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Abstract: Digital image composition deals with the problem of embedding portions of the source image into the target image to 

generate a single desirable image seamlessly. The aim is to produce a new image that combines both source and target images so that 

the seam between the two images is less noticeable. Image composition based on numerical differentiation using the Laplacian 

operator to obtain the solution of the Poisson equation is presented. The proposed method employs a red-black strategy to speed up 

the computation by using an accelerated parameter to the existing relaxation method. This modified variant of the relaxation method 

known as the Modified Accelerated Over-Relaxation (MAOR) method is derived from the existing Modified Successive Over-

Relaxation (MSOR) method. Several examples were tested to examine the effectiveness of the proposed method. The results showed 

that both modified accelerated variants performed faster than their corresponding standard modified successive variants.  

 

Keywords: Red-black Strategy, Accelerated Iterative Method, MSOR, MAOR, Poisson Equation, Laplacian Operator, Image 

Composition, Finite Difference 

 

1. INTRODUCTION 

Image composition involves computation of image 
gradients of both source and target images. This powerful 
image editing technique is often capable of composing 
two images with very minimal noticeable seams. A 
similar approach is also used for various other image 
manipulations, including natural image matting [1], image 
stitching [2], surface reconstruction [3], image sharpening 
[4], image completion [5] and inpainting [6]. 

This paper describes the solution to the image 
composition problem using numerical differentiation 
technique. The gradients of the images are obtained by 
solving the Poisson equation. The numerical approach 
transforms the problem into a linear system. Often, the 
generated linear system is large and sparse, thus a 
numerical iterative method is employed to avoid huge 
memory consumption. The addition of an acceleration 
parameter to the resulting finite difference discretization 
provides an additional parameter to speed up the 
computation. Additionally, the proposed method used 
modified variants of the relaxation methods in which the 
red-black strategy is employed. With this red-black 
strategy, image gradients for pixels assigned to red and 
black are computed independently. Thus, the proposed 
method is very suitable for parallel implementations. 
Several similarity indexes are used to ensure high quality 
generated images.  

The main contributions of this work include: (1) 
demonstrating the effectiveness of an advanced numerical 
iterative method using the modified variant with 
additional acceleration parameter for image editing based 
on the Poisson equation, (2) proposing red-black strategy 
for robust computational iteration procedure that is 
suitable for implementation on machines capable of 
performing parallel processing, and (3) conducting 
extensive image similarity comparison to show that the 
proposed method is capable of generating highly similar 
final composited image to the images generated using 
standard existing methods. 

2. RELATED WORKS 

In 2020, Qiao et al. [1] proposed a deep learning based 
approach to the image matting problem. In their work, 
they constructed a large-scale image matting dataset 
comprised of 59,600 training images and 1000 test 
images. With such a large set of datasets, it improved the 
robustness of the proposed hierarchical structure 
aggregation model. Yun et al. [2] proposed an image 
stitching method to stitch multiple images to generate a 
panoramic image with a piecewise rectangular boundary. 
They addressed the limitations of the existing methods by 
formulating image stitching with regular boundaries in a 
unified optimization. The results showed that their method 
efficiently produced visually pleasing panoramas with 
regular boundaries and unnoticeable distortions. Xie et al. 
[3] introduced an approach for surface reconstruction by 
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preserving the surface discontinuity in a discrete geometry 
way. Experiments showed that the proposed method 
outperformed the existing methods on an extensive 3D 
dataset, in terms of mean angular error and computational 
complexity. Image sharpening based on partial differential 
equations was proposed by Wang et al. [4] by employing 
the Hausdorf derivative Laplacian operator. It was shown 
in the numerical results that the proposed operator 
outperforms the high-pass filtering, the Robert operator 
and the traditional integer-order Laplacian operator. In 
[5], Zdunek and Sadowski proposed an approach to model 
the incomplete images with overlapping blocks of Tucker 
decomposition representations where the factor matrices 
are determined by a hybrid version of the Gaussian radial 
basis function and polynomial interpolation. In the 
experiments, it was demonstrated that the proposed 
approach considerably outperformed the baseline and 
state-of-the-art low-rank completion methods on various 
image completion and resolution up-scaling problems. An 
image completion method based on Generative 
Adversarial Networks was proposed by Jiang et al. [6]. 
The proposed model is based on an auto-encoder 
architecture in which the algorithm contains one 
generator, one global discriminator, and one local 
discriminator. The generator is used for inpainting the 
missing area. The global discriminator evaluates whether 
the repair result has global consistency, and the local 
discriminator identifies whether the repair area is correct. 
The results showed that the proposed model was capable 
of dealing with large scale missing pixels and was able to 
produce high-quality realistic completion images.  

Image manipulation using the Poisson equation by 
combining image gradients was first proposed by Perez et 
al. [7], where the image editing problem was formulated 
in variational terms. Since then, several works on image 
processing based on image gradients have been proposed. 
Du et al. [8] proposed a method for surface reconstruction 
algorithm that aims to obtain the minimum absolute error 
between the input and the solution gradient field. The 
same approach was also proposed by Reddy et al. [9], in 
which the algorithm attempts to find the gradient field that 
best fits the input gradient field using linear algebra and 
graph analogy. Tao et al. [10] suggested a compositing 
technique that reduces bleeding artifacts in the composited 
images. First, they define the boundary gradients in such a 
way that the gradient field produced is integrable, and 
second, they control the integration process to concentrate 
residuals where they are less visible by modifying the 
modified Poisson equation to trace the targeted residuals 
in less observable textured regions.  

Sadek et al. [11] proposed an algorithm based on a 
variational model to support video editing using a 
gradient-based method. The approach utilized an optimal 
flow to propagate chosen features in the gradient domain. 
The proposed approach was capable of handling fast and 
abrupt illumination changes in time and smooth 
illumination changes in space. It was presented in their 
report that the model was capable of handling video 
containing a large number of frames and relatively 
complex sequences. 

More recently, image editing based on Fourier 
implementation was proposed by Morel et al. [12]. The 
proposed method provides an exact and fast Poisson 
solver when it involved the complex shape of a region of 
interest (ROI). The authors also proposed an automatic 
method for selecting the ROI.  

Limare et al. [13] presented the Retinex algorithm for 
solving the Poisson equation using Fourier 
implementation. The proposed solution applied Neumann 
boundary conditions. In this method, the gradient whose 
modulus is below a certain threshold is set to zero. The 
proposed method successfully removed the small details 
and shades in the new image. 

More recently, Hussain and Kamel [14] proposed an 
efficient method for solving the Poisson equation. The 
proposed method utilized the image pyramid and divide-
and-conquer approaches. The Poisson equation was 
solved for three pyramid levels in this method. Moreover, 
a modified Poisson blending (MPB) solver had been 
proposed by Afifi and Hussain [15] in order to overcome 
the issues of bleeding artifacts and colour bleeding. To 
overcome the bleeding artifacts problem which occurred 
in the traditional methods, the proposed method also 
considered the boundary pixels of the images. 

The solution to the linear system generated by the 
Poisson equation can be computed using analytical or 
direct methods. Only a few research had employed 
iterative method in solving the Poisson equation for image 
editing, such as in [7] and [16]. In our previous works, the 
MSOR [17] and block iterative method were implemented 
[18]. Therefore, in this work, four iterative methods that 
support parallel processing are implemented. Apart from 
image editing, iterative methods such as SOR and AOR 
had been successfully applied to solve path planning 
problem [19] and solving partial differential equations 
such as in [20] and [21]. 

3. IMAGE COMPOSITION 

Any digital image is constructed based on a 2D array 
of pixels in which each pixel is assigned its own intensity 
value or brightness. The coordinate system of an image is 
the rotated conventional 2D Cartesian coordinate system 
by 90

o
 in clockwise direction. Each pixel in the image is 

formed by mixtures of red, green, and blue colors. Image 
resolution and size are represented by the total number of 
rows and columns. 

In the image composition process, each pixel value of 
an image will be stored in a finite grid of a 2D array as 
illustrated in Figure 1. The composition process begins by 
selecting the desired region of interest S from a source 
image G. Next, the boundary of the chosen region is 
selected and denoted by ∂S. The extracted region is then 
placed into the desired location of a target image F*. This 
process will generate a new output image F. The 
composition procedure continues by first obtaining the 
vector field V, which is obtained from the source image S.  
By applying Poisson equation as a constraint, a set of new 
pixel values inside region ∂S will be computed through 
minimization of the gradient difference value of vector V 
and the desired region of the target image F*.  
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This minimization procedure can be expressed as 
follows: 

minf ∬ |∇𝑓 − 𝑣|2
O

 with    𝑓|𝜕O = 𝑓∗|𝜕O.     (1) 

The intensity values at the boundary are assigned the same 
values to generate a seamless image. The intensity values 
are extracted from the image itself. It will be used as the 
initial values for the generated linear system constructed 
from the discretization Poisson equation via the finite 
difference method. The details are discussed in the 
following section. 

The solution of the minimization problem (1) is 
obtained by solving the unique solution of the Poisson 
equation with Dirichlet boundary condition, 

∆𝑓 = div 𝑣 at O  with    𝑓|𝜕O = 𝑓∗|𝜕O     (2) 

To generate a new image seamlessly, the gradient of 
vector V is extracted from the source image G. Thus, 
Equation (2) can be rewritten as, 

∆𝑓 = ∆𝑔 at O  with    𝑓|𝜕O = 𝑓∗|𝜕O     (3) 

The ∆ in Equation (3) denotes the Laplacian operator. 

 

Figure 1.  Finite grid of size n = 10. 

 

4. FORMULATION OF THE PROPOSED METHOD 

To implement the considered iterative methods, the 
Poisson equation is first discretized using the finite 
difference method. By employing the Laplacian operator, 
the two-dimensional Poisson equation can be defined as, 

𝜕2𝑈

𝜕𝑥2 +
𝜕2𝑈

𝜕𝑦2 = 𝑓(𝑥, 𝑦)    (4) 

Equation (4) is then discretized using five-point 
approximation equation to obtain 

𝑈𝑖,𝑗 =
1

4
[𝑈𝑖+1,𝑗 + 𝑈𝑖−1,𝑗 + 𝑈𝑖,𝑗+1 + 𝑈𝑖,𝑗−1 − ℎ2𝑓𝑖,𝑗]    

   (5) 

where h = ∆x = ∆y. The iterative scheme for equation (5) 
can be written as, 

𝑈𝑖,𝑗
(𝑘+1)

=
𝜔

4
[𝑈𝑖+1,𝑗

(𝑘)
+ 𝑈𝑖−1,𝑗

(𝑘+1)
+ 𝑈𝑖,𝑗+1

(𝑘)
+ 𝑈𝑖,𝑗−1

(𝑘+1)
−

ℎ2𝑓𝑖,𝑗] + (1 − 𝜔)𝑓𝑖,𝑗
(𝑘)

   (6) 

where a weighted parameter, ω is added. By adding 
another accelerated parameter, λ into Equation (6), it can 
be redefined as, 

𝑈𝑖,𝑗
(𝑘+1)

=
𝜔

4
[𝑈𝑖+1,𝑗

(𝑘)
+ 𝑈𝑖−1,𝑗

(𝑘)
+ 𝑈𝑖,𝑗+1

(𝑘)
+ 𝑈𝑖,𝑗−1

(𝑘)
− ℎ2𝑓𝑖,𝑗] +

𝜆

4
[𝑈𝑖−1,𝑗

(𝑘+1)
− 𝑈𝑖−1,𝑗

(𝑘)
+ 𝑈𝑖,𝑗−1

(𝑘+1)
− 𝑈𝑖,𝑗−1

(𝑘)
] + (1 − 𝜔)𝑓𝑖,𝑗

(𝑘)
    

   (7) 

with 1 ≤ ω < 2 and 1 ≤ λ < 2. Equation (6) is used to 
implement the iteration procedure known as Successive 
Over-Relaxation (SOR) [22]. While equation (7) is known 
as Acceleration Over-Relaxation (AOR) [23] iterative 
method.  

A. Red-Black Strategy 

The standard ordering of computing each node in the 
finite grid (Figure 1) with the SOR or AOR methods is 
not suitable for parallel processing, since the computation 
can be conducted only in sequential order. Thus, the red-
black [24] ordering is suggested as illustrated in Figure 2. 
With red-black ordering, the computations of nodes in the 
finite grid are executed in red-only and black-only phases. 
In the red only phase at iteration (k+1), the computation 
only involves red nodes, and in the black-only phase, the 
remaining black nodes are processed. By applying the 
finite difference equation (5), then using SOR, the red-
only phase uses the following iteration scheme, 

𝑈𝑖,𝑗
(𝑘+1)

=
𝜔

4
[𝑈𝑖+1,𝑗

(𝑘)
+ 𝑈𝑖−1,𝑗

(𝑘)
+ 𝑈𝑖,𝑗+1

(𝑘)
+ 𝑈𝑖,𝑗−1

(𝑘)
− ℎ2𝑓𝑖,𝑗] +

(1 − 𝜔)𝑓𝑖,𝑗
(𝑘)

       for all i+j even  

   (8) 

and during the black-only phase, the scheme is as follows, 

𝑈𝑖,𝑗
(𝑘+1)

=
𝜔

4
[𝑈𝑖+1,𝑗

(𝑘+1)
+ 𝑈𝑖−1,𝑗

(𝑘+1)
+ 𝑈𝑖,𝑗+1

(𝑘+1)
+ 𝑈𝑖,𝑗−1

(𝑘+1)
−

ℎ2𝑓𝑖,𝑗] + (1 − 𝜔)𝑓𝑖,𝑗
(𝑘)

       for all i+j odd. 

  (9) 

Equations (8) and (9) represent the Red-Black SOR 
(RBSOR) method.  

Accordingly, the AOR iteration schemes for the red-
black ordering (RBAOR method) are  

𝑈𝑖,𝑗
(𝑘+1)

=
𝜔

4
[𝑈𝑖+1,𝑗

(𝑘)
+ 𝑈𝑖−1,𝑗

(𝑘)
+ 𝑈𝑖,𝑗+1

(𝑘)
+ 𝑈𝑖,𝑗−1

(𝑘)
− ℎ2𝑓𝑖,𝑗] +

(1 − 𝜔)𝑓𝑖,𝑗
(𝑘)

    for all i+j even  

    (10) 

and 

𝑈𝑖,𝑗
(𝑘+1)

=
𝜔

4
[𝑈𝑖+1,𝑗

(𝑘)
+ 𝑈𝑖−1,𝑗

(𝑘)
+ 𝑈𝑖,𝑗+1

(𝑘)
+ 𝑈𝑖,𝑗−1

(𝑘)
− ℎ2𝑓𝑖,𝑗] +

𝜆

4
[𝑈𝑖+1,𝑗

(𝑘+1)
− 𝑈𝑖+1,𝑗

(𝑘)
+ 𝑈𝑖−1,𝑗

(𝑘+1)
− 𝑈𝑖−1,𝑗

(𝑘)
+ 𝑈𝑖,𝑗+1

(𝑘+1)
− 𝑈𝑖,𝑗+1

(𝑘)
+

𝑈𝑖,𝑗−1
(𝑘+1)

− 𝑈𝑖,𝑗−1
(𝑘)

] + (1 − 𝜔)𝑓𝑖,𝑗
(𝑘)

    for all i+j odd.   

     (11) 

for the red-only and black-only phases, respectively. 

Clearly, the red-only phase involves independent 
computations that are executed simultaneously and 
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similarly for the black-only phase execution. Note that 
parallel processing can be achieved since the 
computations of the red node rely on its four black 
neighboring nodes and vice versa, as shown in Figure 3 
(a) and (b), respectively. If red nodes are computed first, 

their updated values are computed based on the previous 
values of black nodes. Accordingly, the computations of 
black nodes will be based on the updated values of red 
nodes.

 

Figure 2.  Finite grid of red-black strategy. 

 

    

 (a)     (b)     

Figure 3. Computational molecules, (a) red and (b) black nodes. 

 

B. Modified Iterative Methods 

The Modified Successive Over-Relaxation (MSOR) 
method is described in [25] and given by  

𝑈𝑖,𝑗
(𝑘+1)

=
𝛼

4
[𝑈𝑖+1,𝑗

(𝑘)
+ 𝑈𝑖−1,𝑗

(𝑘)
+ 𝑈𝑖,𝑗+1

(𝑘)
+ 𝑈𝑖,𝑗−1

(𝑘)
− ℎ2𝑓𝑖,𝑗] +

(1 − 𝛼)𝑓𝑖,𝑗
(𝑘)

       for all i+j even  

   (12) 

and during the second phase, the scheme is as follows, 

𝑈𝑖,𝑗
(𝑘+1)

=
𝛽

4
[𝑈𝑖+1,𝑗

(𝑘+1)
+ 𝑈𝑖−1,𝑗

(𝑘+1)
+ 𝑈𝑖,𝑗+1

(𝑘+1)
+ 𝑈𝑖,𝑗−1

(𝑘+1)
−

ℎ2𝑓𝑖,𝑗] + (1 − 𝛽)𝑓𝑖,𝑗
(𝑘)

       for all i+j odd, 

  (13) 

where α and β are fixed parameters such that 0 < α < 2 
and 0 < β < 2. 

Therefore, the Modified Accelerated Over-Relaxation 
(MAOR) method can be derived and written as 

𝑈𝑖,𝑗
(𝑘+1)

=
𝛼

4
[𝑈𝑖+1,𝑗

(𝑘)
+ 𝑈𝑖−1,𝑗

(𝑘)
+ 𝑈𝑖,𝑗+1

(𝑘)
+ 𝑈𝑖,𝑗−1

(𝑘)
− ℎ2𝑓𝑖,𝑗] +

(1 − 𝛼)𝑓𝑖,𝑗
(𝑘)

    for all i+j even  

     (14) 

and 

𝑈𝑖,𝑗
(𝑘+1)

=
𝛽

4
[𝑈𝑖+1,𝑗

(𝑘)
+ 𝑈𝑖−1,𝑗

(𝑘)
+ 𝑈𝑖,𝑗+1

(𝑘)
+ 𝑈𝑖,𝑗−1

(𝑘)
− ℎ2𝑓𝑖,𝑗] +

𝜆

4
[𝑈𝑖+1,𝑗

(𝑘+1)
− 𝑈𝑖+1,𝑗

(𝑘)
+ 𝑈𝑖−1,𝑗

(𝑘+1)
− 𝑈𝑖−1,𝑗

(𝑘)
+ 𝑈𝑖,𝑗+1

(𝑘+1)
− 𝑈𝑖,𝑗+1

(𝑘)
+

𝑈𝑖,𝑗−1
(𝑘+1)

− 𝑈𝑖,𝑗−1
(𝑘)

] + (1 − 𝛽)𝑓𝑖,𝑗
(𝑘)

    for all i+j odd.  

      (15) 

Consequently, by applying red-black ordering, Equations 
(12) and (14) can be computed in the first phase, and 
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Equations (13) and (15) are computed during the second 
phase. 

In this work, these four methods are implemented in 
Java. The iteration procedure keeps executing until the 
error rate, ε, calculated using the square root of the sum of 
squares, is less than 1. 

The main steps of the finite difference approach of the 
four methods are described in Algorithm 1. During the 
composition process, the linear system (4) was solved 
three times for R, G, and B colors separately using the 
four considered methods.  

 

  Algorithm 1: The iteration procedure to obtain the solution of Poisson 

Input: Source image G, Target image F*, Regions of Interest (ROI) S, and boundary of ROI ∂S 

Output: New edited image F 

1 Load Source and Target Images 

2 Create a mask for the selected ROI in source image G 

3 Place the extracted region inside the ROI into the desired locaction of target image F* 

4 Setup U and V (to store the previous and updated pixel values inside ROI using mask created in Step 2 

5 Initialize values for ω, λ, α, β. 

6 Compute red nodes where (i+j) is even using the previous values of black nodes in U. 

7 Compute black nodes where (i+j) is odd using the updated values of red nodes stored in V. 

8 Check converge criterion and copy the updated values in V into U. 

9 If the convergence criterion is satisfied, terminate the iteration procedure, otherwise repeat step 5. 

10 F* = V 
 

SET A    

 

SET B   
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SET C   

      (a)          (b)    

Figure 4.  Pairs of target (a) and source (b) images. 

 

TABLE I.  THE NUMBER OF PIXELS IN THE SELECTED REGION 

Selected region Balloon Goose Eland 

Number of pixels 12,392 7,600 7,939 

 

5. RESULTS OF EXPERIMENTS 

The experiments involve three sets of images of 
various sizes being tested. Figure 4 shows the images of 
sets A, B, and C. Each set is a pair of source and target 
images. The four methods (the standard red-black 
variants: RBSOR and RBAOR, and their corresponding 
modified variants: MSOR and MAOR) were applied to 
the three sets of images with different numbers of 
unknown pixels, as shown in Table I. 

A. Computational Cost Measurements 

This section presents the computational time of the 
composition process for the three sets of images using the  

 

tested methods, as shown in Tables II-IV. The results in 
these three tables show that MAOR gives fewer iterations 
than the other methods. Consequently, the MAOR method 
provides the best performance in terms of computational 
time for all three sets of images. The modified variants of 
the MSOR and MAOR methods outperform their 
corresponding standard non-modified variants, RBSOR 
and RBAOR, in which the number of iterations has been 
reduced by approximately 7-10%, respectively. The AOR 
variants perform better than the SOR variants by 
decreasing the iteration count by approximately 18-22%. 

 

TABLE II.  COMPUTATIONAL RESULTS FOR IMAGE SET A 

METHODS Number of iterations, k Computational time, t 

RBSOR 886 12s 692ms 

RBAOR 746 10s 541ms 

MSOR 826 11s 484ms 

MAOR 678 9s 425ms 

 

TABLE III.  COMPUTATIONAL RESULTS FOR IMAGE SET B 

METHODS Number of iterations, k Computational time, t 

RBSOR 486 5s 993ms 

RBAOR 388 4s 840ms 

MSOR 448 5s 429ms 

MAOR 347 4s 261ms 
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TABLE IV.  COMPUTATIONAL RESULTS FOR IMAGE SET C 

METHODS Number of iterations, k Computational time, t 

RBSOR 455 6s 20ms 

RBAOR 375 5s 35ms 

MSOR 422 5s 516ms 

MAOR 339 4s 498ms 

 

B. Image Quality Measurements 

In the composition process, image quality 

measurement plays an important role. It can be utilized to 

compare the final images generated by the tested method 

with the ideal output images produced by the standard 

Gauss-Seidel method. In this work, the statistical analysis 

of variance (ANOVA) method [26] is used where the 

quality is measured using seven metrics.  

Mean Square Error (MSE) is used to measure 

distortion and can be expressed as follows:  

𝑀𝑆𝐸 =
1

𝑚𝑛
∑ ∑(𝐴𝑖𝑗 − 𝐵𝑖𝑗)2

𝑛

𝑗=1

𝑚

𝑖=1

. 

  (16) 

The variable (m x n) denotes the image size, A is the 

reference image, and B is the processed image. The MSE 

compares the reference and processed images, in which 

smaller value represents better result. The two images are 

identical if the MSE value is equal 0.  

The Peak Signal-to-Noise Ratio (PSNR) value is used 

to measure the ratio of power to the noise. It is measured 

in decibel scale. Two images with the same value of 

PSNR are identical. PSNR can written as below: 

 

𝑃𝑆𝑁𝑅 = 10 log
2552

𝑀𝑆𝐸
 

  (17) 

The Structural Similarity Index Measure (SSIM) tests 

the similarity between the reference and processed 

images [27]. The aim is to obtain SSIM value that is 

equal to 1, which means the two images are identical. 

The SSIM formulae is given as [28] 

 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜑𝑥𝜑𝑦 + 𝐶1)(2𝜏𝑥𝑦 + 𝐶2)

(𝜑𝑥
2 + 𝜑𝑦

2 + 𝐶1)(𝜏𝑥
2 + 𝜏𝑦

2 + 𝐶2)
 

  (18) 

where {φx, φy} denotes the mean itensity, {τx, τy} denotes 

standard deviation set of x and y images, respectively. 

The parameter τxy denotes the cross correlation. Both 

parameters C1 and C2 are small constants value to ensure 

stability, particularly when the denominator is too close 

to zero [29]. SSIM value equal 1 means the two images 

are identical. 

The formulae of Structural Content (SC) metric is 

given as follows 

 

𝑆𝐶 =
∑ ∑ (𝐴𝑖𝑗)2𝑛

𝑗=1
𝑚
𝑖=1

∑ ∑ (𝐵𝑖𝑗)2𝑛
𝑗=1

𝑚
𝑖=1

 

 (19) 

Normalized Absolute Error (NAE) quality measure 

can be expressed as follows: 

 

𝑁𝐴𝐸 =
∑ ∑ (|𝐴𝑖𝑗 − 𝐵𝑖𝑗|)2𝑛

𝑗=1
𝑚
𝑖=1

∑ ∑ (𝐴𝑖𝑗)2𝑛
𝑗=1

𝑚
𝑖=1

 

 (20) 

Average Difference (AD) provides the average of 

change for the two images and is written as below: 

 

𝐴𝐷 =
1

𝑚𝑛
∑ ∑[𝐴𝑖𝑗 − 𝐵𝑖𝑗]

𝑛

𝑗=1

𝑚

𝑖=1

 

 (21) 

Maximum Difference (MD) measures the maximum 

difference of pixel value between the two images. MD is 

defined as follows: 

𝑀𝐷 =  max(|𝐴𝑖𝑗 − 𝐵𝑖𝑗|) 

 (22) 

The aim of MD is to obtain a very small difference value. 

If the values obtained from equations (19) – (22) are 

equal, it represents the images generated by the tested 

methods are identical. 

A comparison between the generated images from the 

four tested methods for all sets of images A, B, and C is 

illustrated in Figures 5, 6, and 7, respectively. Visually, 

the images generated by each set are identical. Tables V, 

VI, and VII show the values of the seven measurement 

metrics. The MSE and SSIM values are approximately 

near 0 and 1, respectively. Whereas, the values obtained 

from PSNR, SC, NAE, AD and MD metrics are nearly 

equal. These values mean that the output images 

generated by the four different methods are almost 

identical. Based on the obtained MSE and PSNR values 

shown in the tables, the output images generated by the 

SOR variants are slightly more identical to the ideal 

output generated by the Gauss-Seidel method compared 

to the images generated by the AOR variants. Since the 

differences are very small, the visual appearances of the 

composed images generated by both variants are identical 

and, thus the visual differences are hardly noticeable.  
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SET A   

 RBSOR RBAOR 

    

 MSOR MAOR 

Figure 5.  The images generated by set A. 

 

SET B   

 RBSOR RBAOR 
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 MSOR MAOR 

Figure 6. The images generated by set B. 

 

 

SET C   

 RBSOR RBAOR 

   

 MSOR MAOR 

Figure 7.  The images generated by set C. 

TABLE V.  SIMILARITY MEASUREMENT FOR IMAGE SET A 

METHODS MSE PSNR SSIM SC NAE AD MD 

RBSOR 0.318310 53.10230 0.99997 0.99767 0.00102 0.13993 8.0 

RBAOR 0.378105 52.35468 0.99997 0.99746 0.00112 0.15265 8.0 

MSOR 0.332355 52.91478 0.99997 0.99762 0.00105 0.14300 8.0 

MAOR 0.393595 52.18031 0.99997 0.99741 0.00114 0.15588 9.0 
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TABLE VI.  SIMILARITY MEASUREMENT FOR IMAGE SET B 

METHODS MSE PSNR SSIM SC NAE AD MD 

RBSOR 0.00388 72.24248 0.99999 0.99994 3.57641 0.00692 3.0 

RBAOR 0.00434 71.75591 0.99999 0.99993 3.88134 0.00751 3.0 

MSOR 0.00399 72.12652 0.99999 0.99993 3.65652 0.00708 3.0 

MAOR 0.00443 71.67167 0.99998 0.99992 3.95887 0.00766 3.0 

 

TABLE VII.  SIMILARITY MEASUREMENT FOR IMAGE SET C 

METHODS MSE PSNR SSIM SC NAE AD MD 

RBSOR 0.06301 60.13671 0.99999 0.99891 4.32086 0.05003 4.0 

RBAOR 0.07401 59.4382 0.99999 0.99881 4.73282 0.05480 5.0 

MSOR 0.06471 60.02109 0.99999 0.99889 4.39513 0.05089 5.0 

MAOR 0.07844 59.18570 0.99999 0.99876 4.86237 0.05630 5.0 

 

6. CONCLUSIONS 

This paper presents the implementation of four 
iterative methods using red-black ordering to obtain the 
solution of the Poisson equation to solve the image 
composition problem. Based on the results, it is clearly 
shown that the MAOR outperforms the other methods in 
terms of computational time. It is also shown that the 
AOR variants perform faster than their corresponding 
SOR variants. The SOR variants, however, are slightly 
better than AOR variants in terms of similarity to the ideal 
output images produced by the Gauss-Seidel method, but 
since the differences are very small, this slight drawback 
is hardly noticeable visually. With red-black ordering, the 
red and black nodes are computed alternately, in which 
the computational molecules for the nodes of the two 
colors are independent. Therefore, the proposed modified 
variants are very suitable for parallel implementation. 
From the comparison obtained with the seven 
measurement metrics, it can be observed that all images 
generated by the tested methods are identical. This means 
that the quality of images produced by the proposed 
methods are almost identical, in which no significant 
differences are noticeable. 
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