

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 10, No.1 (Feb-2021)

E-mail: hamid@sumait.ac.tz, antarabdulqawy@sumait.ac.tz

 http://journals.uob.edu.bh

Static Analysis of Malware in Android-based Platforms:

A Progress Study

Abdulhamid Ahmed Ali

1
 and Antar Shaddad H. Abdul-Qawy

1

1Department of Science and Information Technology, Faculty of Science, SUMAIT University, Zanzibar, Tanzania

Received 20 Mar. 2020, Revised 10 Sep. 2020, Accepted 25 Dec. 2020, Published 8 Feb. 2021

Abstract: Android-based platforms enable various applications to request and gain permissions when they need to access the

resources of our mobile-phones. This keeps users’ data and credentials on hazards and makes them vulnerable to attackers. Several

research works have been conducted on this issue and numerous techniques have been developed for detecting malware. Some of

these techniques focus on static analysis by inspecting the application package to discover any suspicious hidden code. Such static
analysis based schemes are commonly utilized in anti-virus software, including the signature-based and the permission-based

mechanisms. In this context, this paper provides a progress study for static analysis of malware in Android-based platforms. We

initially investigate common types of malware and present the main categories of malware analysis methods. We, then, provides a

literature review on some research works that have been introduced in the last few years on static analysis of Android malware, for
both signature-based and the permission-based approaches. However, it is encouraged to provide novel ideas that can help in

developing innovative solutions and intelligent systems for detecting various malware in our digital world.

Keywords: Malware Detection, Static Analysis, Android Applications, Signature-based, Permission-based.

1. INTRODUCTION

Nowadays, the rapid growth in various aspects of ICT
(Information and Communication Technology) has led to
major changes in the way of managing our life [1, 2]. The
use of mobile phones, tablets, laptops, desktops, and
various smart devices is being adapted recently by most of
the individuals, workgroups, and enterprises, for
accomplishing different tasks of our daily activities [3].
The open-source platforms, such as Android OS, have
been widely utilized in millions of mobile devices over
the world. Users are allowed to freely download, install,
and run different third-party applications. This has led to

many advantages and disadvantages. One of the
disadvantages is the invasion of Malwares [4]. Attackers
take the opportunity of such activities to reach their
targets and achieve their aims on Android-based devices.
This can be realized by injecting/writing a malicious code
within the applications they develop so that the targeted
information (e.g., valuable, private, and sensitive data) is
transferred to them once the user runs such applications,
with which the malicious code starts running in the
background [5]. This happens without the user awareness
of what is occurring while he/she is enjoying other
services provided by such harmful applications [5, 6, 7].

http://dx.doi.org/10.12785/ijcds/100132

322 A.A. Ali & A.S.H. Abdul-Qawy: Static Analysis of Malwares in Android-based Platforms…

http://journals.uob.edu.bh

Therefore, malware detection, classification, analysis, and
treatment are considered as key research concerns
presently [8]. Developing robust mechanisms to ensure
trustable and reliable third-party applications for such
rapidly growing technology is highly needed. Innovative
solutions can be efficiently used in reducing the expert

efforts and manual work required in malware analysis [9].
The aim is to allow data and algorithms to drive decisions
that require finding-out correlations between large
numbers of samples turns out to yield many accurate
results than that obtained when humans do the job [10].
This helps in avoiding unauthorized access to sensitive
data and private information, as well as preventing
suspicious codes for being running hiddenly on our daily
used smart devices. This paper provides a valuable study
of static analysis approaches introduced for detecting
malwares on Android-based smartphones. We start by
overviewing common types of malware software in
Section 2. We, then, discuss different methods utilized in
detecting and preventing malware on Android OS
platforms in Section 3, and focus, in particular, on static
analysis methods in Section 4. Finally, in Section 5, we
introduce a review study for several methods, models, and
mechanisms proposed in literature for static malware
detection and analysis in Android operating systems. We
conclude our paper in Section 6.

2. MALWARE’S OVERVIEW

A malware is defined as application software that
includes deleterious code to hurt or steal information of
users once it is being run on the targeted devices [11].
Malware has been widely used as a weapon to launch

cyber-attacks to target individual devices as well as IT-
based systems. Such attacks may compromise the system
internals (e.g., memory, files, communication ports) and
externals (e.g. of cyber-physical systems), steal sensitive
and very important information, deteriorate system
performance, and carry-out legal tasks once they gain
unauthorized access [12]. Open-source platforms and
system software, on which developers heavily rely, are
more prone to malware software created by attackers
intentionally. The attackers use this chance as an
opportunity to get things they want by injecting/writing
some malicious code in the system/user applications.
When users run such applications, the malicious process
starts without users being aware of what is happening in
the background of their devices and systems [13].
However, malware shows a noticeable continuing in their
trends of evolution. Figure 1 shows how the new malware
software rapidly increase over the last ten years [14],
while Figure 2 depicts a breakdown of malware software
as reported in [15] based on analysis study for the two last
years. Below, we discuss some of these well-known
malware programs, which have been classified into a
number of categories based on their behaviors.

A. Viruses

Viruses are known to be a small piece of malicious

code intending to harm the systems, steal data, create

botnets, erase files, or render advertisements. A virus is

capable to replicate its code and propagate to files of other

machines by inserting itself to common programs, and,

hence, whenever these host programs are executed by

users, the code of the virus also executes [16]. This

replication into the other existing programs is the main

characteristic in defining virus. Thus, the system can be

infected initially through programs which need to be run

only once. In addition, the virus can also infect various
executables, script files, and vulnerable web applications

[17]. Viruses can be distributed to other systems with the

help of network connections and portable storage media

(such as CD, USB, etc.), which also may be corrupted by

the viruses they transfer [18].

B. Worms

Computer worms are self-contained programs which
have the ability to replicate functional copies of
themselves and spread through network connections [19].
Worms are considered amongst the common and earlier
malware software [20], where they, typically, run in the
system background without the user’s knowledge. They
exploit OS vulnerabilities, so they can cause a dangerous
deterioration to the system and network performance by
consuming a huge amount of bandwidth and overloading
web servers. This happens by the means of encrypting and
deleting files as well as sending junk emails (such as
Melissa and My doom). Also, this type of malware can
use a harmful payload to damage host devices beyond
disseminating the worms [21]. However, the key
difference between worms and common computer viruses

Figure 1. New malware increase in last 10 years (data is adapted

from:[14])

 Int. J. Com. Dig. Sys. 10, No.1, 321-331 (Feb-2021) 323

http://journals.uob.edu.bh

is their ability to replicate and spread themselves without
relying on end-user activities or any other program.
Examples of malicious worms include Iloveyou, SQL
Slammer, and MS Blaster worms [22].

C. Trojans

Trojans (also called Trojan horse) are the dominant

type of malware that imitate the behavior of normal

programs and real applications to do a specific function,

but in fact, do another. This is to trick users into

downloading and installing them, so they can hijack

users’ credentials (e.g., at the time of login to the system),

and run harmful tasks such as formatting hard disk,

deleting files, or running applications that can defeats

system security or authentication procedures [23]. The

main target of Trojans is to have full control of the

infected system remotely, so they can damage system
resources including files and data stored in the HDD, and

sometimes they can deny access to essential system

services [24]. Once the attackers gain unauthorized access

to a hijacked system, they become able to steal data

(financial data, login credentials, etc.), install other

malware software, observe user activities, modify user

documents, use the system in botnets, and hide their

ongoing malicious activities.

D. Spywares

This type of software is used by attackers to monitor
and collect personal information of users from their
devices (with or without the user’s permission) and sends
it to somewhere else on the Internet [25]. Spyware
software has become a common issue that invades user’s
private data. The most frequently visited data by
Spywares includes, but not limited to, user credential,
email account information, credit card details, and
software license keys [26]. These may be achieved by
reading various documents, scripts, and files on the
infected machine, or by capturing user keystrokes through
a key logger. For instance, spywares may attack the
settings of internet browser to change your home page or
to redirect you to visit an undesired website. This type of
malware gets into the system when free software is
downloaded from an untrusted source on the internet [27],
however, spywares do not have the feature of self-
replication, so they need to be downloaded and installed
on the intended machine.

E. Adware

Adware is similar to spyware, where both attempt to
gather information about users and their activities.
Adware software is advertising-oriented malware, which
downloads, plays, or displays advertisements on the
infected system once it is being used or copied into user
devices [27]. This is usually happening while the
malicious software is running, where the aim of Adware is
to finance the distribution of the software product as a
freeware application (which does not need a payment)
[25]. Sometimes, this type of malware pop-ups an

advertisement window, redirects users to certain websites
for the purpose of marketing and making a sale, or starts
installing unknown programs without users permissions.
However, most of the adware software monitor users’
habits and then try to show them the advertisements that
fits what they are browsing or looking for [28]. For
instance, searching in google for “IoT”, may lead to
appearing a pop-up window containing an advertisement

for "microcontroller used in IoT". Normally, adware
codes are combined with some of the
software/applications which are available for free on
Internet (e.g., KaZaa and BearShare). However, like
spyware, adware software do not have the ability to
replicate themselves.

F. Others

The above-discussed software represent the main
types of malwares used by attackers. In addition, there are
many other types of malwares including ransomware,
rootkits, grayware, malvertising, crimeware, scraper,
cryptojacking, hybrid malware, etc. However, the major
ways by which the malware can spread include software
vulnerabilities, homogeneity, backdoors and unintended
download [17]. Table I presents the names of top mobile-
malwares as reported in February 2019 by Symantec [29].

Figure 2. Breakdown of malware software (source:[15])

http://en.wikipedia.org/wiki/ILOVEYOU
http://www.infoworld.com/t/malware/exorcizing-the-ghost-slammer-492
http://www.infoworld.com/t/malware/exorcizing-the-ghost-slammer-492
http://en.wikipedia.org/wiki/Blaster_(computer_worm)
https://www.sciencedirect.com/topics/computer-science/authentication-procedure

324 A.A. Ali & A.S.H. Abdul-Qawy: Static Analysis of Malwares in Android-based Platforms…

http://journals.uob.edu.bh

TABLE I. NAMES OF TOP MOBILE-MALWARES (SOURCE: [29]).

3. METHODS OF MALWARE ANALYSIS

For secured systems, we cannot say, in real scenarios,
that a system or a device is fully protected, or it cannot be
breached and compromised. However, it can be said that
the level of security of the system or the device has been
hardened and it cannot be easily breached. This means
that a system may be compromised but it may take more
time and higher efforts from attackers until it happens.

Such claims are concluded from observations of several
researchers, which indicate that everyday attackers are
continuously working for developing ways and techniques
to be used in stealing information and hacking different
systems. Currently, the attackers have changed their target
and focus more on mobile phones and ubiquitous devices,
due to the lower level of security/protection initially
implemented on them, third-party involvement, and open
source systems utilized in most of the platforms running

such devices [30]. Figure 3 depicts the top malicious
mobile app categories through which mobile devices can
be attacked as reported in February 2019 by Symantec
[29]. The significant need to develop novel approaches for
malware detection and analysis has been encouraged
recently. The aim is to know the time at which your
devices were got invaded, by which type of malware, and
how to get rid of them before they can cause huge damage
to your private information [31].

The most common methods used in detecting and
analyzing malware are the static and dynamic analysis
methods. The static analysis uses some techniques that
efficiently help in evaluating any codes written for a
particular application by identifying whether the given
application has a harmful API or any malicious behavior.
This process of static analysis works on binaries without
an actual run of the application. It starts by initially taking
the package of the written code of the application and
decompose it through utilizing the reverse engineering
techniques so that the original code can be obtained.
However, some of the developers make virtual functions
secretly written in application packages, making it
difficult to be detected and/or achieve a clear analysis
[32]. The dynamic analysis can take place only when the
application is in the running state. This helps in
identifying and keeping records of activities happen
during the execution period, including that of messages
being sent and received, network bandwidth being used
for accessing the internet, and the amount of energy being
drained from the battery. However, this method may take
more time when compared to the static analysis [33]. The
testing process of this type can be performed in the
virtualized environment, with particular settings. A third
scheme, based on combining these two methods, is
proposed by several researchers, introducing what is
known as a hybrid malware analysis approach [34].
Nonetheless, many security experts, malware analysts,
and researchers agreed that among these three schemes,
the static analysis detection has shown efficiency and
accuracy in detecting malwares in Android-based
applications. However, the nature of software and system
environment, in which they are used, have a significant
impact on the performance and accuracy level of their
results.

4. APPROACHES OF STATIC ANALYSIS

Techniques of malware static analysis have been
classified into two major categories: signature-based
approaches, which directly uses the sequence of binary
bytes, and permission-based approaches, which focus on
the disassembled binaries. Figure 4 below demonstrates
the entire process in most of the applications and models
that are built based on the static analysis approaches.

A. Signature-based Analysis

The common mechanism used in today’s anti-malware
industries is the signature-based methods [35]. This type
of schemes is based on the hash values of the byte

Threat Name Percentage (%)

Malapp 29.7

Fakeapp 9.1

MalDownloader 8.9

FakeInst 6.6

Mobilespy 6.3

HiddenAds 4.7

Premiumtext 4.4

HiddenApp 2.5

MobileSpy 2.8

Opfake 2.0

Figure 3. Top malicious mobile app categories (adapted from [29])

 Int. J. Com. Dig. Sys. 10, No.1, 321-331 (Feb-2021) 325

http://journals.uob.edu.bh

sequence found in the application binaries, where meta-
heuristic algorithms are used to build information. All the
extracted semantic patterns, as well as the application

characteristics, are used to generate a unique digital
signature [36]. In case the created signature is identical to
any of the malware signatures already predefined in the
market, then the application is considered to be malware.
This type of analysis is identified as very effective to
detect malware in the versatile applications due to the low
rate of false positives outcomes in case the signature is
already known. Once the malicious software is detected
the created signature is added to the database. However,
these approaches face difficulties to identify any new
malware types, especially with the quick change of
mobile malware. This raises the need for steady periodical
updating of the antivirus database and overhauling the
already created signature database.

B. Permission-based analysis

Installing third-party applications on Android-based
platforms requires, sometimes, certain access to user data
for the application to be installed and work perfectly [37].
There exist several APIs in the Android operating system
that permit different applications to utilize mobile
resources including hardware such as network ports,
camera, and storage, as well as the other software
including smart-mobile settings [38]. Such permission
requests can be considered as important indicators for
users to know whether the application is beneficial or
malware. The permissions accessed are controlled by the

application itself at the time of installation, at which users
should be aware of what permissions can violate their
privacy or harm mobile devices. Technically, the access
permissions are coded in the androidmanifest.xml file in
most of the applications [39]. Also, by default, the
applications have no permission to access or use the data
stored on mobile phones, which limits their functionalities
in most of the cases. However, some applications request
for permissions that are not likely to be used by the given
application. Permitting such applications to access the
data may harm the security and expose the private
information. So, users should make sure that any
application has declared all the permission it needs, and
be careful when allowing access to their data during the
installation process. The permission-based analysis
addresses only the adroidmanifest.xml file in order to
extract the various permissions from the applications
instead of analyzing all the application files [40].

5. REVIEW OF STATIC ANALYSIS METHODS

In this section, we provide a literature review of some
research studies proposed recently for malware static-
based analysis in both the signature-based and
permission-based approaches. We conclude the section
with brief highlighting of machine-learning based static
analysis techniques, indicating their relevance and rapid
growth recently.

In [41], the authors introduced a new application
called Risk-Ranker which has been designed specifically
to proactively detect android malware. Risk ranker is an
automatic scheme that sifts through various applications
to detect security threats on user devices. The authors
classified the probable risks into three levels: low,
medium, and high. Each has different effects on the
devices and a different way to compromise them without
permission form users. Based on this categorization, Risk-
Ranker is designed to detect the risk that may come from
untrusted applications. A systematic method is provided
to map each application to one of these risk categories, so
by this, it can minimize the number of applications that
may need further verification. Two analysis modules are
used to detect malicious behaviors. One is for handling
non-obfuscated applications, while the other is for
detecting apps’ behaviors that may harm user devices.
They used a set of signatures corresponding to different
known vulnerabilities, which contains their essential
characteristics, so malicious apps can be detected once
they try to exploit these vulnerabilities. The output of the
two modules are, then, used for prioritizing suspicious
applications that need more analysis. The authors
evaluated the Risk-Ranker prototype on a large number of
apps and showed a better performance. In [42], Zheng, et
al. introduced an implementation of an automatic system
for signature-based static malware analysis. The system,
which is called DroidAnalytics, helps in obtaining
opcode-level information of the applications so the
malicious logic can be quickly retrieved, associated, and
revealed, and signature is easily generated. The authors

Figure 4. The process of static analysis (adapted from [30]).

326 A.A. Ali & A.S.H. Abdul-Qawy: Static Analysis of Malwares in Android-based Platforms…

http://journals.uob.edu.bh

used a parsing algorithm to extract information from .apk
package file and retain it in a predefined data structure;
while a mechanism with three-phases is utilized for the
signature generation to identify applications based on API
calls’ sequence. This new scheme first extracts classes and
methods form .dex file of the application package, then an
API calls' table is used to generate signatures of all the
methods and classes, and lastly, the application signature
is created as a composition of all these already generated
signatures. For evaluation, the authors used 150,368
samples to identify malware apps from different families
and showed the efficiency of the proposed system.

In [43], the authors focused on the process of
increasing users’ awareness of the permissions granted to
the applications for accessing their data on Android
mobile phones. They introduced APK Auditor, a
permission-based lightweight malware detection system
for Android-based smartphones. The system has three
main components of its static analysis: a database for
storing apps information and results of operation, a user
client, and a central server. The client provides the server
with information about the app that needs to be analyzed.
The server downloads the app and communicates with the
database to manage and control the entire analysis
process, then gives feedback to the client. By this, the user
can avoid installing malware on his/her device before
checking it, and hence avoiding any malicious behavior as
well as maintaining the system performance by saving the
system resources from being used during the analysis
process. APK Auditor client on the user device gives the
user two options: analyzing applications on the Play-Store
(through https using its package-name), which can be
downloaded by the central server, or analyzing the local
applications already downloaded on the user device. The
server extract permissions of apps from the manifest file.
It then calculates PMS (permission-malware-score) for all

permissions including dangerous ones depending on their
existence in the apps, and AMS (application-malware-
score) as the sum of PMSs. AMS is used as an indication
to judge whether an apps is malicious or not. If its values
exceed the given threshold set by APK Auditor, then the
app is considered as harmful and reported as malware
application. The authors experimented with 8762 apps
(6909 are malicious apps and 1853 benign apps) and
showed a higher detection accuracy. In [44], the author
proposed a new accurate, and scalable malware detection
scheme based on family-signature for flexible static
analysis of android malicious applications. In this
solution, extracted binary-patterns of applications are used
as a representative signature of its family, where various
applications are classified into grouped (families) by
estimating signature similarity based on the concept of
that app variants mostly retain the same code and
resources. The structure of signature includes name,
character stings, method name, and their bodies, which are
extracted from DEX file in .apk package. The proposed
method consists of two consecutive stages: signature-
creation stage and malware-detection stage. In the first
stage, the character strings and binary-patterns are
extracted from DEX file of known malware with
calculating a weight for each based on its sharing level in
representing the family (PSR), where the signatures with
weight values less than a threshold are deleted to keep
higher accuracy. In the detection process stage, hashed
values and hash map are used with a dictionary-search
method for family-signature matching with the set of
patterns of DEX file for the targeted application in a
constant searching time. In their evaluating comparison,
the authors used 5846 samples of android malware
correspond to 48 families and showed that this approach
exhibits a high level of accuracy in detecting malicious
applications and a linear time-complexity with respect to
the number of apps.

 Int. J. Com. Dig. Sys. 10, No.1, 321-331 (Feb-2021) 327

http://journals.uob.edu.bh

 In [45], a new system is proposed to improve users’
security and help in protecting their privacy from
malicious applications installed on their android devices.
The scheme works statically offline and uses permission-
based analysis through clustering and categorization
techniques in order to recognize the harmful apps and
discard them form the main storage. The proposed system
consists of five phases: installed apps identification,
permission-extraction, apps-clustering, apps-
classification, and apps-removal phases. The authors used
package-manager in the first phase of the system, and
package-info in the second phase to get apps and
permission details respectively. K-mean algorithm is used
in the clustering phase in which the permissions of the
installed apps are classified into various categories of
malware. Then, the naïve Bayesian algorithm is used in
the fourth phase for further accurate classification to
decide whether the malware is malicious or benign app.
So, this helps the user to make his/her decision in the last
phase (by listing the malicious applications) to retain or
uninstall the apps from its device. In [46], the authors
focused on using multi-features for static malware
analysis. They proposed a scalable scheme for detecting
malware in android devices based on features of the
malicious application and probability theory. Their new
mechanism extracts two features: the API calls and
applications’ requested permissions from the .apk
packages in order to build their feature sets. Different
clustering algorithms are considered with these feature
sets based on a polynomial-time method to yield
predictions for provided instances. The given predictions,
then, are fused through MCDF collaborative approach to
make the final decision. Their evaluation results indicate
that their solution has better performance even with a

larger number of data sources. In [47], the applications’
malicious behavior was analyzed by Singh et al. using the
static analysis approach. The authors proposed a
characterization method by which the applications were
examined in order to find out whether the permissions
coded in the package of applications (APK byte-code) are
correct or not. This was done by matching the permissions
being requested to the application programming interface
(API) calls. They used reverse engineering software to
extract components of .apk package to be analyzed and to
filter permissions. The authors found out that most of the
developers of Android applications write permissions
code with some mistakes which lead to poor requirements
of the security.

Shahid at el. [48] proposed a new solution for
detecting android-based malware called DroidNative
decoder. This static signature-based method works at the
level of native-code and aims to detect malicious codes
that are hidden either in native-code or in byte-code. For
cod representation, the authors utilized MAIL (Malware
Analysis Intermediate Language), which, in turn, employs
two methods: ACFG and SWOD to build cross-platform
(i.e., ARM and x86) malware signatures, and uses a
number of patterns to create information about behaviors
and structures of assembly codes. This information is then
used to optimize the process of detection and analysis. In
the testing process, a decision-tree method is used to
detect the malicious apps based on the signatures sets with
a given empirical threshold. If the match occurs, then the
application is marked as malware. The DroidNative
evaluation shows improved results with respect to other
solutions. Idrees et al, in [49], introduced permissions and
intents based mechanism called PIndroid to detect
malware applications in android systems. The main aim

TABLE II. SUMMARY OF THE PERMISSION-BASED SCHEMES REVIEWED

Author and
Reference

Main focus of the paper Methodology employed

K.A. Talha et al.
[43]

Increasing the user awareness about
permissions granted to apps.

Using PMS (permission-malware-score) and AMS
(application-malware-score) to detect malicious apps.

S.B. Almin, et
al. [45]

Achieving Accurate clustering and
categorizing malicious apps.

Using package-manager, package-info, K-mean and naïve
Bayesian algorithms in different system stages.

Sheen S. el al.
[46]

Building a scalable detection system by
exploiting many features simultaneously.

Using a multi-feature collaborative model (MCDF) along
with probability based polynomial time method.

Singh et al. [47],
2016

Characterizing malware behavior in order
to make users aware of apps’ permissions.

Using a specific reverse engineering software called
“apktool” to extract .apk file components.

F. Idrees et al.
[49]

Relaying on permission and intents in
controlling access to various resources.

Using statistical methods & classification to determine the
correlation degree between intents and permissions.

F. Mohsen et al.
[50]

Studying the intensive use of broadcast-
receivers’ patterns by benign & malware.

Use a data-mining method based on broadcast-receivers
registered statically to detect malware.

Zhang X. et al.
[51]

Decrypting and reconstructing data from

android vault apps.

Using reverse engineering and “adb pull” for static analysis

of extracted artifacts.

TABLE III. SUMMARY OF THE SIGNATURE-BASED SCHEMES REVIEWED

Author and
Reference

Main focus of the paper Methodology employed

M. Grace et al.
[41],

Detecting zero-day malware in the
existing Android applications.

Using two-order risk analysis modules based on

vulnerabilities signatures to detect dangerous behaviors.

Zheng, et al [42]
Quick identification of the high volume
zero-day malicious mobile malware.

Using a multi-level signature-generation algorithm at the
op-code level (i.e., class/method/app level)

J. Lee et al. [44]
Increasing the robustness and speed of
detecting malware variants.

Using automatic family-signature design and matching
based on PSR, Tpsr, hash values, and hash map.

Shahid et al.
[48]

Utilizing control-flow patterns to achieve
automation and reduce obfuscations.

Using MAIL, ACFG, and SWOD for signatures-creation
and “decision-tree” for decoding and tagging.

S. Ngamwitroj
et al [52]

Exploiting the existing features of the
applications to detect malwares

Using the frequencies of feature’s usages extracted to
designing malicious signature and detecting malware.

A. Jalilian et al .
[53]

Extracting the file features in a static mode
and without running them.

Using of N-grams distribution and Top-k algorithm in
identifying unknown files.

328 A.A. Ali & A.S.H. Abdul-Qawy: Static Analysis of Malwares in Android-based Platforms…

http://journals.uob.edu.bh

was to protect users from the rapid increase in malicious
attacks. The method is integrated with an ensemble
scheme to increase detection accuracy. The authors
analyzed a number of malware and benign applications
collected from different sources. To determine the
correlation level (e.g., Pearson correlation coefficient (r))
between the two parameters: permissions and intents, they
used correlation coefficient methods and indicated a
robust relationship between dangerous intents and
dangerous permissions. The proposed system has three
major phases: extracting features (permissions and
intents), preprocessing, and categorization. Their
evaluation results show an improved efficiency in the
detection process with a higher accuracy level.

In [50], the authors studied the impact of broadcast-
receivers usage patterns by android-based malware
through analyzing onReceive() source-code manually.
They proposed a static malware detection scheme that
uses static analysis of registered broadcast-receivers,
which are largely exploited by malicious applications in
comparison to benign apps. Both the manifest files
(containing permissions and broadcast-receivers) and Java
source code are analyzed in this mechanism, where tools
of reverse engineering are employed on APKs to retrieve
them. Apktool is used to extract classes.dex, and XMLs
from APS’s resources, while dex2jar and JD tool are used
for getting Java source code (the parts related to receivers
are used to find the occurrence of specific actions). The
analysis process considered 5,723 malicious applications
and 48,262 benign from which they extract permissions
and actions by parsing manifest files. The prediction stage
assumes three different configurations: permissions only,
action items only, and permissions and action items
together. Then, applies a new data mining processing
scheme based on SVM algorithm (which has a statistical
origin) to create balanced data-sets and use CV (cross-
validation) in order to obtain the proper combinations.
The authors indicated in their evaluation that using
broadcast-receivers along with permissions in their
solution provide better detection results. In [51], a new
forensic analysis of the security and privacy
implementations in the vault applications of the Android-
based devices is introduced. These applications are
usually designed to enhance user privacy but are misused
in hiding various incriminating files and considered as
anti-digital forensic applications. The authors proposed a
new method that helps in breaking into a number of vault
applications and reconstructing files hidden by
applications without login requirements. In addition to
reverse engineering APK files, their method extracts
forensic artifacts from such applications and then
examines them. For this, they installed the applications
and changed their setting such as passwords, lock pattern,
recovery email, etc., and store some well numbered files
in them. They then use “adb pull” command to get the
required artifacts and store them in predefined folders,
then manually analyzed them. The experimentations and
case study they presented show that security holes still

there in such privacy applications and can be exploited by
practitioners using reverse engineering.

In [52], a signature-based malware detection
mechanism is proposed by S. Ngamwitroj and B.
Limthanmaphon based on static analysis. In order to build
the signature of the malicious apps, the author used data
of broadcast-receivers and frequencies of permission
usage extracted from the manifest file. The proposed
method consists of two main parts: signature creation of
malicious apps, and malware-detection process. The first
part calculates the frequencies of permissions &
broadcast-receiver usage and ranks them in decreasing
order. Only some top-most of them, then, are used in
designing the malicious signature in a compare-and-trim
process. These extracted information and created
signatures are used in the second stage of the method (i.e.,
malware-detection process). The authors evaluated their
proposed scheme by examining 1,447 application and
showed a significantly improved performance. In [53], a
new signature-based scheme for detecting malware is
provided which focuses on features’ extraction of
application (i.e., op-codes, binary-sequences, or API-
calls) statically before running them on the user device.
The method uses the N-gram distribution and Top k
algorithm to define the top most-similar k files when
identifying unknown files. The process has three main
stages: binary-sequence and op-code extraction, N-gram
generation, and file classification. For N-grams algorithm,
which is simple and stable when obfuscation exists, each
N-gram (N= 1, 2, 3, …, k) denotes an application feature,
where deciding the appropriate N will help in maintaining
the desired efficiency and performance. The author
considered Top-K similar-files approach and used the
features taken from .apk package along with features of
op-code in order to enhance the strength of feature space
and improve detection efficiency. The evaluation results
show a significant improvement in accuracy when the
Top-K approach, a combination of op-code sequence, and
binary-files are employed in classifying benign-
files/malware apps.

Recently, data science and machine-learning have
revealed efficient potential in developing innovative
solutions for automating different aspects of malware
investigation and analysis techniques. Several designing
and implementation challenges emerge, which makes the
need for new solutions and standard mechanisms crucial.
The aim is to cope with the rapid increase of malware
threats, particularly in parallel with the increase in big
data generation. However, this domain is a very broad
area of its own, which is our separate work following this
progress study. The reader can find more about machine
learning mechanism in [9, 54 – 60].

6. CONCLUSION

Malware software are mostly transferred to users’
mobile phones when applications are being installed. This
may lead to granting attackers unauthorized access to

 Int. J. Com. Dig. Sys. 10, No.1, 321-331 (Feb-2021) 329

http://journals.uob.edu.bh

sensitive and private data stored on the users’ devices.
Attackers and malware developers work hard in order to
develop hacking techniques, applications, and software to
steel private date from ubiquitous devices and systems of
those who do not care much about securing their
information. Malware analysis is known to be the study of
functionality, purpose, origin and the impact of malicious
applications and software. Then deciding on how to avoid
or treat them. This task is, by tradition, known to be
exhausting and complicated. It requires expert knowledge
of analytics and of reverse engineering together with
understanding of software architecture. As technology
continues to develop rapidly, it is important to keep our
knowledge, and technical skills, in this domain, up to date.
The need is to improve user awareness of such malware
applications so they can make the right decision at the
time of downloading and installation. In addition,
innovative solutions, models, standards, and tools are to
be developed to facilitate malware detection, analysis, and
treatment. In this paper, we have introduced a progress
study of malware analysis in Android-based operating
systems, centered on static approaches. Common classes
of malware software have been presented, followed by
discussions on the major techniques used for malware
detection and analysis. A literature review is, then,
presented on several static analysis solutions including
signature-based and permission-based schemes proposed
in the last few years. The intended work in the future
focuses on considering recent machine learning
techniques along with big data analytics within the data-
science domain in order to develop a practical
multidimensional joint optimization approach to achieve
better performance and higher accuracy level of malware
analysis.

REFERENCES

[1] M. Dachyar, Teuku Yuri M. Zagloel, and L. Ranjaliba Saragih,

“Knowledge growth and development: internet of things (IoT)
research, 2006–2018”, Heliyon, Vol. 5, No. 8, 2019, pp. 1-14.

[2] Abdul-Qawy, A.S.H., Srinivasulu, T. SEES: a scalable and

energy-efficient scheme for green IoT-based heterogeneous

wireless nodes. J Ambient Intell Human Computing,
Springer, 2019, pp. 10, 1571–1596.

[3] Antar S. H. Abdul-Qawy and T. Srinivasulu, “Greening Trends in

Energy-Efficiency of IoT-based Heterogeneous Wireless Nodes”,

International Conference on Electrical, Electronics, Computers,

Communication, Mechanical and Computing (EECCMC), Jan
2018, India, pp. 118 – 427.

[4] Stiborek J., Pevný T., and Rehák, M., “Multiple instance learning

for malware classification”, Expert Systems with Applications,
Vol. 93 No. 1, 2018, pp. 346-357.

[5] John Sammons, and Michael Cross, “Chapter 3 - Software

problems and solutions”, The Basics of Cyber Safety, Syngress,
2017, pp. 53-74.

[6] Sudhakar Kumar S., “An emerging threat Fileless malware: a
survey and research challenges”, Cybersecur, vol. 3, No. 1, 2020.

[7] Xu Jiang et al., “Android Malware Detection Using Fine-Grained
Features”, Scientific Programming, Hindawi, pp. 1-13.

[8] N. Lageman, M. Lindsey and W. Glodek, "Detecting malicious

Android applications from runtime behavior", IEEE Military

Communications Conference (MILCOM), USA, 2015, pp. 324-
329.

[9] Daniele Ucci, Leonardo Aniello, and Roberto Baldoni, “Survey of

machine learning techniques for malware analysis”, Computers &
Security, Vol. 81, 2019, pp. 123-147.

[10] Freeman D., and Chio C., “Chapter 4: Malware Analysis”,

Machine Learning and Security, O'Reilly Media, Inc., 2018, pp.
125-79.

[11] Darrel Rendell, “Understanding the evolution of malware”,
Computer Fraud & Security, Vol. 2019, No. 1, 2019, pp. 17-19.

[12] P. Michalopoulos, V. Ieronymakis, M.T. Khan, and D. Serpanos,

“An Open Source, Extensible Malware Analysis Platform”,
MATEC Web of Conferences 188, 05009, 2018.

[13] Jha A. K., Lee, and W. J., “An empirical study of collaborative

model and its security risk in Android”, Journal of Systems and
Software. Vol. 137, No. 1, 2018, pp. 550-562.

[14] Malware AV-TEST-The Independent IT-Security Institute, online:
https://www.av-test.org/en/statistics/malware/

[15] Aslan Ömer. Samet Refik and Tanrıöver, Ömer, “Using a

Subtractive Center Behavioral Model to Detect Malware”,
Security and Communication Networks, 2020, pp. 1-17.

[16] Lysne Olav, “Static Detection of Malware", the Huawei and

Snowden Questions, Springer International Publishing, 2018, pp.
57-66.

[17] Neil DuPaul, “Common Malware Types: Cybersecurity 101”,

online:https://www.veracode.com/blog/2012/10/common-
malware-types-cybersecurity-101.

[18] Jang J. et al., “Andro-Dumpsys: Anti-malware system based on

the similarity of malware creator and malware centric

information”, Computers & Security, Vol. 58, No. 1, 2016, pp.
125-138.

[19] Bimal Kumar Mishra, and Samir Kumar Pandey, “Dynamic model

of worm propagation in computer network”, Applied
Mathematical. 38 Modelling, Vol, No. 7, 2014, pp. 2173-2179.

[20] Touchette F., “The evolution of malware”, Network Security,
2016, pp. 11-14.

[21] Veracode, “COMPUTER WORM, online:

 https://www.veracode.com/security/computer-worm

[22] Roger A. Grimes, “ types of malware and how to recognize them”,
CSO, May 2019, online:

https://www.csoonline.com/article/2615925/security-your-quick-
guide-to-malware-types.html.

[23] Z. Huang et al., "A Survey on Machine Learning Against

Hardware Trojan Attacks: Recent Advances and Challenges”,
IEEE Access, vol. 8, 2020, pp. 10796-10826.

[24] Sheen S., Anitha R., and Sirisha P., “Malware detection by

pruning of parallel ensembles using harmony search”, Pattern
Recognition Letters. Vol. 34, No. 14, 2013, pp. 1679-1686.

[25] Ido Dubrawsky, “Chapter 1 - Systems Security”, Eleventh Hour
Security+, Syngress, 2010, pp. 1-16.

[26] Todd G. Shipley, and Art Bowker, “Chapter 7 - Online Digital

Officer Safety”, Investigating Internet Crimes, Syngress, 2014, pp.
149-169.

[27] Razak M. F. A. et al., “The rise of “malware”: Bibliometric

analysis of malware study. Journal of Network and Computer
Applications, Vol. 75, No. 1, pp. 58-76.

[28] J. Gao et al., "Should You Consider Adware as Malware in Your

Study?", IEEE 26th International Conference on Software

Analysis, Evolution and Reengineering (SANER), Hangzhou,
China, 2019, pp. 604-608.

[29] Symantec Corporation, “Internet security threat report,”
Symantec, online: https://docs.broadcom.com/doc/istr-24-2019-en

https://www.av-test.org/en/statistics/malware/
https://www.veracode.com/blog/2012/10/common-malware-types-cybersecurity-101
https://www.veracode.com/blog/2012/10/common-malware-types-cybersecurity-101
https://www.veracode.com/security/computer-worm
https://www.csoonline.com/article/2615925/security-your-quick-guide-to-malware-types.html
https://www.csoonline.com/article/2615925/security-your-quick-guide-to-malware-types.html
https://docs.broadcom.com/doc/istr-24-2019-en

330 A.A. Ali & A.S.H. Abdul-Qawy: Static Analysis of Malwares in Android-based Platforms…

http://journals.uob.edu.bh

[30] Abdullah Talha Kabakus, and Ibrahim Alper Dogru, “An in-depth

analysis of Android malware using hybrid techniques, Digital
Investigation, Vol. 24, 2018, pp. 25-33.

[31] Almin S. B., and Chatterjee M., “A Novel Approach to Detect

Android Malware”, International Conference on advanced

computing technologies and applications, Vol. 45, No. 1, 2015,
pp. 407-417.

[32] Weijie Han et al., “MalDAE: Detecting and explaining malware

based on correlation and fusion of static and dynamic

characteristics”, Computers & Security, Vol. 83, 2019, pp. 208-
233.

[33] Fan W. et al., “DroidInjector: A process injection-based dynamic

tracking system for runtime behaviours of Android applications”,
Science Direct., Vol. 70, No. 1, 2017, pp. 224-237.

[34] Tong F., and Yan, Z., “A hybrid approach of mobile malware

detection in Android”, Journal of Parallel and Distributed
Computing, Vol. 103, No. 1, 2017, pp. 22-31.

[35] Alireza Souri, and Rahil Hosseini, “A state-of-the-art survey of

malware detection approaches using data mining techniques”,
Hum. Cent. Comput. Inf. Sci., Vol. 8, No. 3, 2018, pp. 1-22.

[36] Shinde S. V., and Manjrekar A. A., “A Review Paper on Effective

Behavioural Based Malware Detection and Prevention Techniques

for Android Platform”, International Journal of Engineering
Research and Technology, Vol. 10, No. 1, 2017, pp. 901-907.

[37] Talha K. A., Alper D. I., and Aydin, C., “APK Auditor:

Permission-based Android malware detection”, Digital
Investigation, Vol. 13, No. 1, 2015, pp. 1-14.

[38] Wu S. et al., “Effective detection of android malware based on the

usage of data flow APIs and machine learning”, Information and
Software Technology, Vol. 75, No. 1, 2016, pp. 17-25.

[39] Kaur P., and Sharma S., “Literature Analysis on Malware

Detection”, International Journal of Electronic and Electrical
Engineering, Vol. 7, No. 7, 2014, pp. 717-722.

[40] Rao V., and Hande K., “A comparative study of static, dynamic

and hybrid analysis techniques for android malware detection”,

International Journal of Engineering Development and Research,
Vol. 5, No. 2, 2017, pp. 1433-1436.

[41] M. Grace et al., “RiskRanker: scalable and accurate zero-day

android malware detection”, 10th international conference on

Mobile systems, applications, and services (MobiSys),
Association for Computing Machinery, USA, 2012 pp. 281–294.

[42] M. Zheng, M. Sun and J. C. S. Lui, "Droid Analytics: A Signature

Based Analytic System to Collect, Extract, Analyze and Associate

Android Malware", 12th IEEE International Conference on Trust,

Security and Privacy in Computing and Communications,
Australia, 2013, pp. 163-171.

[43] K. A. Talha, D. I. Alper, and C. Aydin, “APK Auditor:

Permission-based Android malware detection system”, Digital
Investigation, Vol. 13, 2015, pp. 1-14.

[44] Jehyun L., Suyeon L., and Heejo L., “Screening smartphone

applications using malware family signatures”, Computers &
Security,Vol. 52, 2015, pp. 234-249.

[45] S. B Almin, and M. Chatterjee, “A Novel Approach to Detect

Android Malware”, Procedia Computer Science, Volume 4, 2015,
pp. 407-417.

[46] Sheen S., Anitha R., and Natarajan, “Android based malware

detection using a multi feature collaborative decision fusion
approach”, Neurocomputing, Vol. 151, No. 2, 2015, pp. 905-912.

[47] Singh P., Tiwari P., and Singh, S., “Analysis of Malicious

Behaviour of Android Apps”, International Conference on

Communication, Computing and Virtualization. Vol. 79, No. 3,
2016, pp. 215 – 220.

[48] Shahid Alam et al., “DroidNative: Automating and optimizing

detection of Android native code malware variants”, Computers &
Security, Vol. 65, 2017, pp 230-246.

[49] Idrees F. et al., “PIndroid: A novel Android malware detection

system using ensemble learning methods”, Computers & Security.
Vol. 68, No. 1, 2017, pp. 36-46.

[50] F. Mohsen et al., “Detecting Android Malwares by Mining

Statically Registered Broadcast Receivers”, IEEE 3rd

International Conference on Collaboration and Internet
Computing (CIC), CA, 2017, pp. 67-76.

[51] Zhang X., Baggili I., and Breitinger F., “Breaking into the vault:

Privacy, security and forensic analysis of Android vault

applications”, Computers & Security, Vo. 70, No. 1, 2017, pp.
516-531.

[52] S. Ngamwitroj, and B. Limthanmaphon, “Adaptive Android

Malware Signature Detection”, International Conference on

Communication Engineering and Technology (ICCET-18),
Association for Computing Machinery, USA, 2018, pp. 22–25.

[53] Jalilian A., Narimani Z., and Ansari E., “Static Signature-Based

Malware Detection Using Opcode and Binary Information”. 7th

International Conference on Contemporary Issues in Data Science

(CiDaS-2019), Lecture Notes on Data Engineering and
Communications Technologies, vol 45. Springer, 2019, pp. 24-35.

[54] Shalaginov A., et al., Machine Learning Aided Static Malware

Analysis: A Survey and Tutorial. In: Dehghantanha A., Conti M.,

Dargahi T. (eds) Cyber Threat Intelligence. Advances in
Information Security, vol 70. Springer, 2018, pp. 7-45.

[55] Daniel Gibert, Carles Mateu, and Jordi Planes, “The rise of

machine learning for detection and classification of malware:

Research developments, trends and challenges”, Journal of
Network and Computer Applications, Vol. 153, 2020, pp 1-22,

[56] Quan Le et al., “Deep learning at the shallow end: Malware

classification for non-domain experts, Digital Investigation, Vol.
26, 2018, pp. S118-S126.

[57] Milosevic N., Dehghantanha A., and Choo K.-K. R., “Machine

learning aided Android malware classification”, Computers &
Electrical Engineering, Vol. 61, No. 1, pp. 266-274.

[58] Matilda Rhode, Pete Burnap, and Kevin Jones, “Early-stage

malware prediction using recurrent neural networks”, Computers
& Security, Vol. 77, 2018.

[59] ElMouatez Billah Karbab, and Mourad Debbabi, “MalDy:

Portable, data-driven malware detection using natural language

processing and machine learning techniques on

behavioral analysis eports”, Digital Investigation, Vol. 28,
Supplement, 2019.

[60] Gianni D’Angelo, Massimo Ficco, and Francesco Palmieri,

“Malware detection in mobile environments based on Auto-

encoders and API-images”, Journal of Parallel and Distributed
Computing, Vol. 137, 2020, pp. 26-33.

https://link.springer.com/conference/cidas
https://link.springer.com/conference/cidas

 Int. J. Com. Dig. Sys. 10, No.1, 321-331 (Feb-2021) 331

http://journals.uob.edu.bh

Mr. Abdulhamid Ahmed Ali has

received his bachelor degree in
Information Technology from Asia

Pacific University of Technology and

Innovation (APU), Malaysia in 2017,

and master degree in Data Science and
business analytics in 2019 from APU,

Malaysia. He is now working as an

Assistant Lecturer of Information

Technology at the Faculty of Science,
SUMAIT University, Zanzibar,

Tanzania. His areas of interest include Big Data, Information

System Security, Cloud Computing, System Analysis and

System Design.

Dr. Antar Shaddad H. Abdul-

Qawy Has received his B.E in
Computer Engineering in 2005 from

Hodeidah University, Yemen,

Master of Technology in Computer

Science in 2014 form University of
Hyderabad, India, and Ph.D. in

Internet of Things, in April 2019

from Department of Electronics and

Communication Engineering,
Kakatiya University, India. He

worked as Assistant Lecturer at

Hodeidah University from 2005 to 2012. Now, he is working as

a Senior Lecturer of Information Technology at the Faculty of
Science, SUMAIT University, Zanzibar, Tanzania. His areas of

interest include Internet of Things, Wireless Sensor Networks,

Data Science, Green loT, and Energy-Efficient Networks

