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Abstract: Smart cities possess several technologies in collecting pedestrian activity data, which may be used to manage city 

planning. A growing body of research exists on video processing based pedestrian counting methods, due to the development of new 

computer vision techniques. This research reviews different, vision-based methods for counting pedestrians and applies a specific 

counting method which is formed by a combination of You Only Look Once Version 3 (YOLOv3) and Simple Online Real-time 

Tracking (SORT) with a deep association metric. The results suggest that although clustering, as well as the direction and intensity of 

pedestrian traffic, achieves a minimal effect on the count, occlusion constitutes the main source of errors. Adequate training may 

serve to increase accuracy. 
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1. INTRODUCTION 

A pedestrian count determines the volume and 

direction of the pedestrian traffic in the Central Business 

District (CBD) at a specific time and place. In that sense, 

a pedestrian count assesses the need and efficacy of 

numerous pedestrian planning initiatives at particular 

locations ‒ in this instance, the City Centre. The count 

represents a convenient and inexpensive way to provide 

vital objective data.[1]. A pedestrian delivers an 

unquestionable impact on the structure of the CBD since 

the pedestrian traffic energizes the activity of the city’s 

traffic-generating centers. Since the study analyzes how 

pedestrians circulate and gather in the downtown area, 

the research can consider in-depth how to utilize and 

organize the CBD [1]. 

The numerous benefits of pedestrian count may be 

summarized into three essential aspects of CBD 

pedestrian planning. First, a pedestrian count may 

improve a pedestrian’s pleasure. Although the enjoyment 

and comfort of walking are primarily influenced by the 

overall downtown area in which the walker moves, 

unique features of the pedestrian circulation system may 

help ameliorate the sensations of an individual traveling 

by foot [1]. Artwork, trees, shrubs, and other street 

elements create sources of visual beauty that the 

pedestrian can appreciate. Kinds of facilities, inclusive of 

heated sidewalks, waiting stations, and canopies 

sidewalks can enhance the pedestrian’s comfort in the 

experience. In this instance, the pedestrian count may be 

used to establish priorities for a situated improvement for 

pedestrian pleasure. The sites may be established 

regarding where these chosen stops would most benefit 

pedestrians [1].  

Second, analyzing a pedestrian count tends to 

contribute to a better movement of the pedestrian. 

Multiple factors are impacting the choices of pedestrians 

to circulate directly and freely inside the CBD. One 

important factor is the extent of sidewalk congestion. The 

extent of sidewalk congestion is determined by two data:  

the pedestrian count and the sidewalk width. Sidewalk 

capacity could also become maximum at traffic 

intersections, where pedestrian numbers often become 

greatly increased when traffic lights halt the pedestrian 

flow.  Another factor that can influence pedestrian 

motion is the presence of conflicts between pedestrians 

and automobiles [1]. Conflicts between pedestrians and 

vehicles mostly occur at downtown intersections, usually 

attenuated by control technologies and traffic signals. 

From this standpoint, there are multiple ways to use the 

findings of a pedestrian count. The knowledge identifies 

the necessity for the installation and operation of traffic 

signals.  Add to traffic signals a plethora of physical aids 

such as the construction of a) underpasses and 

http://dx.doi.org/10.12785/ijcds/090605 
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overpasses, b) refuge islands, c) barriers, and d) painted 

crosswalks [1]. A final factor in determining how well 

walkers move in the CBD is the availability of pedestrian 

routes and the land use design. Land utilization and the 

availability of pedestrian paths often restrict the distances 

pedestrians must walk and the chosen route inside the 

downtown area. The use of land in the CBD may be 

compared to a system that works to generate walker 

traffic, which is separated by variable distances [1]. 

Lengthy walks between pedestrian traffic generators are 

sometimes caused by the ineffective distribution of land 

use. If inconveniently located, unloading or final points 

for diverse means of transportation could compel 

pedestrians to take longer than average walks to maintain 

destinations inside the CBD.  

Third, a pedestrian count keeps pedestrians safe. A 

conflict with car traffic affects a pedestrian’s safety. Such 

conflict may not only cause a decreased mobility for the 

pedestrian, but such an issue can also be responsible for 

hazardous situations where the pedestrian may be injured. 

Consequently, steps are must be taken to lessen the 

conflict, and thus improving the mobility of the 

pedestrian in order to also would protect his/her health 

and safety [1]. This triad may be utilized in different 

strategies to guarantee the safety of the pedestrian: a) to 

assess the number of jaywalkers at street intersections or 

anywhere else as a fraction of the total pedestrian count; 

b) to extrapolate the results of a thorough study based on 

the pedestrian’s observation of traffic signals, and; c) to 

find relationships between pedestrian numbers along 

adjacent sidewalks and car accidents [1]. 

Besides, the pedestrian count has several other 

applications not directly linked to pedestrian planning 

itself. These applications include the delimitation of not 

only the CBD’s boundaries, but also central traffic 

district borders [2], the selection of public locations, such 

as libraries and retail store locations [3], and the analysis 

of the increase and decrease in CBD land worth [4]. 

2. LITERATURE REVIEW 

The accuracy of pedestrian count methods 

determines how thoroughly the exposure for safety 

analysis may be measured, how well infrastructure 

developments and safety programs will be prioritized, 

and how efficiently the advantages of pedestrian projects, 

the models of pedestrian quantities, and the variations in 

pedestrian activity may be assessed. However, 

automobile counts in most communities are still much 

more popular than pedestrian counts. Moreover, current 

informational, non-standardized, pedestrian count 

methodologies allow for no estimation of weekly, 

monthly, or annual numbers [5]. 

 

To record manual counts, one may use clickers or 

collection data sheets in the field. Another way manual 

counts can be performed is by using video technology. 

The video technology process allows more precise, 

deliberate monitoring, as the video can be replayed, 

slowed down, or sped up [6]. Although using datasheets 

and clickers is the least accurate manual count 

methodology, the process is less costly than analyzing 

video data, since the application does not require specific 

equipment [6]. Automated count methods are usually less 

accurate than manual counts. However, inaccuracies may 

be caused by human error [7]. Video-based manual count 

accuracy depends on both the awareness and the degree 

of motivation of the observer. To improve the accuracy 

of such counting, one can either lower the number of 

details being recorded by the observer [6], or one can 

avoid continuous counts over long periods so that data 

collectors do not experience fatigue [7].   

In the case of automated pedestrians counting, several 

technologies have been developed in recent years. 

Automobiles are easier to count than pedestrians since 

their path is much more constrained [7]. Consequently, it 

is crucial to understand the particular kind or kinds of 

pedestrian movements that must be enumerated before 

selecting a suitable automated counter. Size, legal 

restrictions, installation costs, data storage, accuracy, 

location, and maintenance costs are other essential 

considerations [8]. Common Options for automated 

counting devices include radio beams and passive and 

active infrared devices [6]. Less common options include 

Laser scanners, pressure or acoustic pads, and thermal 

cameras. Alternatively, some automated measurements 

may be used to quantify pedestrian traffic. These 

measurements can be captured via Wi-Fi technology, 

Bluetooth, or traffic signals recording pedestrian 

pushbutton use [9]. 

Existing approaches for pedestrian counting 

algorithms can generally be grouped into three 

categories: 1) clustering-based methods, which track the 

number of features of target objects; 2) regression-based 

methods, which use features of detection regions to learn 

a regression function and subsequently utilize that 

function for counting; and 3) detection-based methods, 

which aim at extracting the foreground, localizing the 

target, tracking objects, and finding trajectories [10]. 

Using clustering-based methods, numerous object 

features ‒ such as points or people elements ‒ are 

tracked; clustering feature paths allow people counting. 

For example, Brostow et al. [14] suggested a technique 

that initially tracks basic image features and then applies 

probability to group these features into clusters, 

depending on both the trajectory consistency throughout 

the image space and the space-time closeness. Antonini 

et al.  
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The primary goal of regression-based methods is to 

interpolate the variations into a scene, indicating the 

passing of pedestrians so that a regression function may 

be learned. For instance, Benabbas et al.  [15] suggested 

a technique where the research collects image slices and 

then evaluates the optical flow. The study discussed 

features by linear regression and blob detector extraction, 

and then obtained pedestrian data relative to orientation, 

position, and velocity.  

The techniques that fall under the detection-based 

category incorporate the same ordered processing 

pipeline described as follows. First, the video stream is 

processed for foreground extraction, then the target 

objects travel through detection and tracking [16]. 

Furthermore, the tracked paths are classified to determine 

the count of the target objects. There are four distinct 

groups among detection-based methods: 1) Depth video 

methods, 2) RGB video methods, 3) hybrid methods, and 

4) deep learning framework methods [16].    

The paper is organized as follows, in section 2, a 

literature review is elaborated. The problem formulation 

and motivation of this work is discussed in detail in 

section 3. The YOLOv3 algorithm is discussed in section 

4. Simulation and implementation are discussed in 

section 5. A conclusion will be drawn in section 6.  

3. PROBLEM FORMULATION AND 

MOTIVATION OF THIS WORK 

This research has chosen to apply a deep learning 

object counter to solve the problem of pedestrian 

counting, as this method recently displayed considerable 

success in object classification and detection assignments 

[16]. In the past, Liu et al. [17] suggested a people 

counting model based on a basic, convolutional, neural 

network (CNN) and Spatio-Temporal Context modeling. 

Likewise, Wei et al. created a framework relying on 

supervised learning [18]. This framework, by associating 

a super-pixel multi-appearance with multi-motion 

characteristics, extracted Spatio-temporal features, then 

mixed with the VGG-16 model features. However, for 

the deep learning object counter of this research, the 

study will use YOLOv3 for detection, and SORT with 

deep learning association metric for tracking. 

YOLO stands for You Only Look Once and is the 

very first tentative application in designing a fast, real-

time object detector. YOLOv3 is the second and latest 

upgrade on the original YOLO version, which is suitable 

for detecting small objects (2). YOLOv3 was selected as 

this study’s detector because the application is more 

precise than SSD; further, both YOLOv3 and its 

predecessor YOLOv2 are similar in performance with 

DSSD, as seen in Table 1. YOLOv3 is also faster than 

two-stage Faster R-CNN variants, using ResNet, FPN, G-

RMI, and TDM [19]; SORT stands for Simple Online 

and Real-time and centers on frame-to-frame prediction 

and association. SORT, equipped with a deep learning 

association metric, also is called Deep SORT, indicating 

an improvement on the original SORT algorithm; Deep 

SORT allows object tracking over more prolonged 

periods of occlusion [20]. Deep SORT, as the study’s 

research tracker, presents a simple and well-suited 

baseline and runs in real-time.  

Moreover, Table 2 shows that the Deep SORT 

framework achieves better performance concerning the 

accuracy, compared not only with the original SORT but 

also with other online trackers such as POI and EAMITT 

[20]. 
 

TABLE 1. AP RESULTS FOR SOME TYPICAL DEEP LEARNING 

DETECTORS ON THE COCO DATASET [19]  
 

  Backbone AP 

Two-Stage Methods     

Faster R-CNN+++ ResNet-101-C4 
34.

9 

Faster R-CNN w FPN ResNet-101-FPN 
36.

2 

Faster R-CNN by G-

RMI 
Inception-ResNet-v2 

34.

7 

Faster R-CNN w TDM 
Inception-ResNet-v2-

TDM 

36.

8 

One-Stage Methods     

YOLOv2 DarkNet-19 
21.

6 

SSD513 ResNet-101-SSD 
31.

2 

DSSD513 ResNet-101-DSSD 
33.

2 

RetinaNet ResNet-101-FPN 
39.

1 

RetinaNet ResNeXt-101-FPN 
40.

8 

YOLOv3  Darknet-53 33 

 

TABLE 2. PERFORMANCE OF DIFFERENT OBJECT TRACKERS 

ON MOT[19] 

 

Name of Tracker Type MOTA 

KDNT Batch 68.2 

LMP Batch 71 

MCMOT_HDM Batch 62.4 

MOMTwSDP16 Batch 62.2 

EAMTT Online 52.5 

POI Online 66.1 

SORT Online 59.8 

DEEP SORT Online 61.4 
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4. COUNTING ALGORITHM  

The counting algorithm that this study will be using 

combines YOLOv3 and the SORT with a Deep cosine 

metric. Following the video inputs, YOLO first performs 

pedestrian detection; the detected pedestrians then are 

tracked by Deep SORT for counting. Figure 1 presents the 

overall block diagram of the counting algorithm. 
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Figure 1. Overall Counting Algorithm. 

When an image is processed by YOLO, all the objects 

present in the image are localized and classified at once. 

YOLO divides the input image into several grids, and 

each grid is in charge of detecting an object. The overall 

YOLOv3 algorithm is described in Figure 2.   

 

Images

Feature 

Extraction

Bounding 

Box 

Prediction

Multi-scale Feature Detected 

Objects

 

Figure 2. Overall YOLOv3 Algorithm. 

When YOLOv3 receives an input image, the image 
travels through two simultaneous processes.  One step is 
the feature extraction step, which identifies the class of 
the object present in the image. The other step is the 
bounding box prediction, which locates the position of the 
object in the image. Both the feature extraction and 
bounding box prediction processes are repeated three 
times, each time using different image processing 
parameters. Through this process known as multiscale 
prediction, the research obtains and compares different 
detections and then selects the best object detection. 

A. Prediction of Bounding Boxes Prediction and Cost 

Function Calculation 

The YOLOv3 system utilizes dimension clusters as 

anchor boxes to perform prediction of a number n of 

bounding boxes. The YOLO network forecasts the four 

coordinates of every bounding box  𝑡𝑥 , 𝑡𝑦, 𝑡𝑤, 𝑡ℎ . The 

study obtains the following predictions if the bounding 

box prior has height and width 𝑝ℎ , 𝑝𝑤  , with the cell 

showing an offset from the image’s top-left corner by 

(𝑐𝑥 , 𝑐𝑦) [19]:  

 

𝑏𝑥 = 𝜎(𝑡𝑥) + 𝑐𝑥 

𝑏𝑦 = 𝜎(𝑡𝑦) + 𝑐𝑦          (1) 

𝑏𝑤 = 𝑝𝑤𝑒𝑡𝑤  

𝑏ℎ = 𝑝ℎ𝑒𝑡ℎ 

 

Figure 3 presents the bounding boxes with dimension 

priors and a location prediction, with the blue box as the 

bounding box prior and predicted bounding box. 

According to Joseph Redmon et al. [19], “If the ground 

truth for some coordinate prediction is �̂� ∗ our gradient is 

the ground truth value (computed from the ground truth 

box) minus our prediction: �̂� ∗ −𝑡. ”  Inverting the 

equations above may aid in calculating the value of the 

ground truth. 

YOLOv3 applies a new means to compute the cost 

function, compared with the first YOLO algorithm. 

YOLOv3 predicts an objectness score of every bounding 

box on the base of logistic regression [19]. If a ground 

truth object is overlapped by a bounding box prior by 

more than any bounding box prior , then the objectness 

score should be 1. Following, the study disregards the 

prediction if the bounding box prior is not ideal, yet 

overlaps a ground truth object by a value above a 

particular threshold. In this case, a threshold of 0.5 is 

used. The YOLO system allocates a unique bounding box 

before every ground truth object unlike. No loss for class 

predictions or coordinate will happen should a bounding 

box prior not be allocated [19].  

 

 
 

Figure 3. Bounding boxes with dimension priors and location prediction 
[19]. 

B. Prediction of Classes 

Multilabel classifications were used by each box for the 

prediction of classes that the bounding box might 

contain. Such classification modeled the data better when 

dealing with complicated domains such as the Open 

Images data set [19], where many labels like woman and 

person overlapped. The original YOLO version 

normalized confidence scores into probabilities that add 

to one. This study accomplished normalization with the 

use of a softmax function. In YOLOv3 however, utilizing 

individualistic logistic classifiers rather than a softmax 
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tends to increase performance. Class predictions required 

the use of cross-entropy loss during training [19].  

C. Multi-scale prediction  

To increase the accuracy of features detection in an 

image, YOLO performed a multi-scale prediction. 

YOLOv3 then achieved a box prediction at three 

distinctive scales. From those scales, YOLOv3 extracted 

features that relate an inspired concept, uniquely drawn 

from feature pyramid networks [19]. The study added 

multiple convolution layers to the base feature extractor.  

Figure 4 aids in visualizing the multiscale prediction 

performed by YOLOv3. 

 

 
 

Figure 4. Structure detail of YOLOv3 using three scale predictions. 

[20]. 

 

The final convolutional layer predicted a 3-d tensor 

that determined class predictions, bounding box, and 

objectness. Referencing Redmon et al. [19], the study 

drew the prediction from “3 boxes at each scale, therefore 

the tensor was N ×N×[3*(4+1+80)] for the 4 bounding 

box offsets, 1 objectness prediction, and 80 class 

predictions.” 

Subsequently, the research took a feature map from two 

layers prior, so it could be up-sampled by a factor of 2. 

Concatenation was then used to fuse the up-sampled 

features with another feature map from an earlier stage of 

the network [19]. Using this method, the study obtained 

significant semantic data from both ‒ with finer-grained 

data coming from the previous feature and the up-

sampled features. By adding additional convolutional 

layers for a feature map combination, a similar tensor 

was predicted [19].  

For the last scale, the research applied the same 

configuration for box prediction. As a result, the 3rd 

scale predictions displayed gain from the early fine grains 

features of the network, as well as the previous 

computation.   

To determine the bounding box priors, the study 

applied k-means clustering. The study selected nine 

clusters and scales arbitrarily, and then segmented the 

clusters across the scales in an even manner [19]. More 

specifically, the nine clusters on the COCO dataset are 

(373 x 326), (156 x 198), (116 x 90), (59 x 119), (62 x 

45), (30 x 61), (33 x 23), (16 x 30), (10 x 13). 

D. Feature extractor 

As its name suggests, a feature extractor uses 

convolutional operations to identify features from an 

image. In YOLOv2, the first upgrade on YOLO, the 

feature extractor used is Darknet-19. However, YOLOv3 

replaces Darknet-19 with a new 53-layer Darknet-53.  

Similar to the residual network present in Resnet, 

Darknet-53 mainly contains 1 x 1 and 3 x 3 filters with 

skip connections. Darknet-53 achieved 2x faster with the 

same classification accuracy as the ResNet-152, although 

with less BFLOP (Billion Floating-Point Operations) 

[19]. Table 3 describes the structure of Darknet-53. In 

this table, the first line presents the characteristics of the 

first convolutional layer inside Darknet-53. This layer is 

made of 32 filters of size 3 x 3. Using skip connections, 

the residual block allowed one to jump from one layer to 

another to improve training. The “x” in front of the box 

represents  the thickness dimension of a layer. Also, the 

global avg pool computes the average value of all values 

across the entire matrix to reduce computer calculations. 

Finally, fully connected layers are used for the actual 

image classification. 

 
TABLE 3. DARKNET-53 STRUCTURE [19] 

 

Type 
 

Filters Size Output 

 

Convolutional 
 

32 3 x 3 256 x 256 

 

Convolutional 
 

64 3 x 3 / 2 128 x 128 

 
Convolutional 

 
32 1 x 1   

1x Convolutional 
 

62  3 x 3   

 
Residual 

 
    128 x 128 

 
Convolutional 

 
128 3 x 3 / 2 64 x 64 

 

Convolutional 
 

64 1 x 1   

2x Convolutional 
 

128  3 x 3   

 

Residual 
 

    64 x 64 

 

Convolutional 
 

256 3 x 3 / 2 32 x 32 

 

Convolutional 
 

128 1 x 1   

8x Convolutional 
 

256  3 x 3   

 

Residual 
 

    32 x 32 

 

Convolutional 
 

512 3 x 3 / 2 16 x 16 

 
Convolutional 

 
32 1 x 1   

8x Convolutional 
 

62  3 x 3   

 
Residual 

 
    16 x 16 

 
Convolutional 

 
1024 3 x 3 / 2 8 x 8 

 

Convolutional 
 

256 1 x 1   

          4x Convolutional 
 

512  3 x 3   

 

Residual 
 

    8 x 8 

E. Training 

In YOLOv3, the loss function to be trained is similar 

to the loss function in the original YOLO [21], except 

cross-entropy error terms replaced the three last squared 

error terms. The training was accomplished on full 
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images of the COCO dataset [22]. No hard, negative 

mining was used in the process. The training applied a 

multiscale process with different standard techniques, 

including batch normalization and data augmentation. 

Both training and testing required the use of the Darknet 

network [19]. 

F. Deep SORT 

Once YOLOv3 detected the pedestrians, these were 

tracked and counted using Deep SORT. The overall Deep 

SORT algorithm is described in  

Figure 5. When the Deep SORT is used, a deep 

appearance descriptor first must be trained. The 

descriptor initially extracted deep features for a re-

identification task [23], with the use of convolutional 

layers (convs) and wide residual blocks (wrbs). These 

features were L2 and batch normalized to prevent 

overfitting and improve training. Once the object’s 

position was determined via YOLOv3 detection, a 

Kalman filter estimated the state of the object using its 

position and velocity; this allowed the creation of tracks. 

After the new YOLOv3 bounding boxes were tracked by 

the Kalman filter, the next issue was to associate new 

predictions with new detections. The appearance 

descriptor produced normalized, deep features to 

calculate the min cosine distance between tracks and 

detection [23].  The Mahalanobis distance and the cosine 

distance obtained fusing dissimilarities for matching by 

utilizing a combination of the motional activities to 

enable better tracking. The study solved the association 

problem and applied a matching cascade to handle the 

limitations of the Kalman filter or the association metrics. 

 
 

Figure 5. Deep Sort framework [23]. 

 

G. State estimation and creation of tracks using the 

Kalman filter 

The YOLOv3 detection produced some noise to be 
filtered out. A Kalman filter via a state estimation handled 
both the noise filtering and the creation of tracks. Kalman 
filtering and track handling were performed similarly to 
the initial SORT algorithm [24]. The assumed tracking 
condition was that no ego-motion data was obtainable, 
and the camera, therefore, was not calibrated. Although 
this condition challenged the filtering framework, the 
most recent object tracking benchmarks considered this 

issue in their setup [24]. That being said, according to 
[18], “the tracking scenario is defined in the eight-

dimensional state space (𝑢, 𝑣, 𝛾, ℎ. �̇�, �̇�, �̇�, ℎ)̇ that contains 
the bounding box center position (u, v), aspect ratio γ, 
height h, and their respective velocities in image 
coordinates.”  As a result, the research chose to use a 
linear observation model, relying on a standard Kalman 
filter as well as the bounding coordinates 

(𝑢, 𝑣, 𝛾, ℎ. �̇�, �̇�, �̇�, ℎ)̇. 

For every track k, the study counted the number of 

frames since the previous successful association 

measurement. The counter’s increment occurred at the 

same time as the Kalman filter prediction: When a track 

association occurred, the counter reset to 0. Should a 

track become more than the predefined maximum age 

𝐴𝑚𝑎𝑥, it was deleted from the track set, since the deleted 

track was considered to have left the scene. For every 

detection that the algorithm could not associate with an 

old track, initiation of new track hypotheses occurred. 

During the initial three frames, the algorithm attempted 

to classify the newly created tracks. A good association 

measurement was expected at every time step during this 

period. In the same time interval, the deletion of 

unsuccessfully associated tracks occurred [18]. 

H. Solving the assignment problem using the 

Mahalanobis distance and the cosine distance 

Building an assignment problem solved by the 

Hungarian algorithm is a common technique to resolve 

the association between newly arrived measurements and 

predicted Kalman states. Based on this method, the 

merging of two suitable metrics allows for the integration 

of both appearance and motion data. The study used the 

Mahalanobis distance between newly produced 

measurements and predicted Kalman states for motion 

information incorporation. The Mahalanobis distance is 

given by the equation: 

𝑑(1)(𝑖, 𝑗) = (𝑑𝑗 − 𝑦𝑖)
𝑇

𝑆𝑖
−1(𝑑𝑗 − 𝑦𝑖)     (2) 

Where  (𝑦𝑖 , 𝑆𝑖) denotes the projection of the 𝑖-th track 

distribution into the space of measurement and 𝑑𝑗denotes 

the 𝑗-th detection of the bounding box. To consider state 

estimation unreliability, the Mahalanobis distance 

measures the number of standard deviations that can be 

calculated when the detection is not close to the mean 

track location. Also, if the Mahalanobis metric is 

thresholded at a 95% confidence range calculated from 

the inverse χ 2 distribution, unlikely associations can be 

excluded [18].    

 

The following indicator denotes this decision:  

𝑏𝑖,𝑗
(1)

= 1 [𝑑(1)(𝑖, 𝑗) ≤ 𝑡(1)]       (3) 

 

In the case that the association between 𝑗-th detection 

and 𝑖-th track is admissible, the value above evaluates to 
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1. The Mahalanobis threshold that corresponds to the 

four-dimensional measurement is 𝑡(1) = 9.4877. 

When there is a little uncertainty, the Mahalanobis 

distance is a suitable metric for the association.  

However, the predicted state distribution of the Kalman 

filter ‒ regarding the formulation of the image-space 

problem ‒ provides only a rough approximation of the 

location. More particularly, a fast-displacement in the 

image plane could be caused by an unpredictable camera 

movement. In this case, tracking through occlusions 

becomes difficult when the process employs the 

Mahalanobis metric. 

To solve this issue, an additional metric is introduced. 

An appearance descriptor  𝑟𝑗   is calculated for every 

bounding box detection 𝑑𝑗  given  ‖𝑟𝑗‖ = 1 . For every 

track k, a gallery 𝑅𝑘 = {𝑟𝑘
(𝐼)

}
𝑘=1

𝐿𝑘
 of the previous 𝐿𝑘 =

100 appearance descriptors are conserved. The new 

metric then calculates the smallest cosine distance 

between the 𝑗-th detection and 𝑖-th track in appearance 

space. The distance is described as follows: 

𝑑(2)(𝑖, 𝑗) = 𝑚𝑖𝑛𝑔{1 − 𝑟𝑗
𝑇𝑟𝑘

(𝑖)
 | 𝑟𝑘

(1)
 𝜖 𝑅𝑖}    (4) 

To indicate whether an association is admissible based on 

this metric, another binary variable is first introduced 

[18]: 

𝑏𝑖,𝑗
(2)

= 1 [𝑑(2)(𝑖, 𝑗) ≤ 𝑡(2)]        (5) 
 

Then on a separate training set, an appropriate 

threshold is found. Practically, computing bounding box 

appearance descriptors require the use of a pre-trained 

CNN [18]. The network architecture of the CNN will be 

explained later. 

Since the Mahalanobis metric and the cosine metric 

serve various parts of the assignment problem, these 

metrics are complementary to each other in the 

association. On the one hand, the Mahalanobis provides 

particularly useful short-term data about possible object 

locations. On the other hand, the cosine distance 

determines appearance data is crucial for identities 

recovery after long-term occlusions where the motion 

becomes less distinctive. Utilizing a weighted sum, the 

merging of both metrics creates the association problem. 

The weighted sum is given by: 

𝑐𝑖,𝑗 = 𝜆𝑑(1)(𝑖, 𝑗) + (1 − 𝜆)𝑑(2)(𝑖, 𝑗)     (6) 

If the association is within the gating region of both 

metrics, the association is called admissible[18]: 

𝑏𝑖,𝑗 = ∏ 𝑏𝑖,𝑗
(𝑚)2

𝑚=1           (7) 

Using the hyperparameter λ, it becomes possible to 

manage the effect of every metric on the merged 

association cost. If the camera is moving significantly, 

the setting λ = 0 is a feasible choice. This setting allows 

the use of only appearance data in the association cost 

term. Nevertheless, due to the fact that the Kalman filter 

locates objects, the Mahalanobis gate is still utilized. 

I. Matching Cascade 

After the study used the Mahalanobis distance and the 

cosine distance to associate new predictions with new 

predictions, a matching cascade was introduced to solve 

for measurement-to-track associations by resolving a 

series of subproblems. The cascade’s input included the 

maximum age Amax, the set of track 𝑇 indices, and the 

set of detection 𝐷 indices. The study first computed the 

matrix of admissible associations, as well as the 

association cost matrix. Then the research solved the 

linear assignment issue for tracks of growing age by 

iteration over the trackage 𝑛 . Next, the study selected a 

group of non-associated 𝑇𝑛  tracks in the previous 𝑛 

frames which had not been associated, subsequently 

solving the linear assignment between unmatched 

detection ℒ  and tracks in 𝑇𝑛 . Afterward, the group of 

unmatched and matched detections was updated. Priority 

was given to the most recently seen tracks, also called 

tracks of smaller age. The research ran an IOU 

(Intersection Over Union) association on the set of 

unmatched and unconfirmed tracks with the age 𝑛 = 1. 

This IOU association was similar to the one suggested in 

the initial SORT algorithm and took into consideration 

any abrupt appearance modifications. Either robustness 

improvement against incorrect initialization or limited 

occlusion with fixed scene geometry caused such 

modifications. The matching algorithm is summarized as 

follows [18]. 

 

Input: Track Indices 𝑇 = {1, , , , , 𝑁},  Detection Indices 

𝐷 = {1, … , 𝑀}, Maximum age 𝐴𝑚𝑎𝑥 

1: Compute cost matrix 𝐶 = [𝑐𝑖,𝑖] using Eq 6 

2: Compute cost matrix 𝐵 = [𝑏𝑖,𝑖] using Eq 7 

3: Initialize set of matches  ℳ ←  ∅ 

4: Initialize set of unmatched detections ℒ ←  𝐷 

5: for 𝑛 ∈  {1, . . . , 𝐴𝑚𝑎𝑥} do 

6:            Select tracks by age 𝑇𝑛 ← {𝑖 ∈ 𝑇 | 𝑎𝑖 = 𝑛} 

7:            [𝑥𝑖,𝑗] ← min cost matching (𝐶, 𝑇𝑛 , ℒ)  

8:            ℳ ←  ℳ ∪  {(𝑖, 𝑗) |  ∑ 𝑏𝑖,𝑖𝑖  ∙  𝑥𝑖,𝑗 > 0} 

9:           ℒ ←  ℒ \ {𝑗 |  ∑ 𝑏𝑖,𝑖𝑖  ∙  𝑥𝑖,𝑗 > 0} 

10: end for  
11: return ℳ, ℒ 
 

J. Deep Appearance Descriptor 

For SORT with a deep association metric to be 

successful, a good outcome required training of an 

embedding feature offline before a performance of online 

tracking. The CNN used for this purpose trained on a 

large-scale person re-id set of data [25]. As the dataset is 

made of 1,100,000 images of 1,261 pedestrians, there 

was some confidence that the trained CNN would be 

appropriate for a deep metric aimed at counting people.  
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The CNN utilized represents a residual network [26] 

composed of six residual blocks and two convolutional 

layers. The computation of the global feature map with 

128 of dimension occurred in the tenth layer. Features 

were projected on the unit hypersphere by a final batch 

and one normalization. There is a total of approximately 

2.8 million parameters in the network. The architecture of 

the CNN is presented in Table 4. 
 

TABLE 4. OVERVIEW OF NETWORK ARCHITECTURE [18]. 
 

Name Patch Size/Stride Output Sizes 

Conv 1 3 x 3/1 32 x 128 x 64 

Conv 2 3 x 3/1 32 x 128 x 64 

Max Pool 3 3 x 3/2 32 x 64 x 32 

Residual 4 3 x 3/1 32 x 64 x 32 

Residual 5 3 x 3/1 32 x 64 x 32 

Residual 6 3 x 3/2 64 x 32 x 16 

Residual 7 3 x 3/1 64 x 32 x 16 

Residual 8 3 x 3/2 128 x 16 x 8 

Residual 9 3 x 3/1 128 x 16 x 8 

Dense 10 
 

128 

Batch and L2 

Normalizatio

n 
 

128 

5. SIMULATION AND IMPLEMENTATION 

Using traffic cameras installed at busy street 

intersections in downtown New Orleans and near the 

Baton Rouge Community College (BRCC) in Baton 

Rouge, the Louisiana Transport Research Center was 

able to obtain hundreds of hours’ worth of videos 

containing pedestrian activity that were considered for 

this study. An analysis of these videos showed that they 

differed according to 5 main characteristics including the 

location and time of recording, the direction and level of 

pedestrian traffic, the degree of clustering, and the degree 

of occlusion. Consequently, the study focused on 

determining how these characteristics may affect the 

accuracy of the counting algorithm.   Table 5 summarizes 

all information about the videos.  

For the experiment, the study implemented the 

YOLOv3 + SORT with a deep metric counter in python 

with the aid of the open-source Github repository, as 

created by Bobby Chen [26]. The study kept the original 

pre-trained parameters for both the YOLO detector 

(training on COCO dataset), as well as the cosine metric 

in SORT (training MARS data set). The original code 

was slightly modified to meet the project requirements; 

the study took care in selecting the “people” class only 

for detection. For cost limitation reasons, the study chose 

to process only 2 mins of footage among all videos 

available for each of the 4 types of videos. However the 

counting algorithm processed the videos at a reduced FPS 

compared with the original FPS of each video. Since the 

counter processed the videos at varying speed, the 

researcher added a timestamp to each video for accurate 

data collection. The study recorded both manual and 

automatic counts every 10 s for each of the four videos. 

Figure 1 shows a snapshot of a video before and after 

processing. 

A. Video A 

 

Figure 6 and  

Figure 7 show snapshots of video A, before and after 
being processed by the automated pedestrian counter. 
Table 6 summarizes all the manual and automated counts 
obtained for video A and presents the relative errors 
between the manual and automated counts. 

Referring to Figure 8, Figure 9, and Table 6, the results 

for video A show that 92 % of the time, the frames have a 

relative error of more than 50%, with 58% of the frames 

having a relative error of more than 100%. This means 

that the counting algorithm fails to correctly count 

pedestrians most of the time. After re-watching video A 

after processing, the study noted that the time frames 

with the highest relative error values (20-30, 50-60, 60-

70) were the time frames where there was the most 

occlusion. 

 
 

 

Figure 6. Video A before processing. 
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Figure 7. Video A after processing. 

                 
Figure 8. Manual vs Automated Counts Comparison for Video A. 

 

                   
 

Figure 9. Relative error comparison for video A. 

 

 

 
TABLE 5. VIDEO DATA DESCRIPTION. 

 

Video # Time 
Bicyclists or 

Pedestrians 

The direction of 

pedestrian Traffic 

Pedestrian/Bicyclist 

Traffic 

Presence of Clustered 

pedestrians 

Amount 

of 

Occlusion 

Video A Morning Pedestrians All directions High High High 

Video B Afternoon Pedestrians All directions Low medium High 

Video C Night Pedestrians All directions medium High Low 

Video D Morning Cyclists One direction medium medium Medium 

 

TABLE 6. AUTOMATED AND MANUAL COUNTS FOR VIDEO A AND RELATIVE ERROR  
 

Time Frame (s) Manual Count Automated Count Relative Error (%) 

0 - 10 48 57 18.75 

10 - 20 21 34 61.90 

20 - 30 6 30 400.00 

 30 - 40 7 12 71.43 

 40 - 50 12 27 125.00 

 50 - 60 3 16 433.33 

 60 - 70 3 13 333.33 

 70 - 80 2 5 150.00 

 80 - 90 14 23 64.29 

 90 - 100 10 29 190.00 

 100 - 110 11 18 63.64 

 110  - 120 10 28 180.00 

B. Video B 

 

Figure 10 and  

Figure 11 show snapshots of video B before and after 
being processed by the automated pedestrian counter. 
Table 7 summarizes all the manual and automated counts 
obtained for video B and presents the relative errors 
between the manual and automated counts. 

The results for video B show that 58 % of the time 
frames have a relative error of more than 50%. This 
percentage shows that for video B, the algorithm is  

 

somewhat accurate 50% of the time. After re-watching 
video B after processing, the study notes once more that 
the time frames with the highest relative error values (10-
20, 50-60) are the ones where there was the most 
occlusion. However, although occlusion exists in both 
videos A and B, the algorithm appears to count video B 
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more accurately than video A. This could be due to less 
pedestrian traffic and less clustering in video B.  

Figure 11 compares the manual and automated counts 
for video B, while  

Figure 13 compares the relative errors on each time 
frame. 

             
 

Figure 10. Video B before processing. 

                   
 

Figure 11. Video B after processing. 

 
TABLE 7. AUTOMATED AND MANUAL COUNTS FOR VIDEO B 

AND RELATIVE ERROR.  

 

Time Frame 

(s) 

Manual 

Count 

Automated  

Count 

Relative Error 

(%) 

0 - 10 16 19 18.75 

10 - 20 3 10 233.33 

20 - 30 6 15 150.00 

30 - 40 8 6 25.00 

40 - 50 15 32 113.33 

50 - 60 7 16 128.57 

60 - 70 13 17 30.77 

70 - 80 2 25 1150.00 

80 - 90 8 9 12.50 

90 - 100 5 15 200.00 

100 - 110 4 8 100.00 

110  - 120 8 5 37.50 

 

             
 

Figure 12. Manual vs Automated counts comparison For Video B.                     

 

  
 

Figure 13. Comparison error for video B.    

C. Video C 

 

Figure 14 and  

Figure 15 show snapshots of video C before and after 
being processed by the automated pedestrian counter. 
Table 8 summarizes all the manual and automated counts 
obtained for video C and presents relative errors between 
the manual and automated counts. 

The results for video C show that 50 % of the time 
frames show a relative error of less than 30%, with 30% 
of the time frames having a relative error of 0%. This 
shows that the counting algorithm is far more accurate for 
video C than it is for videos A and B. This result is 
rational, as video C presents much less clustering and also 
shows low occlusion and pedestrian traffic.  

Figure 16 compares the manual and automated counts 
for video B, while  

Figure 17 compares the relative errors on each time 
frame. 
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Figure 14. Video C before processing. 

 

 
 

Figure 15. Video C after processing. 

 
 

 

 
TABLE 8. AUTOMATED AND MANUAL COUNTS FOR VIDEO C 

AND RELATIVE ERROR.  

 

Time Frame 

(s) 

Manual 

Count 

Auto 

Count 

Relative Error 

(%) 

 0 - 10 8 2 66.67 

 10 - 20 0 0 0.00 

 20 - 30 2 1 33.33 

 30 - 40 0 3 300.00 

 40 - 50 2 2 0.00 

 50 - 60 0 0 0.00 

 60 - 70 0 0 0.00 

 70 - 80 5 7 33.33 

 80 - 90 0 4 400.00 

 90 - 100 9 8 10.00 

 100 - 110 6 10 57.14 

 110  - 120 2 5 100.00 

            
 

Figure 16. Manual vs Automated counts comparison For Video C.  

 

              
 

Figure 17. Relative error comparison for video C.    

D. Video D 

 

Figure 18 and  

Figure 19 show snapshots of video D before and after 
being processed by the automated pedestrian counter. 
Table 9 summarizes all the manual and automated counts 
obtained for video D and presents the relative errors 
between the manual and automated counts. 

The results for video D show that the counting 

algorithm counts both pedestrians and bicyclists should 

the right conditions be present. This is logical since the 

detector is initially trained on people in general, rather 

than specifically on pedestrians in the video. Of the time 

frames, 58 % have a relative error of less than 30%, with 

25% of the time frames having a relative error of 0%. 

This shows the counting algorithm for video D to be even 

more accurate than for video C. This result could be 

because the traffic in video D travels only in one 

direction.  
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Figure 20 compares the manual and automated counts 
for video D, while  

Figure 21 compares the relative errors on each time 
frame. 

                        
 

Figure 18.Video D before processing.  
 

 
 

Figure 19. Video D after processing. 

 

 
TABLE 9. AUTOMATED AND MANUAL COUNTS FOR VIDEO D 

AND RELATIVE ERROR. 

  

Time Frame 

(s) 

Manual 

Count 

Automated 

Count 

Relative error 

(%) 

0 – 10 4 4 0.00 

10 - 20 28 23 17.86 

20 - 30 34 41 20.59 

30 - 40 15 19 26.67 

40 - 50 14 17 21.43 

50 - 60 7 12 71.43 

60 - 70 6 6 0.00 

70 - 80 1 5 400.00 

80 - 90 5 11 120.00 

90 - 100 5 5 0.00 

100 - 110 7 11 57.14 

110  - 120 1 8 700.00 

 
 

Figure 20. Manual vs Automated counts comparison for Video D.   

 

 
 

Figure 21. Relative errors comparison for video D 

6. CONCLUSION AND FUTURE WORK 

In this study, the pedestrian count is found to be 
important to three major criteria of CBD pedestrian 
planning; mobility, safety, and pleasure. The study 
discussed manual pedestrians counting and considering 
the different types of automated pedestrians counting, 
based on computer vision inclusive of clustering-based 
methods, region-based methods, and detection-based 
methods. For implementation, the study committed to 
working with a real-time, detection-based counter that 
applied YOLOv3 and Deep SORT. The study selected the 
counter due to its accuracy and simplicity in comparison 
with other benchmarks. The results obtained after testing 
the counter revealed that occlusion was the main source of 
error, while other factors, such as intensity and direction 
of pedestrian traffic, had less impact.   

The relative errors for videos A and B showed to be 
very high. Since there were only two videos with multiple 
occlusions present, this study concludes that the occurring 
occlusions were solely responsible for the errors, 
regardless of the direction and amount of traffic. Due to 
occlusion, an object may be tracked more than once. 
Since some level of occlusion occurs in all videos, the 
study presents that occlusion constitutes an extant main. 
To solve the problem associated with occlusion, the Deep 
SORT tracker must be properly re-trained.  
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