𝜋𝜌𝑉𝑏2𝑠 (
1

2
+ 𝑎) 𝜑̇(0)] 𝐵 − [𝑘ℎ + 2𝜋𝜌𝑉𝑏𝑠𝜑̇(0)]𝐶] /𝐷

𝑎32 =
𝐵

𝐷
𝑘⍺(⍺)  + 𝐺1 − 𝐺2

𝐺1 =  [[−2𝜋𝜌𝑉2𝑏2𝑠 (
1

2
+ 𝑎) 𝜑(0) − 2𝜋𝜌𝑉𝑏3𝑠 (

1

4
− 𝑎2) 𝜑̇(0)] 𝐵] /𝐷

𝐺2 =  [[2𝜋𝜌𝑉2𝑏𝑠𝜑(0) + 2𝜋𝜌𝑉𝑏2𝑠 (
1

2
− 𝑎) 𝜑 ̇ (0)] 𝐶] /𝐷

𝑎33 = [[−2𝜋𝜌𝑉𝑏2𝑠 (
1

2
+ 𝑎) 𝜑(0)] 𝐵 − [𝐶ℎ + 2𝜋𝜌𝑉𝑏𝑠𝜑(0)]𝐶] /𝐷

𝑎34 =  [[𝐶𝛼 − 2𝜋𝜌𝑉𝑏3𝑠 (
1

4
− 𝑎2) 𝜑(0) + 2𝜋𝜌𝑉𝑏3𝑠 (

1

4
−

𝑎

2
)] 𝐵 −

 [2𝜋𝜌𝑉𝑏2𝑠 (
1

2
− 𝑎) 𝜑(0) + 𝜋𝜌𝑉𝑏2𝑠] 𝐶] /𝐷

𝑎35 = [[2𝜋𝜌𝑉𝑏2𝑠 (
1

2
+ 𝑎) 𝜆ℎ1

] 𝐵 + [2𝜋𝜌𝑉𝑏𝑠𝜆ℎ1
]𝐶] /𝐷

𝑎36 = [[2𝜋𝜌𝑉𝑏2𝑠 (
1

2
+ 𝑎) 𝜆ℎ2

] 𝐵 + [2𝜋𝜌𝑉𝑏𝑠𝜆ℎ2
]𝐶] /𝐷

𝑎37 = [[−2𝜋𝜌𝑉𝑏²𝑠 (
1

2
+ 𝑎) 𝜆𝛼1

] 𝐵 − [2𝜋𝜌𝑉𝑏𝑠𝜆𝛼1
]𝐶] /𝐷

𝑎38 = [[−2𝜋𝜌𝑣𝑏²𝑆 (
1

2
+ 𝑎) 𝜆𝛼2

] 𝐵 − [2𝜋𝜌𝑉𝑏𝑠𝜆𝛼2
]𝐶] /𝐷

𝑏31 = [[−𝜌𝑉²𝑏²𝑠𝐶𝑚𝛽]𝐵 − [𝜌𝑉2𝑏𝑠𝑐𝑙𝛽]𝐶] /𝐷

𝑏32 = [[−𝜌𝑉2𝑏2𝑠𝐶𝑚𝛾]𝐵 − [𝜌𝑉2𝑏𝑠𝑐𝑙𝛾]𝐶] /𝐷 

𝑎41 = [[𝑘ℎ + 2𝜋𝜌𝑉𝑏𝑠𝜑̇(0)]𝐵 + [2𝜋𝜌𝑉𝑏2𝑠 (
1

2
+ 𝑎) 𝜑̇(0)] 𝐴] /𝐷 

𝑎42 = 𝐺3 −
𝐴

𝐷
𝑘⍺(⍺) − 𝐺4

𝐺3 =  [[2𝜋𝜌𝑉2𝑏𝑠𝜑(0) + 2𝜋𝜌𝑉𝑏²𝑠 (
1

2
− 𝑎) 𝜑̇(0)] 𝐵] /𝐷 

𝐺4 =  
𝐴

𝐷
[−2𝜋𝜌𝑉2𝑏2𝑠 (

1

2
+ 𝑎) 𝜑(0) − 2𝜋𝜌𝑉𝑏3𝑠 (

1

4
− 𝑎2) 𝜑̇(0)]

𝑎43 = [[𝐶ℎ + 2𝜋𝜌𝑉𝑏𝑠𝜑(0)]𝐵 + [2𝜋𝜌𝑉𝑏2𝑠 (
1

2
+ 𝑎) 𝜑(0)] 𝐴] /𝐷

𝑎44 = [[2𝜋𝜌𝑉𝑏2𝑠 (
1

2
− 𝑎) 𝜑(0) + 𝜋𝜌𝑉𝑏2𝑠] 𝐵 − [𝐶𝛼 − 2𝜋𝜌𝑉𝑏3𝑠 (

1

4
−

𝑎2) 𝜑(0) + 2𝜋𝜌𝑉𝑏3𝑠 (
1

4
−

𝑎

2
)] 𝐴] /𝐷 

𝑎45 = [[−2𝜋𝜌𝑉𝑏𝑠𝜆ℎ1
]𝐵 − [2𝜋𝜌𝑉𝑏2𝑠 (

1

2
+ 𝑎) 𝜆ℎ1

] 𝐴] /𝐷 

𝑎46 = [[−2𝜋𝜌𝑉𝑏𝑠𝜆ℎ2
]𝐵 − [2𝜋𝜌𝑉𝑏2𝑠 (

1

2
+ 𝑎) 𝜆ℎ2

] 𝐴] /𝐷

𝑎47 = [[2𝜋𝜌𝑉𝑏𝑠𝜆𝛼1
]𝐵 + [2𝜋𝜌𝑉𝑏²𝑠 (

1

2
+ 𝑎) 𝜆𝛼1

] 𝐴] /𝐷

𝑎48 = [[2𝜋𝜌𝑉𝑏𝑠𝜆𝛼2
]𝐵 + [2𝜋𝜌𝑉𝑏²𝑠 (

1

2
+ 𝑎) 𝜆𝛼2

] 𝐴] /𝐷

𝑏41 =  [[𝜌 𝑉²𝑏𝑠𝑐𝑙𝛽] 𝐵 +  [ 𝜌 𝑉²𝑏2𝑠𝐶𝑚𝛽]𝐴]/𝐷 

𝑏42 =  [[𝜌 𝑉²𝑏𝑠𝐶𝑙𝛾] 𝐵 + [ 𝜌 𝑉²𝑏2𝑠𝐶𝑚𝛾]𝐴]/𝐷
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𝐴 = 𝑚𝑇 + 𝜋𝜌𝑏2𝑠𝐵 = 𝑚𝑤𝑥𝛼𝑏 − 𝜋𝜌𝑏3𝑠𝑎

𝐶 = 𝐼𝑒𝑎 + 𝜋𝜌𝑏4𝑠 (
1

8
+ 𝑎²)𝐷 = 𝐴𝐶 − 𝐵²

3. THE PROPOSED CONTROLLERS’ DESIGNS 

A. Classical sliding mode controller design 

Based on (9), the control vector U(t) is defined as: 

    𝑈(𝑡) = (
𝑈1

𝑈2
) =  (

𝑏31 𝑏32

𝑏41 𝑏42
) (𝛽

𝛾
)                      (10) 

Given 𝒙𝟏
𝒅  the desired state trajectory, 𝒆𝟏  is the error 

between the actual state trajectory 𝒙𝟏 and the desired one, 

and 𝒆̇𝟏 is its derivative, defined as follows: 

  𝑒1 =  𝑥1 − 𝑥1
𝑑                              (11)      

𝑒̇1 =  𝑥̇1 − 𝑥̇1
𝑑 =  𝑥2 − 𝑥2

𝑑                      (12) 

The sliding surface in CSMC for the second order 
subsystem is: 

         𝑆1(𝑥) =  𝑘1𝑒1 + 𝑒̇1                              (13) 

𝑘1 is a positive scalar. 

The derivative of the sliding surface is the following: 

   𝑆̇1(𝑥) =  𝑘1𝑒̇1 + 𝑒1̈ =  𝑘1𝑒2 + 𝑒2̇                    (14) 

Given (2), we have in this case: 

𝑆1̇(𝑥) =  𝑎31𝑥1 + (𝑘1 + 𝑎33)𝑥2 + (
𝐵

𝐷
 12,77 + 𝐺1 − 𝐺2) 𝑥3 +

𝐵

𝐷
53,47 𝑥3

2 +
𝐵

𝐷
1003 𝑥3

3 + 𝑎34𝑥4 + 𝑎35𝑥5 +  𝑎36𝑥6 + 𝑎37𝑥7 +

𝑎38𝑥8 + 𝑈1                                                                           (15) 

The CSMC controller is designed as follows: 

   𝑈1 = 𝑈1𝑒𝑞 + 𝛥𝑈1                             (16) 

U1eq is the equivalent control, where: 

𝑈1𝑒𝑞 =  −𝑎31𝑥1 − (𝑘1 + 𝑎33)𝑥2 − (
𝐵

𝐷
 12,77 + 𝐺1 − 𝐺2) 𝑥3 −

𝐵

𝐷
53,47 𝑥3

2 −
𝐵

𝐷
1003 𝑥3

3 − 𝑎34𝑥4 − 𝑎35𝑥5 − 𝑎36𝑥6 − 𝑎37𝑥7 − 𝑎38𝑥8

                                                                                             (17) 
∆U1 is the switching control, it provides disturbance 
compensation, and it has the following form: 

      𝛥𝑈1 =  − 𝑙1 𝑆𝑖𝑔𝑛(𝑆1)                        (18) 

l1 is a positive scalar. 

Finally, the controller expression is the following: 

𝑈1 =  −𝑎31𝑥1 − (𝑘1 + 𝑎33)𝑥2 − (
𝐵

𝐷
 12,77 + 𝐺1 − 𝐺2) 𝑥3 −

𝐵

𝐷
53,47 𝑥3

2 −
𝐵

𝐷
1003 𝑥3

3 − 𝑎34𝑥4 − 𝑎35𝑥5 − 𝑎36𝑥6 − 𝑎37𝑥7 −

𝑎38𝑥8 − 𝑙1 𝑆𝑖𝑔𝑛(𝑆1)                                                                            (19) 

To satisfy the Lyapunov stability criterion, the 

Lyapunov function 𝑉1(𝑥)  and its derivative 𝑉̇1(𝑥)  are 
considered as follows: 

   𝑉1(𝑥) =
1

2
 𝑆1

2(𝑥) > 0

𝑉̇1(𝑥) =  𝑆̇1(𝑥)𝑆1(𝑥)

𝑉̇1(𝑥) =  𝑆1 [−𝑙1 𝑆𝑖𝑔𝑛(𝑆1) ] = 𝑆1  [−𝑙1  
𝑆1

|𝑆1|
 ]

𝑉̇1(𝑥) = −𝑙1  
𝑆1

2

|𝑆1|
  <  0                                             (23) 

So, the Lyapunov stability criterion is satisfied for the 

studied aeroelastic system. In the same way, the 

controller for the second subsystem is obtained. 

B. Fuzzy sliding mode controller design 

Fig. 2 summarizes the fuzzy controller basic structure 
[26]. 

Figure 2.  Fuzzy logic controller structure [26]. 

The idea is to design a FLC which the input is the 
sliding surface S and the output is the variant membership 
M, and to introduce the CSMC law in order to remove the 
chattering phenomenon [24]. The control law for the first 
subsystem is: 

        𝑈1 = 𝑈1𝑒𝑞 + 𝑀1 𝛥𝑈1                           (24) 

With M1 is the variant membership for the first subsystem. 

Considering the following fuzzy sets: 

 For the input S1: NG (Negative and large); N 

(Negative); Z (Zero); P (Positive); PG (Positive 

and large). 

 For the output M1: NG; N; Z; P; PG. 

The fuzzy rules are chosen as follows: 

1. If S1 is NG Then M1 is PG 

2. If S1 is N Then M1 is P  

3. If S1 is Z Then M1 is Z  

4. If S1 is P Then M1 is P  

5. If S1 is PG Then M1 is PG  

The FLC and the fuzzy rules are designed so that:  

 The FSMC law is equal to the equivalent control 
expression if M1 is null; 

 The FSMC law is equal to the CSMC if M1 is 
equal to one; 

 Else, we have (24) and the chattering is reduced 
or eliminated via the variation of M1. 

The Lyapunov stability criterion remains satisfied 
since the introduced membership M1 is always positive. In 
the same way, the FSMC law for the second subsystem is 
designed. 

4. RESULTS AND COMMENTS 

This part presents simulation results for plunge 
displacement (h) and pitch motion (alpha) for the TAMU 
II wing model which the parameters are given in [13]. 
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In order to solve the differential equations of the 
established model, fourth order variable-step Runge-Kutta 
method (RK 4(5)) is adopted as the numerical method in 
this work. This method is commonly utilized to solve such 
engineering problems [33]. 

Fig. 3 represents pitch angle and plunge displacement 
time responses, under the following initial conditions 

[ℎ ℎ̇  ⍺  ⍺ ̇ 𝑤1 𝑤2  𝑤3  𝑤4]
𝑇

 = [0.01  0  0.2  0  0  0  0]𝑇 and for a 

free stream velocity of 18 m/s beyond the open-loop 
critical flutter speed which is estimated at 10.7 m/s. These 
results show the system instability expressed by the 
apparition of undesired LCOs due to structural and 
aerodynamic nonlinearities, which explains the 
importance of the active control introduction. 

Under the same initial conditions, with a free stream 
speed of 35 m/s, the aeroelastic system closed-loop 

response simulations are designed with the following 
CSMC parameters: 𝑘1 =  𝑘2 = 1, and 𝑙1 = 𝑙2 = 5. 

Fig. 4 presents the closed-loop system responses with 
the trailing edge (betta β) and the leading edge (gama 𝛾) 
control surfaces deflections. These deflections are limited 
between ± 0.5 rad (About ± 28°) in order to let their 
values among the actuator's physical capabilities. It can be 
noticed in fig. 4(a) and (b) that the established control 
succeeded in removing LCOs and stabilizing the system 
in less than a second, in spite of nonlinearities and 
unsteady aerodynamic loads. Fig. 4(c) and (d) show up 
the smooth convergence of TLECS deflections to the 
origin, these deflections remain within the actuator’s 
capabilities. The sliding plane time responses are 
presented in fig. 4(e) and (f) which indicate that the 
sliding functions S1 and S2 converge smoothly and 
rapidly to the equilibrium position.  

 

Figure 3.  Open-loop time responses.  

Figure 4.  CSMC time responses for a wing constrained between ±0.5 

rad. 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. CSMC time responses for a wing constrained between ±0.5 rad. 
 

Figure 3. Open-loop time responses. 
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Fig. 5 and fig. 6 show the system time responses 
behavior when the CSM controller is turned on at t = 2 s 
for the same closed-loop initial conditions, with a free-
stream velocity of 20 m/s. One can notice from fig. 5, that 
the proposed control law was able to stabilize the system 
when it was turned on, even after the system has entered 

in limit cycle oscillatory. Although, the chattering 

phenomenon is clearly seen in the deflections of TLECS 
as shown in fig. 6(a) and (b). 

In order to eliminate the chattering phenomenon, 
CSMC law is associated with a fuzzy logic controller. The 
established FSMC is designed with the same CSMC 
parameters and for the same initial conditions.  

Fig. 7 represents the closed-loop time responses for 
the free-stream velocity V = 35 m/s, and shows that the 

FSMC leads to have smooth and fast stabilized system 
responses for high speeds. It’s also noticed comparing fig. 
7 and fig. 4 that FSMC maintains nearly the same system 
performances guaranteed by the CSMC. The 
memberships M1 and M2 time-variations are given in fig. 
8(a) and (b). 

The system time responses behavior and the 

memberships time variations when the controller is 

activated at t = 2 s for a speed of 20 m/s are illustrated in 

fig. 9, fig. 10, and fig. 11. From these, one can remark 

that in addition to the quick stabilization of the system in 

spite of the LCOs’ appearance, the introduction of the 

FSMC removed successfully and efficiently the 

chattering phenomenon appearing in the CSMC case. 

 

Figure 5.  CSMC time responses, the controller turned on at t = 2 s. 

Figure 6.  Chattering phenomenon in the TLECS deflections. 
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Figure 7.  FSMC time responses for a wing constrained between ±0.5 rad. 

 

 

Figure 8.  The memberships M1 and M2 time variations. 
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Figure 9.  FSMC time responses, the controller turned on at t = 2 s. 

 

Figure 10.  The memberships M1 and M2 time variations. 

 

Figure 11.TLECS deflections comparison, the controller turned on at t = 2 s. Red line: CSMC, Blue line: FSMC 
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A comparison between CSMC and FSMC is 
summarized in table I.  

TABLE I.  A COMPARISON BETWEEN CSMC AND FSMC. 

 CSMC FSMC 

System performances enhanced enhanced 

Critical flutter velocity 38,27 m/s 36,99 m/s 

Chaterring phenomenon An Existing case Removed 

As can be remarked, the introduction of CSMC and 
FSMC leads to have a fast convergence and improved 
system performances in finite time. The system remains 
stable for speeds much higher than the open-loop flutter 
velocity. This means a significantly enhanced flutter-
speed margin. The undesired chattering phenomenon that 
takes place in the CSMC case is removed using the 
FSMC. 

5. CONCLUSIONS AND PERSPECTIVES 

 In this paper, a nonlinear aeroelastic airfoil with 
TLECS was controlled. Lift and moment were derived 
using the Wagner’s function for unsteady aerodynamics, 
and a numerical application was made for the TAMU II 
wing model. The obtained model describes plunge and 
pitch motions of the wing with nonlinearity in the 
stiffness pitch coefficient. A CSMC and a FSMC were 
proposed to eliminate LCOs and to improve the system 
performances. The results showed that in open-loop, the 
system time responses exhibit dangerous LCOs beyond 
the critical flutter velocity. The established controllers 
stabilized the system smoothly and rapidly. It removed 
LCOs in finite time despite nonlinearities and unsteady 
aerodynamic loads, and improved the system 
performances with an important critical flutter velocity 
margin. The controllers were effective when they were 
turned on, even after the system has entered in LCO. In 
that case, chattering was noticed in the TLECS deflections 
using CSMC, but this phenomenon was completely 
removed using FSMC, without affecting the enhanced 
system performances. Things that express the robustness 
of the designed controllers. This may make the study a 
successful method in the AFS field for nonlinear 
aeroelastic systems with unsteady aerodynamic models, 
and a powerful tool to design nonlinear aeroelastic airfoils 
in wing tunnels in order to enhance their performances, 
and to solve stability problems of fixed-wing Unmanned 
Aerial Vehicles (UAV). Theses UAV can operate in low 
altitude areas, where they can undergo brutal velocity 
changes due to the obstacles and the turbulence existence, 
and in high altitude zones that can be strongly windy. This 
leads in most of the cases to undesired instability 
phenomena. 

For the future works, adaptive neural SMC or genetic-
algorithms based SMC can be proposed in the control 
field. In the conception side, the design and modeling of 
three-dimensional flying wings may be investigated as a 
perspective. 
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