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Abstract: Android-based platforms enable various applications to request and gain permissions when they need to access the 

resources of our mobile-phones. This keeps users’ data and credentials on hazards and makes them vulnerable to attackers. Several 

research works have been conducted on this issue and numerous techniques have been developed for detecting malware. Some of 

these techniques focus on static analysis by inspecting the application package to discover any suspicious hidden code. Such static 
analysis based schemes are commonly utilized in anti-virus software, including the signature-based and the permission-based 

mechanisms. In this context, this paper provides a progress study for static analysis of malware in Android-based platforms. We 

initially investigate common types of malware and present the main categories of malware analysis methods. We, then, provides a 

literature review on some research works that have been introduced in the last few years on static analysis of Android malware, for 
both signature-based and the permission-based approaches. However, it is encouraged to provide novel ideas that can help in 

developing innovative solutions and intelligent systems for detecting various malware in our digital world.  
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1. INTRODUCTION 

Nowadays, the rapid growth in various aspects of ICT 
(Information and Communication Technology) has led to 
major changes in the way of managing our life [1, 2]. The 
use of mobile phones, tablets, laptops, desktops, and 
various smart devices is being adapted recently by most of 
the individuals, workgroups, and enterprises, for 
accomplishing different tasks of our daily activities [3]. 
The open-source platforms, such as Android OS, have 
been widely utilized in millions of mobile devices over 
the world. Users are allowed to freely download, install, 
and run different third-party applications. This has led to 

many advantages and disadvantages. One of the 
disadvantages is the invasion of Malwares [4]. Attackers 
take the opportunity of such activities to reach their 
targets and achieve their aims on Android-based devices. 
This can be realized by injecting/writing a malicious code 
within the applications they develop so that the targeted 
information (e.g., valuable, private, and sensitive data) is 
transferred to them once the user runs such applications, 
with which the malicious code starts running in the 
background [5]. This happens without the user awareness 
of what is occurring while he/she is enjoying other 
services provided by such harmful applications [5, 6, 7]. 

http://dx.doi.org/10.12785/ijcds/100132 
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Therefore, malware detection, classification, analysis, and 
treatment are considered as key research concerns 
presently [8]. Developing robust mechanisms to ensure 
trustable and reliable third-party applications for such 
rapidly growing technology is highly needed. Innovative 
solutions can be efficiently used in reducing the expert 

efforts and manual work required in malware analysis [9]. 
The aim is to allow data and algorithms to drive decisions 
that require finding-out correlations between large 
numbers of samples turns out to yield many accurate 
results than that obtained when humans do the job [10]. 
This helps in avoiding unauthorized access to sensitive 
data and private information, as well as preventing 
suspicious codes for being running hiddenly on our daily 
used smart devices. This paper provides a valuable study 
of static analysis approaches introduced for detecting 
malwares on Android-based smartphones. We start by 
overviewing common types of malware software in 
Section 2. We, then, discuss different methods utilized in 
detecting and preventing malware on Android OS 
platforms in Section 3, and focus, in particular, on static 
analysis methods in Section 4. Finally, in Section 5, we 
introduce a review study for several methods, models, and 
mechanisms proposed in literature for static malware 
detection and analysis in Android operating systems. We 
conclude our paper in Section 6.  

2. MALWARE’S OVERVIEW 

A malware is defined as application software that 
includes deleterious code to hurt or steal information of 
users once it is being run on the targeted devices [11]. 
Malware has been widely used as a weapon to launch 

cyber-attacks to target individual devices as well as IT-
based systems. Such attacks may compromise the system 
internals (e.g., memory, files, communication ports) and 
externals (e.g. of cyber-physical systems), steal sensitive 
and very important information, deteriorate system 
performance, and carry-out legal tasks once they gain 
unauthorized access [12]. Open-source platforms and 
system software, on which developers heavily rely, are 
more prone to malware software created by attackers 
intentionally. The attackers use this chance as an 
opportunity to get things they want by injecting/writing 
some malicious code in the system/user applications. 
When users run such applications, the malicious process 
starts without users being aware of what is happening in 
the background of their devices and systems [13]. 
However, malware shows a noticeable continuing in their 
trends of evolution. Figure 1 shows how the new malware 
software rapidly increase over the last ten years [14], 
while Figure 2 depicts a breakdown of malware software 
as reported in [15] based on analysis study for the two last 
years. Below, we discuss some of these well-known 
malware programs, which have been classified into a 
number of categories based on their behaviors. 

A. Viruses 

Viruses are known to be a small piece of malicious 

code intending to harm the systems, steal data, create 

botnets, erase files, or render advertisements. A virus is 

capable to replicate its code and propagate to files of other 

machines by inserting itself to common programs, and, 

hence, whenever these host programs are executed by 

users, the code of the virus also executes [16]. This 

replication into the other existing programs is the main 

characteristic in defining virus. Thus, the system can be 

infected initially through programs which need to be run 

only once. In addition, the virus can also infect various 
executables, script files, and vulnerable web applications 

[17]. Viruses can be distributed to other systems with the 

help of network connections and portable storage media 

(such as CD, USB, etc.), which also may be corrupted by 

the viruses they transfer [18]. 

B. Worms 

Computer worms are self-contained programs which 
have the ability to replicate functional copies of 
themselves and spread through network connections [19]. 
Worms are considered amongst the common and earlier 
malware software [20], where they, typically, run in the 
system background without the user’s knowledge. They 
exploit OS vulnerabilities, so they can cause a dangerous 
deterioration to the system and network performance by 
consuming a huge amount of bandwidth and overloading 
web servers. This happens by the means of encrypting and 
deleting files as well as sending junk emails (such as 
Melissa and My doom). Also, this type of malware can 
use a harmful payload to damage host devices beyond 
disseminating the worms [21]. However, the key 
difference between worms and common computer viruses 

Figure 1.  New malware increase in last 10 years (data is adapted 

from:[14]) 
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is their ability to replicate and spread themselves without 
relying on end-user activities or any other program. 
Examples of malicious worms include Iloveyou, SQL 
Slammer, and MS Blaster worms [22]. 

C. Trojans 

Trojans (also called Trojan horse) are the dominant 

type of malware that imitate the behavior of normal 

programs and real applications to do a specific function, 

but in fact, do another. This is to trick users into 

downloading and installing them, so they can hijack 

users’ credentials (e.g., at the time of login to the system), 

and run harmful tasks such as formatting hard disk, 

deleting files, or running applications that can defeats 

system security or authentication procedures [23]. The 

main target of Trojans is to have full control of the 

infected system remotely, so they can damage system 
resources including files and data stored in the HDD, and 

sometimes they can deny access to essential system 

services [24]. Once the attackers gain unauthorized access 

to a hijacked system, they become able to steal data 

(financial data, login credentials, etc.), install other 

malware software, observe user activities, modify user 

documents, use the system in botnets, and hide their 

ongoing malicious activities. 

D. Spywares 

This type of software is used by attackers to monitor 
and collect personal information of users from their 
devices (with or without the user’s permission) and sends 
it to somewhere else on the Internet [25]. Spyware 
software has become a common issue that invades user’s 
private data. The most frequently visited data by 
Spywares includes, but not limited to, user credential, 
email account information, credit card details, and 
software license keys [26]. These may be achieved by 
reading various documents, scripts, and files on the 
infected machine, or by capturing user keystrokes through 
a key logger. For instance, spywares may attack the 
settings of internet browser to change your home page or 
to redirect you to visit an undesired website. This type of 
malware gets into the system when free software is 
downloaded from an untrusted source on the internet [27], 
however, spywares do not have the feature of self-
replication, so they need to be downloaded and installed 
on the intended machine.  

E. Adware 

Adware is similar to spyware, where both attempt to 
gather information about users and their activities. 
Adware software is advertising-oriented malware, which 
downloads, plays, or displays advertisements on the 
infected system once it is being used or copied into user 
devices [27]. This is usually happening while the 
malicious software is running, where the aim of Adware is 
to finance the distribution of the software product as a 
freeware application (which does not need a payment) 
[25]. Sometimes, this type of malware pop-ups an 

advertisement window, redirects users to certain websites 
for the purpose of marketing and making a sale, or starts 
installing unknown programs without users permissions. 
However, most of the adware software monitor users’ 
habits and then try to show them the advertisements that 
fits what they are browsing or looking for [28]. For 
instance, searching in google for “IoT”, may lead to 
appearing a pop-up window containing an advertisement 

for "microcontroller used in IoT". Normally, adware 
codes are combined with some of the 
software/applications which are available for free on 
Internet (e.g., KaZaa and BearShare). However, like 
spyware, adware software do not have the ability to 
replicate themselves. 

F. Others 

The above-discussed software represent the main 
types of malwares used by attackers. In addition, there are 
many other types of malwares including ransomware, 
rootkits, grayware, malvertising, crimeware, scraper, 
cryptojacking, hybrid malware, etc. However, the major 
ways by which the malware can spread include software 
vulnerabilities, homogeneity, backdoors and unintended 
download [17]. Table I presents the names of top mobile-
malwares as reported in February 2019 by Symantec [29]. 

Figure 2.  Breakdown of malware software (source:[15]) 

http://en.wikipedia.org/wiki/ILOVEYOU
http://www.infoworld.com/t/malware/exorcizing-the-ghost-slammer-492
http://www.infoworld.com/t/malware/exorcizing-the-ghost-slammer-492
http://en.wikipedia.org/wiki/Blaster_(computer_worm)
https://www.sciencedirect.com/topics/computer-science/authentication-procedure
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TABLE I. NAMES OF TOP MOBILE-MALWARES (SOURCE: [29]). 

3. METHODS OF MALWARE ANALYSIS 

For secured systems, we cannot say, in real scenarios, 
that a system or a device is fully protected, or it cannot be 
breached and compromised. However, it can be said that 
the level of security of the system or the device has been 
hardened and it cannot be easily breached. This means 
that a system may be compromised but it may take more 
time and higher efforts from attackers until it happens. 

Such claims are concluded from observations of several 
researchers, which indicate that everyday attackers are 
continuously working for developing ways and techniques 
to be used in stealing information and hacking different 
systems. Currently, the attackers have changed their target 
and focus more on mobile phones and ubiquitous devices, 
due to the lower level of security/protection initially 
implemented on them, third-party involvement, and open 
source systems utilized in most of the platforms running 

such devices [30]. Figure 3 depicts the top malicious 
mobile app categories through which mobile devices can 
be attacked as reported in February 2019 by Symantec 
[29]. The significant need to develop novel approaches for 
malware detection and analysis has been encouraged 
recently. The aim is to know the time at which your 
devices were got invaded, by which type of malware, and 
how to get rid of them before they can cause huge damage 
to your private information [31].  

The most common methods used in detecting and 
analyzing malware are the static and dynamic analysis 
methods. The static analysis uses some techniques that 
efficiently help in evaluating any codes written for a 
particular application by identifying whether the given 
application has a harmful API or any malicious behavior. 
This process of static analysis works on binaries without 
an actual run of the application. It starts by initially taking 
the package of the written code of the application and 
decompose it through utilizing the reverse engineering 
techniques so that the original code can be obtained. 
However, some of the developers make virtual functions 
secretly written in application packages, making it 
difficult to be detected and/or achieve a clear analysis 
[32]. The dynamic analysis can take place only when the 
application is in the running state. This helps in 
identifying and keeping records of activities happen 
during the execution period, including that of messages 
being sent and received, network bandwidth being used 
for accessing the internet, and the amount of energy being 
drained from the battery. However, this method may take 
more time when compared to the static analysis [33]. The 
testing process of this type can be performed in the 
virtualized environment, with particular settings. A third 
scheme, based on combining these two methods, is 
proposed by several researchers, introducing what is 
known as a hybrid malware analysis approach [34]. 
Nonetheless, many security experts, malware analysts, 
and researchers agreed that among these three schemes, 
the static analysis detection has shown efficiency and 
accuracy in detecting malwares in Android-based 
applications. However, the nature of software and system 
environment, in which they are used, have a significant 
impact on the performance and accuracy level of their 
results. 

4. APPROACHES OF STATIC ANALYSIS 

Techniques of malware static analysis have been 
classified into two major categories: signature-based 
approaches, which directly uses the sequence of binary 
bytes, and permission-based approaches, which focus on 
the disassembled binaries. Figure 4 below demonstrates 
the entire process in most of the applications and models 
that are built based on the static analysis approaches.  

A. Signature-based Analysis 

The common mechanism used in today’s anti-malware 
industries is the signature-based methods [35]. This type 
of schemes is based on the hash values of the byte 

Threat Name Percentage (%) 

Malapp 29.7 

Fakeapp 9.1 

MalDownloader 8.9 

FakeInst 6.6 

Mobilespy 6.3 

HiddenAds 4.7 

Premiumtext 4.4 

HiddenApp 2.5 

MobileSpy 2.8 

Opfake 2.0 

Figure 3.  Top malicious mobile app categories (adapted from [29]) 
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sequence found in the application binaries, where meta-
heuristic algorithms are used to build information. All the 
extracted semantic patterns, as well as the application 

characteristics, are used to generate a unique digital 
signature [36]. In case the created signature is identical to 
any of the malware signatures already predefined in the 
market, then the application is considered to be malware. 
This type of analysis is identified as very effective to 
detect malware in the versatile applications due to the low 
rate of false positives outcomes in case the signature is 
already known. Once the malicious software is detected 
the created signature is added to the database. However, 
these approaches face difficulties to identify any new 
malware types, especially with the quick change of 
mobile malware. This raises the need for steady periodical 
updating of the antivirus database and overhauling the 
already created signature database.  

B. Permission-based analysis 

Installing third-party applications on Android-based 
platforms requires, sometimes, certain access to user data 
for the application to be installed and work perfectly [37]. 
There exist several APIs in the Android operating system 
that permit different applications to utilize mobile 
resources including hardware such as network ports, 
camera, and storage, as well as the other software 
including smart-mobile settings [38]. Such permission 
requests can be considered as important indicators for 
users to know whether the application is beneficial or 
malware. The permissions accessed are controlled by the 

application itself at the time of installation, at which users 
should be aware of what permissions can violate their 
privacy or harm mobile devices. Technically, the access 
permissions are coded in the androidmanifest.xml file in 
most of the applications [39]. Also, by default, the 
applications have no permission to access or use the data 
stored on mobile phones, which limits their functionalities 
in most of the cases. However, some applications request 
for permissions that are not likely to be used by the given 
application. Permitting such applications to access the 
data may harm the security and expose the private 
information. So, users should make sure that any 
application has declared all the permission it needs, and 
be careful when allowing access to their data during the 
installation process. The permission-based analysis 
addresses only the adroidmanifest.xml file in order to 
extract the various permissions from the applications 
instead of analyzing all the application files [40].  

5. REVIEW OF STATIC ANALYSIS METHODS 

In this section, we provide a literature review of some 
research studies proposed recently for malware static-
based analysis in both the signature-based and 
permission-based approaches. We conclude the section 
with brief highlighting of machine-learning based static 
analysis techniques, indicating their relevance and rapid 
growth recently.  

In [41], the authors introduced a new application 
called Risk-Ranker which has been designed specifically 
to proactively detect android malware. Risk ranker is an 
automatic scheme that sifts through various applications 
to detect security threats on user devices. The authors 
classified the probable risks into three levels: low, 
medium, and high. Each has different effects on the 
devices and a different way to compromise them without 
permission form users. Based on this categorization, Risk-
Ranker is designed to detect the risk that may come from 
untrusted applications. A systematic method is provided 
to map each application to one of these risk categories, so 
by this, it can minimize the number of applications that 
may need further verification. Two analysis modules are 
used to detect malicious behaviors. One is for handling 
non-obfuscated applications, while the other is for 
detecting apps’ behaviors that may harm user devices. 
They used a set of signatures corresponding to different 
known vulnerabilities, which contains their essential 
characteristics, so malicious apps can be detected once 
they try to exploit these vulnerabilities. The output of the 
two modules are, then, used for prioritizing suspicious 
applications that need more analysis. The authors 
evaluated the Risk-Ranker prototype on a large number of 
apps and showed a better performance. In [42], Zheng, et 
al. introduced an implementation of an automatic system 
for signature-based static malware analysis. The system, 
which is called DroidAnalytics, helps in obtaining 
opcode-level information of the applications so the 
malicious logic can be quickly retrieved, associated, and 
revealed, and signature is easily generated. The authors 

Figure 4.  The process of static analysis (adapted from [30]). 
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used a parsing algorithm to extract information from .apk 
package file and retain it in a predefined data structure; 
while a mechanism with three-phases is utilized for the 
signature generation to identify applications based on API 
calls’ sequence. This new scheme first extracts classes and 
methods form .dex file of the application package, then an 
API calls' table is used to generate signatures of all the 
methods and classes, and lastly, the application signature 
is created as a composition of all these already generated 
signatures. For evaluation, the authors used 150,368 
samples to identify malware apps from different families 
and showed the efficiency of the proposed system. 

In [43], the authors focused on the process of 
increasing users’ awareness of the permissions granted to 
the applications for accessing their data on Android 
mobile phones. They introduced APK Auditor, a 
permission-based lightweight malware detection system 
for Android-based smartphones. The system has three 
main components of its static analysis: a database for 
storing apps information and results of operation, a user 
client, and a central server. The client provides the server 
with information about the app that needs to be analyzed. 
The server downloads the app and communicates with the 
database to manage and control the entire analysis 
process, then gives feedback to the client. By this, the user 
can avoid installing malware on his/her device before 
checking it, and hence avoiding any malicious behavior as 
well as maintaining the system performance by saving the 
system resources from being used during the analysis 
process. APK Auditor client on the user device gives the 
user two options: analyzing applications on the Play-Store 
(through https using its package-name), which can be 
downloaded by the central server, or analyzing the local 
applications already downloaded on the user device. The 
server extract permissions of apps from the manifest file. 
It then calculates PMS (permission-malware-score) for all 

permissions including dangerous ones depending on their 
existence in the apps, and AMS (application-malware-
score) as the sum of PMSs. AMS is used as an indication 
to judge whether an  apps is malicious or not. If its values 
exceed the given threshold set by APK Auditor, then the 
app is considered as harmful and reported as malware 
application. The authors experimented with 8762 apps 
(6909 are malicious apps and 1853 benign apps) and 
showed a higher detection accuracy. In [44], the author 
proposed a new accurate, and scalable malware detection 
scheme based on family-signature for flexible static 
analysis of android malicious applications. In this 
solution, extracted binary-patterns of applications are used 
as a representative signature of its family, where various 
applications are classified into grouped (families) by 
estimating signature similarity based on the concept of 
that app variants mostly retain the same code and 
resources. The structure of signature includes name, 
character stings, method name, and their bodies, which are 
extracted from DEX file in .apk package. The proposed 
method consists of two consecutive stages: signature-
creation stage and malware-detection stage. In the first 
stage, the character strings and binary-patterns are 
extracted from DEX file of known malware with 
calculating a weight for each based on its sharing level in 
representing the family (PSR), where the signatures with 
weight values less than a threshold are deleted to keep 
higher accuracy. In the detection process stage, hashed 
values and hash map are used with a dictionary-search 
method for family-signature matching with the set of 
patterns of DEX file for the targeted application in a 
constant searching time. In their evaluating comparison, 
the authors used 5846 samples of android malware 
correspond to 48 families and showed that this approach 
exhibits a high level of accuracy in detecting malicious 
applications and a linear time-complexity with respect to 
the number of apps. 
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 In [45], a new system is proposed to improve users’ 
security and help in protecting their privacy from 
malicious applications installed on their android devices. 
The scheme works statically offline and uses permission-
based analysis through clustering and categorization 
techniques in order to recognize the harmful apps and 
discard them form the main storage. The proposed system 
consists of five phases: installed apps identification, 
permission-extraction, apps-clustering, apps-
classification, and apps-removal phases. The authors used 
package-manager in the first phase of the system, and 
package-info in the second phase to get apps and 
permission details respectively. K-mean algorithm is used 
in the clustering phase in which the permissions of the 
installed apps are classified into various categories of 
malware. Then, the naïve Bayesian algorithm is used in 
the fourth phase for further accurate classification to 
decide whether the malware is malicious or benign app. 
So, this helps the user to make his/her decision in the last 
phase (by listing the malicious applications) to retain or 
uninstall the apps from its device.  In [46], the authors 
focused on using multi-features for static malware 
analysis. They proposed a scalable scheme for detecting 
malware in android devices based on features of the 
malicious application and probability theory. Their new 
mechanism extracts two features: the API calls and 
applications’ requested permissions from the .apk 
packages in order to build their feature sets. Different 
clustering algorithms are considered with these feature 
sets based on a polynomial-time method to yield 
predictions for provided instances. The given predictions, 
then, are fused through MCDF collaborative approach to 
make the final decision. Their evaluation results indicate 
that their solution has better performance even with a 

larger number of data sources. In [47], the applications’ 
malicious behavior was analyzed by Singh et al. using the 
static analysis approach. The authors proposed a 
characterization method by which the applications were 
examined in order to find out whether the permissions 
coded in the package of applications (APK byte-code) are 
correct or not. This was done by matching the permissions 
being requested to the application programming interface 
(API) calls. They used reverse engineering software to 
extract components of .apk package to be analyzed and to 
filter permissions. The authors found out that most of the 
developers of Android applications write permissions 
code with some mistakes which lead to poor requirements 
of the security.  

Shahid at el. [48] proposed a new solution for 
detecting android-based malware called DroidNative 
decoder. This static signature-based method works at the 
level of native-code and aims to detect malicious codes 
that are hidden either in native-code or in byte-code. For 
cod representation, the authors utilized MAIL (Malware 
Analysis Intermediate Language), which, in turn, employs 
two methods: ACFG and SWOD to build cross-platform 
(i.e., ARM and x86) malware signatures, and uses a 
number of patterns to create information about behaviors 
and structures of assembly codes. This information is then 
used to optimize the process of detection and analysis. In 
the testing process, a decision-tree method is used to 
detect the malicious apps based on the signatures sets with 
a given empirical threshold. If the match occurs, then the 
application is marked as malware. The DroidNative 
evaluation shows improved results with respect to other 
solutions. Idrees et al, in [49], introduced permissions and 
intents based mechanism called PIndroid to detect 
malware applications in android systems. The main aim 

TABLE II. SUMMARY OF THE PERMISSION-BASED SCHEMES REVIEWED 

Author and 
Reference 

Main focus of the paper Methodology employed 

K.A. Talha et al. 
[43]  

Increasing the user awareness about 
permissions granted to apps.  

Using PMS (permission-malware-score) and AMS 
(application-malware-score) to detect malicious apps. 

S.B. Almin, et 
al.  [45]  

Achieving Accurate clustering and 
categorizing malicious apps. 

Using package-manager, package-info, K-mean and naïve 
Bayesian algorithms in different system stages.  

Sheen  S. el al. 
[46]  

Building a scalable detection system by 
exploiting many features simultaneously. 

Using a multi-feature collaborative model (MCDF) along 
with probability based polynomial time method. 

Singh et al. [47], 
2016 

Characterizing malware behavior in order 
to make users aware of apps’ permissions. 

Using a specific   reverse engineering software called 
“apktool” to extract .apk file components. 

F. Idrees et al. 
[49] 

Relaying on permission and intents in 
controlling access to various resources.   

Using statistical methods & classification to determine the 
correlation degree between intents and permissions. 

F. Mohsen et al. 
[50] 

Studying the intensive use of  broadcast-
receivers’ patterns by benign & malware. 

Use a data-mining method based on broadcast-receivers 
registered statically to detect malware. 

Zhang X. et al. 
[51] 

Decrypting and reconstructing data from 

android vault apps. 

Using reverse engineering and  “adb pull” for static analysis 

of extracted artifacts. 

 

TABLE III.  SUMMARY OF THE SIGNATURE-BASED SCHEMES REVIEWED 

Author and 
Reference 

Main focus of the paper Methodology employed 

M. Grace et al. 
[41],  

Detecting zero-day malware in the 
existing Android applications. 

Using two-order risk analysis modules based on 

vulnerabilities signatures to detect dangerous behaviors. 

Zheng, et al [42] 
Quick identification of the high volume 
zero-day malicious mobile malware. 

Using a multi-level signature-generation algorithm at the 
op-code level (i.e., class/method/app level ) 

J. Lee et al. [44]  
Increasing the robustness and speed of 
detecting malware variants. 

Using automatic family-signature design and matching 
based on PSR, Tpsr, hash values, and hash map. 

Shahid et al. 
[48] 

Utilizing control-flow patterns to achieve 
automation and reduce obfuscations. 

Using MAIL, ACFG, and SWOD for signatures-creation 
and “decision-tree” for decoding and tagging. 

S. Ngamwitroj 
et al [52] 

Exploiting the existing features of the 
applications to detect malwares 

Using the frequencies of feature’s usages extracted to 
designing malicious signature and detecting malware. 

A. Jalilian et al . 
[53] 

Extracting the file features in a static mode 
and without running them. 

Using of N-grams distribution and Top-k algorithm in 
identifying unknown files. 
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was to protect users from the rapid increase in malicious 
attacks. The method is integrated with an ensemble 
scheme to increase detection accuracy. The authors 
analyzed a number of malware and benign applications 
collected from different sources. To determine the 
correlation level (e.g., Pearson correlation coefficient (r)) 
between the two parameters: permissions and intents, they 
used correlation coefficient methods and indicated a 
robust relationship between dangerous intents and 
dangerous permissions. The proposed system has three 
major phases: extracting features (permissions and 
intents), preprocessing, and categorization. Their 
evaluation results show an improved efficiency in the 
detection process with a higher accuracy level.  

In [50], the authors studied the impact of broadcast-
receivers usage patterns by android-based malware 
through analyzing onReceive() source-code manually. 
They proposed a static malware detection scheme that 
uses static analysis of registered broadcast-receivers, 
which are largely exploited by malicious applications in 
comparison to benign apps. Both the manifest files 
(containing permissions and broadcast-receivers) and Java 
source code are analyzed in this mechanism, where tools 
of reverse engineering are employed on APKs to retrieve 
them. Apktool is used to extract classes.dex, and XMLs 
from APS’s resources, while dex2jar and JD tool are used 
for getting Java source code (the parts related to receivers 
are used to find the occurrence of specific actions). The 
analysis process considered 5,723 malicious applications 
and 48,262 benign from which they extract permissions 
and actions by parsing manifest files. The prediction stage 
assumes three different configurations: permissions only, 
action items only, and permissions and action items 
together. Then, applies a new data mining processing 
scheme based on SVM algorithm (which has a statistical 
origin) to create balanced data-sets and use CV (cross-
validation) in order to obtain the proper combinations.  
The authors indicated in their evaluation that using 
broadcast-receivers along with permissions in their 
solution provide better detection results. In [51], a new 
forensic analysis of the security and privacy 
implementations in the vault applications of the Android-
based devices is introduced. These applications are 
usually designed to enhance user privacy but are misused 
in hiding various incriminating files and considered as 
anti-digital forensic applications. The authors proposed a 
new method that helps in breaking into a number of vault 
applications and reconstructing files hidden by 
applications without login requirements. In addition to 
reverse engineering APK files, their method extracts 
forensic artifacts from such applications and then 
examines them. For this, they installed the applications 
and changed their setting such as passwords, lock pattern, 
recovery email, etc., and store some well numbered files 
in them. They then use “adb pull” command to get the 
required artifacts and store them in predefined folders, 
then manually analyzed them. The experimentations and 
case study they presented show that security holes still 

there in such privacy applications and can be exploited by 
practitioners using reverse engineering. 

In [52], a signature-based malware detection 
mechanism is proposed by S. Ngamwitroj and B. 
Limthanmaphon based on static analysis. In order to build 
the signature of the malicious apps, the author used data 
of broadcast-receivers and frequencies of permission 
usage extracted from the manifest file. The proposed 
method consists of two main parts: signature creation of 
malicious apps, and malware-detection process. The first 
part calculates the frequencies of permissions & 
broadcast-receiver usage and ranks them in decreasing 
order. Only some top-most of them, then, are used in 
designing the malicious signature in a compare-and-trim 
process. These extracted information and created 
signatures are used in the second stage of the method (i.e., 
malware-detection process). The authors evaluated their 
proposed scheme by examining 1,447 application and 
showed a significantly improved performance. In [53], a 
new signature-based scheme for detecting malware is 
provided which focuses on features’ extraction of 
application (i.e., op-codes, binary-sequences, or API-
calls) statically before running them on the user device. 
The method uses the N-gram distribution and Top k 
algorithm to define the top most-similar k files when 
identifying unknown files. The process has three main 
stages: binary-sequence and op-code extraction, N-gram 
generation, and file classification. For N-grams algorithm, 
which is simple and stable when obfuscation exists, each 
N-gram (N= 1, 2, 3, …, k) denotes an application feature, 
where deciding the appropriate N will help in maintaining 
the desired efficiency and performance. The author 
considered Top-K similar-files approach and used the 
features taken from .apk package along with features of 
op-code in order to enhance the strength of feature space 
and improve detection efficiency. The evaluation results 
show a significant improvement in accuracy when the 
Top-K approach, a combination of op-code sequence, and 
binary-files are employed in classifying benign-
files/malware apps.  

Recently, data science and machine-learning have 
revealed efficient potential in developing innovative 
solutions for automating different aspects of malware 
investigation and analysis techniques. Several designing 
and implementation challenges emerge, which makes the 
need for new solutions and standard mechanisms crucial. 
The aim is to cope with the rapid increase of malware 
threats, particularly in parallel with the increase in big 
data generation. However, this domain is a very broad 
area of its own, which is our separate work following this 
progress study. The reader can find more about machine 
learning mechanism in [9, 54 – 60]. 

6. CONCLUSION 

Malware software are mostly transferred to users’ 
mobile phones when applications are being installed. This 
may lead to granting attackers unauthorized access to 



 

 

 Int. J. Com. Dig. Sys. 10, No.1, 321-331 (Feb-2021)                        329 

 

 

http://journals.uob.edu.bh 

sensitive and private data stored on the users’ devices. 
Attackers and malware developers work hard in order to 
develop hacking techniques, applications, and software to 
steel private date from ubiquitous devices and systems of 
those who do not care much about securing their 
information. Malware analysis is known to be the study of 
functionality, purpose, origin and the impact of malicious 
applications and software. Then deciding on how to avoid 
or treat them. This task is, by tradition, known to be 
exhausting and complicated. It requires expert knowledge 
of analytics and of reverse engineering together with 
understanding of software architecture. As technology 
continues to develop rapidly, it is important to keep our 
knowledge, and technical skills, in this domain, up to date. 
The need is to improve user awareness of such malware 
applications so they can make the right decision at the 
time of downloading and installation. In addition, 
innovative solutions, models, standards, and tools are to 
be developed to facilitate malware detection, analysis, and 
treatment. In this paper, we have introduced a progress 
study of malware analysis in Android-based operating 
systems, centered on static approaches. Common classes 
of malware software have been presented, followed by 
discussions on the major techniques used for malware 
detection and analysis. A literature review is, then, 
presented on several static analysis solutions including 
signature-based and permission-based schemes proposed 
in the last few years. The intended work in the future 
focuses on considering recent machine learning 
techniques along with big data analytics within the data-
science domain in order to develop a practical 
multidimensional joint optimization approach to achieve 
better performance and higher accuracy level of malware 
analysis. 
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