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Abstract: A versatile Brain Computer Interface (BCI) system is designed and implemented to assist people with severe disabilities in 

achieving a fair level of autonomy. The versatility of the proposed BCI system lies in the fact that it can be custom-tailored to individual 

users while not only mitigating deleterious artefacts, but also putting them to an advantage for an asynchronous, interactive, real-time, 

and fault-tolerant assistive system. Independent Component Analysis (ICA) and correlation-based Template Matching (TM) are 

integrated in a novel way in order to detect and intelligently handle artefacts. Hence, this BCI differentiates between involuntary eye 

blinks (considered artefacts, thus removed) and deliberate rapid eye blinks (considered synchronizing signals) used for distress calling, 

start/stop signalling, as well as fault-tolerance owing to the confirmation/cancellation of commands before their execution. Two classes 

of brain activities, optimized to suit the capabilities of each patient, are used to navigate through a menu of commands intended to 

individually meet the users’ needs. The Wavelet Transform (WT) is used to extract sub-band-power-based features that are input to a 

Neural Network used as the classifier with a success rate reaching 90%. The system can flexibly be adapted to suit various scenarios 

involving binary load control (on/off of TV, light, A/C, etc…) as well as multilevel control (up/down level of bed, TV volume, room 

temperature…etc.). The merits of this system have been successfully demonstrated in practice, showing its potential contribution to 

smart hospitals and patient-care facilities. 

 

Keywords: Brain Computer Interface (BCI),  EEG Signals, Artefact Mitigation, Independent Component Analysis (ICA), Neural 

Network (NN), Wavelet Transform (WT).   

 

1. INTRODUCTION 

   This work targets patients suffering from extreme 

disabilities which prevent them from communicating with 

their surrounding environment through speech or muscle 

movements. Their extended bed-confinement usually 

leads to muscle inflammations and skin ulcers. Hence, 

constant nursing care is required to avoid complications, 

meet their needs, and handle arising emergencies. 

Moreover, these patients are also prone to developing 

negative psychological effects due to their dependency on 

others and inability to communicate with the outside 

world, which may hinder their healing process.  

   Recent rapid advances in technology paved the path for 

controlling physical objects via mere thoughts using 

Brain-Computer Interfaces (BCI). These rely on the weak 

Electroencephalogram (EEG) signals that arise from the 

neural activities and are measured using non-invasive  

electrodes suitably placed on the skull’s surface.  

Introduced by Vidal in 1973 [1], BCI is currently an active 

research direction with applications in diverse areas 

including intelligent home control [2], speech synthesis 

[3], spelling applications [4], readiness detection [5], 

Epilepsy Prognosis [6], wheelchair control [7], micro-

sleep prevention [8], limb rehabilitation [9], mobile robots 

[10,11], drowsiness control [12], and assistive systems for 

people with severe handicaps enabling them, for example, 

to control electronic devices [13] or browse the internet 

[14] .  

   This work belongs to the last category of applications. 

Its objective is to help patients with severe disabilities gain 

back some autonomy in interacting with their 

environment, hence offering them some physical and 

psychological comfort. A versatile BCI system is used to 

achieve this, allowing users, for example, to control some 

appliances, self-adjust their laying positions, or call for 

emergency simply using their thoughts.  It builds on a 

recent work [7] utilizing an efficient sub-band-power-

based BCI system in order to achieve a versatile and smart 

assistive system featuring flexibility, interactivity, 

http://dx.doi.org/10.12785/ijcds/100145 
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asynchronous real-time operation, twofold-artefact-

treatment, and fault-tolerance.   

   Since this work targets severely disabled people, it is 

reasonable to incorporate as little constraints as possible in 

the proposed BCI. Hence, in contrast with previous works 

[7], the proposed system accommodates eye blinks and 

movements. In fact, these artefacts are handled in two 

different ways. Spontaneous blinks, on the one hand, are 

considered noise and are removed by the system using a 

novel combination of Independent Component Analysis 

(ICA) and correlation-based Template Matching (TM). 

Deliberate rapid and successive eye blinks, on the other 

hand, are used as synchronization signals to start/stop the 

system, initiate and confirm a command, and if sustained, 

call for emergency. The aforementioned dual use of eye 

blinks is original in this work compared to other assistive 

systems [13,14] and constitutes one of the smart features 

of the proposed BCI.  

   Other researchers relied entirely on Electrooculogram 

(EOG) [15] signals when using deliberate eye blinks to 

provide users with some communication with their 

environment. However, this approach would require 

severely disabled users to control the number or duration 

of their eye blinks to help distinguish them from 

spontaneous blinks. Instead of imposing this restriction in 

our work, the user is only expected to rapidly blink 

(without specifying the speed as long as it is faster than the 

regular blinking rate of around 1 Hz) every time 

synchronization is required to control the system 

operation. In the context of relevant publications [13-15], 

this paper offers the following contributions: 

 

• Dual use of EEG and EOG signals using the same 

headset sensors. 

• Novel integration of ICA and TM to more 

efficiently detect and handle EEG artefacts. 

• Distinction between rapid deliberate eye blinks 

(used for synchronization, emergency calling, and 

fault-tolerance through command confirmation), 

and involuntary eye blinks (treated as unwanted 

artefacts, hence omitted). 

• Effective and rapid classification using a reduced 

sub-band-power-based feature space.  

• Easy interactive user interface asynchronously 

operating the system in real-time with a command 

delay of 15 sec (for multi-level control), and 10 sec 

(for binary control).  

• Flexibility thanks to custom tailoring: By adapting 

the classes of the EEG signals, the system menu, 

and appliances controlled the requirements of 

patients with varying capabilities and needs are 

catered for. 

• Only two classes of mental activity are used 

leading to a more robust performance. 

 

   The remainder of this paper is organized as follows. In 

section 2, the data collection stage of the work is 

summarized. Section 3 presents an overview of the 

proposed system.  Section 4 provides some background 

related to feature extraction and classification while 

Section 5 is devoted for artefact detection and mitigation. 

Section 6 presents the system operation and testing. 

Finally, Section 7 summarizes and concludes this work. 

2. DATA COLLETION 

This work implements its BCI system based on Emotiv’s 

wireless headset [16]. Out of its 16 sensors, 2 are reference 

signals and 14 are EEG channels: AF3, F7, F3, FC5, T7, 

P7, O1, O2, P8, T8, FC6, F4, F8, and AF4. Figure 1 depicts 

the Emotiv headset showing the proper placement of its 

electrodes. The sensors are pre-dampened with a saline 

solution then applied to the scalp according to the 10-20 

international standard as shown in Figure 2. All 14 

channels are sampled at rate of 128 Hz then digitized with 

a 14-bit-per-sample A/D converter. A built-in fifth order 

Butterworth digital filter is applied to each channel’s 

signal to cut-off frequencies above 64 Hz. In addition, two 

notch filters remove the 50/60 Hz power lines 

interferences. The resulting filtered EEG signals are 

contained in the frequency band 0.2 – 64 Hz and are 

wirelessly transmitted to a USB module in the PC via a 

proprietary encoding/modulation on a 2.4 GHz carrier. 

The headset has a 12-hr battery life and weighs around 7 

Ounces. Figure 3 depicts a sample recording showing only 

9 of the sensors’ signals. The left front sensors (AF3 and 

F7) are the first two sensor readings, and the right front 

sensors (AF4 and F4) are the last two. Blinking is most 

pronounced in the frontal sensors, as seen in Figure 3 

showing two involuntary blinks, distinguished by steep 

rises and falls in the signals. Towards the end of the signal, 

some deliberate continuous  blinking can also be observed. 

   The data recording was performed on three females aged 

between 20 and 21 years, and one male aged 55. Every 

signal recording, or epoch, lasted approximately 6 

seconds. The user is asked to sit upright and refrain from 

body or head movements during the 6-second recording. 

A moderator informs the user of the beginning of a session 

before starting to record and he/she is allowed to blink 

while recording. Following the 6 seconds, the moderator 

ends the recording and finishes the session. Around one 

second (100 samples) is omitted from the start of the 

recording to allow for a transition period that the user may 

need after being signaled to start. Each signal in such a 

truncated epoch contains 500 samples equivalent to about 

4 seconds of EEG recording.  

Two classes of thoughts are used and can be changed 

to suit the user. However, these need to belong to two 

distinct cognitive processes. For example, the system was 

tested using pairs of the following mental efforts: a 

mathematical operation (such as a 2-digit addition), 
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imagining a colored geometrical shape (such as a green 

square), imagining some limb movements (such as the 

left/right arm/leg). 

 
 

 

Figure 1.  Emotiv’s headset showing the proper placement of its 

electrodes [16]. 
 

 

 

 

 

 

 

 

 

 

 
 

 
Figure 2.  The headset’s 10-20 international sensor positioning [16]. 

 

3. SYSTEM OVERVIEW 

The overall BCI system is shown in Fig. 4. After an 

epoch is recorded, the artefacts (namely eye blinks) are 

detected and classified. Involuntary blinks are detected 

according to their frequency (less than 1 Hz) and are 

removed. Feature extraction and classification then takes 

place on the filtered epoch to determine the class of the 

signal. If the user blinks rapidly and continuously (over 2 

Hz in frequency), the system considers this to be a 

synchronizing signal, discards that epoch and performs an 

action depending on the menu state. This can either be 

initiating a new command, canceling/confirming the 

existing command (thus providing fault-tolerance), or 

calling for emergency (in the event that a continuous train 

of rapid blinks follows). An intuitive menu may be 

designed to control binary or multi-level loads using any 

two sufficiently distinct classes (for example a colored 

shape and a mathematical operation). An example of such 

a menu can be seen in Figure 5 being used to switch on or 

off a room’s light and adjust a bed up or down. The 

command to select the type of control is issued by the user 

through a mere thought.  

   As depicted in Figure 5, the system is initially activated 

when the user produces a 3-second-long sequence of rapid 

eye blinks, hence signaling the start of a new command. 

After a welcome tone, the user is prompted to proceed with 

a 4-second thought belonging to either one of the two 

classes, thus deciding on the type of control to be applied. 

The multiplication operation corresponds to the binary 

control which toggles the status of the appliance, for 

example the room’s light. The green square (second class), 

enters a second level for the multilevel control. Here, the 

position of a bed, for example, can be controlled: thinking 

of a green square again adjusts the bed downwards while 

the multiplication adjusts the bed upwards. The system 

allows for fault-tolerance by giving the users the 

possibility of aborting a command before it is executed. 

This is done by blinking continuously and rapidly. 

Following every command (even if aborted), the system 

goes into standby mode and can only be activated again 

through another train of rapid blinks marking the start of 

another command. In the event of an emergency, the user 

is able to call for help by blinking continuously and rapidly 

after the system is activated. In the emergency mode, the 

system sounds an alarm to alert those in close proximity 

and calls a pre-set phone number for remote assistance. In 

this case, no cancellation is possible. 

   The system can be extended to encompass many other 

practical scenarios as illustrated in Fig. 6. For example, the 

binary device (on/off) can be a television, air conditioning 

system, music player, or an automatic curtain. The second 

control type can be adapted to control the volume or 

channels of a TV or the temperature of an A/C... etc. If the 

users would like control over more devices, the system can 

be tailored to meet their needs at the expense of a larger 

command delay. 

Figure 3. Sample of an EEG epoch showing two involuntary 

eye blinks followed by a series of voluntary ones 
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Figure 4. Overall block diagram of the proposed BCI System. 

 
 Figure 5. Menu example to control the room light and/or bed position. 

  

 

 

 

 
 

 
 

Figure 6. Extended-Menu BCI 

 

4. FEATURE EXTRACTION AND CLASSIFICATION 

This section summarizes some background material 

about the signal processing tools used to extract the EEG 

features and classify the measured signals. Starting with 

the classifiers, most researchers resorted to Neural 

Networks [7,17-18] owing to their established simplicity 

and fairly good performance. Other classifiers have also 

been used to a less extent such as Linear Discriminants  

(LD) [19], Bayesian [20], Hidden Markov Model (HMM) 

[21], and Support Vector Machine (SVM) [22]. In line 

with the prevailing literature, this BCI utilizes a standard 

two-hidden-layer Cascaded Feed-Forward Neural 

Network. The number of hidden layers was subjectively 

judged to be satisfactory following some extensive 

computer testing. To assess the classifier’s performance, 

the EEG data was split into two groups, one for training 

and one for testing.  

Feature selection and extraction is an important step 

affecting the efficiency and performance of BCI systems. 

While some researchers used a time-series prediction 

approach and derived their features from the power of the 

predicted EEG signals [23], most others resorted to the 

Wavelet Transform (WT) [24-28] wherein the coefficients 

of the resulting detail signals are used as features. In order 

to reduce the feature space dimensionality, a recent work 

[7] alternatively proposed to use the average powers 

(Mean Square) of the detail and approximation signals 

leading to a substantial reduction in the feature vector 

dimension without noticeably compromising the 

classification performance. In addition to efficiency, there 

is a clear practical justification for using the WT with such 

an averaging as it leads to a sub-band-power 

decomposition of the EEG signals.  

A five-level WT naturally matches the fact that EEG 

signals are divided into five frequency bands that take on 

different power levels depending on the mental state.  

Indeed, at each one of its stages, WT is quivalent to 

splitting the spectrum of the input signal into two bands, 

the Low-Band (called “approximation”) and the High-

Band (called “detail”). At the the next stage of the WT, 

such dual-band splitting is applied to the approximation 

signal leading to another detail and approximation. This 

process continues till the last stage of the WT. Figure 7 

depicts this multi-band decomposition of the EEG’s signal 

spectrum resulting from a 5-level WT. Figure 8 depicts an 

example of the approximation and details for an EEG 

signal, and Table I illustrates their correspondence to the 

five mental signal frequency bands. Based on the 

computer testing, the “Db5” mother wavelet was found to 

yield best results and has been used throughout this work. 

Hence, the features consist of 6-dimensional vectors with 

their entries corresponding to the average powers of  the 

approximation signal as well as the five details. 

 

 

  

 

 

 

  

 

 

 
 

Figure 7. Multi-band frequency decomposition resulting from a 5-

level WT. 
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TABLE I. Correspondence between a 5-level WT and the EEG 

Frequency Bands. 

 

 
Figure 8. Example of approximation and details resulting from a 5-

level WT applied to an EEG signal. 

 

 

   Finally, it is worth pointing out that, as reported earlier 

[7], some of the 14 sensor signals carry some level of 

redundancy that can be reduced using Principal 

Component Analysis (PCA). However, since the feature 

vector dimension is already reduced through averaging 

and for the sake of simplicity, we chose not to use PCA in 

this work and preserve the data in all 14 sensors despite 

some of the redundancy that might exit. 

5. ARTEFACT  DETECTION  AND  MITIGATION 

   Constituting an important part of this project, the issue 

of detecting and dealing with artefacts is discussed with 

some details in this section.  The presence of artefacts 

(namely eye blinks) in an EEG signal causes a contained 

disruption. This affects the features used by the classifier 

leading to incorrect decisions. Therefore, it is important to 

get rid of artefacts prior to applying the feature extractor 

on the signals to be classified. However, under certain 

conditions, EEG artefacts may be put to an advantage. 

Such a dual treatment of the eye blinks is one of the 

features of the proposed BCI. Hence, if voluntary (faster-

than-normal) eye blinks are detected, the system bypasses 

the signal classification and triggers one-of-several 

synchronization tasks such as system start/stop, command 

confirmation/ cancellation, or emergency   notification. 

Towards the detection and an intelligent handling of eye 

blinks, this work integrates in a novel way the Independent 

Component Analysis (ICA) [29] along with a correlator-

based Template Matching (TM).    

   We summarize below the main details of the data 

processing implemented in the proposed BCI system 

towards detecting and dealing with the eye blinks. Starting 

with the data structure, each epoch consists of  𝐾 (=14) 

signals measured with 𝑁 = 500 samples per sensor. Let 

𝑥𝑘(𝑛) (𝑘 = 1, … , 𝐾; 𝑛 = 1, … , 𝑁)   denote the signals of 

an epoch and 𝒙𝑘 (𝑘 = 1, … ,14) the 𝑁𝑡ℎ-dimensional row 

vector such that its 𝑛𝑡ℎ  entry (𝑛 = 1, … , 𝑁)  is equal to 

𝑥𝑘(𝑛) . Let 𝑿  denote the 𝐾  by 𝑁  measurement matrix 

defined by 

 

𝑿 = [𝒙1
𝑇  𝒙2

𝑇  … . 𝒙𝐾
𝑇 ]𝑻                            (1) 

 

where “  
𝑇” denotes the transpose operation. We assume 

that the measured data is the outcome of a linear 

combination of 14 zero-mean, independent, and non-

Gaussian sources 𝑠𝑘(𝑛) , 13 of which are due to brain 

activities and one is due to the eye blinks. Hence,  

 

𝑿 = 𝑨𝑺                                                  (2) 

 

where 𝑨 is an unknown 𝐾 by 𝐾 mixing matrix (assumed 

invertible) with entries corresponding to the coefficients 

of the linear combination of the source signals 𝑠𝑘(𝑛), and 

𝑺  is the 𝐾 by 𝑁 source matrix defined by 

 

𝑺 = [𝒔1
𝑇   𝒔2

𝑇  … . 𝒔𝐾
𝑇 ]𝑻                          (3) 

 

with 𝒔𝑘  (𝑘 = 1, … ,14)  being the 𝑁𝑡ℎ -dimensional row 

vector such that its 𝑛𝑡ℎ  entry (𝑛 = 1, … , 𝑁)  is equal to 

𝑠𝑘(𝑛). The goal is to blindly (i.e., without prior knowledge 

of 𝑨) recover 𝑺 from 𝑿, hence the name “Blind Source 

Separation” (BSS) [29]. The solution to this problem lies 

in iteratively finding the inverse of  𝑨 one row at a time by 

considering a linear combination of 𝒙𝑘 defined by 

 

𝒚 = 𝒘𝑻𝑿 = 𝒘𝑻𝑨𝑺 .                                (4) 

 

where 𝒘 is a 𝐾  by 1 sough-after vector. By the Central 

Limit Theorem [30], the sparser 𝒘𝑻𝑨, the farther away the 

distribution of y is from that of a Gaussian random vector, 

hence the farther away its Kurtosis is from zero. In the 

limiting case when 𝒘 is such that 𝒘𝑻𝑨  has unity in its  𝑗𝑡ℎ 

entry and zero in all others (corresponding to the case 

when 𝒘 is identically the 𝑗𝑡ℎ row of 𝑨−1), 𝒚 is identically 

WT 
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equal to 𝒔𝑗   having a maximum Kurtosis absolute value 

owing to the assumption that the sources are not Gaussian. 

Consequently, to recover all 14 sources 𝒔𝑘   from the 

measured sensor data 𝒙𝑘 , the Independent Component 

Analysis (ICA) algorithm [29] consists of first removing 

the bias off the data matrix 𝑿 (hence validating the zero-

mean assumption about the sources), this is because the 

readings from Emotiv’s headset are stored at a DC offset 

of around 4.2 mV. Next, an Eigen analysis is performed 

on the data covariance matrix 𝑪, namely 

𝑪 = 𝔼{[𝑿𝑿𝑻]} =  𝑼𝑫𝑼𝑻                           (5) 

 

with 𝔼{. }  denoting the expected value,  𝑼  is a unitary 

matrix (𝑼𝑼𝑻 = 𝑰𝑘, the 𝐾 by 𝐾 identity matrix,) consisting 

of the eigenvectors of 𝑪   as its columns, and 𝑫   is a 

diagonal matrix containing the eigenvalues of 𝑪   in its 

diagonal entries.  Next, the measured signals 𝒙𝑘   are 

pairwise de-correlated via the transformation  

 

�̂� =  𝑫(−1/2)𝑼𝑇𝑿                                        (6) 

satisfying 

𝔼{[�̂��̂�𝑻]} =  𝑰𝑘 .                                          (7) 

 

Note that the above transformation in Eq. (6) effectively 

transforms the coefficient matrix to become unitary, 

namely  
�̂� = �̂� 𝑺                                                       (8) 

with  

�̂� =  𝑫(−1/2)𝑼𝑇𝑨                                       (9) 

satisfying 

�̂��̂�𝑻 =  𝑰𝑘 .                                                (10) 

 

In addition, Eqs. (7)-(10) also lead to the fact that 

 

𝔼{𝑺𝑺𝑻} =  𝑰𝑘                                            (11) 

 

in agreement with the underlying assumption of 

independent sources. Eq. (11) also leads to the fact that the 

sources have been normalized by this transformation, 

hence can only be recovered within a scalar. Finally, the 

ICA algorithm proceeds with   maximizing (with respect 

to 𝒘 ) the Kurtosis of  𝒚 in Eq. (4) (using the transformed 

data �̂�) defined by [30] 

 

𝓚 = 𝔼 {[𝒘𝑻�̂��̂�𝑻𝒘]
2

}  − 𝟑 𝔼{𝒘𝑻�̂��̂�𝑻𝒘}              (12) 

 

subject to the constraint 

𝒘𝑻𝒘 = 1.                                          (13) 

Applying the Lagrange method and utilizing Eq. (7), the 

first row of 𝑨−1 (denoted by 𝒘1
𝑇), is iteratively estimated 

using 

 
1 This will not  necessarily lead to 𝒔1  as this depends on which one of 

the local maxima of   𝓚  is encountered first. 

 

�̃�1(𝑖 + 1) = 3 �̃�1(𝑖) 

− 𝔼{[�̃�1
𝑇(𝑖)�̂��̂�𝑻�̃�1(𝑖)]�̂��̂�𝑻�̃�1(𝑖)}                (14)   

 

randomly starting with a unit vector �̃�1(0)  and 

normalizing �̃�1(𝑖 + 1)  at the end of each iteration to 

satisfy Eq. (13). Conversion is satisfied if the norm of 

[�̃�1(𝑖 + 1) − �̃�1(𝑖)] is less than a nominal factor. Then, 

one of the 14 source signals1 is estimated to a scalar by 

 

�̃�𝑗 = �̃�1
𝑇�̂�.                                         (15) 

 

The same process as above is repeated to estimate the next 

source signals �̃�𝑗 (𝑗 = 2, … , 𝐾) via the estimation of the 

next row vectors of 𝑨−1, 𝒘𝑗
𝑇  except that at each iteration, 

the following mutual orthogonality condition is imposed 

(in order to satisfy Eq. (10)) 

 

�̃�𝑗(𝑖 + 1) ←  �̃�𝑗(𝑖 + 1) 

 

−[�̃�𝑗(𝑖 + 1)𝑇 �̃�𝑘]�̃�𝑘;     (𝑗 ≠ 𝑘)                  (16) 

 

Once all 14 sources have been separated, it remains to 

single out the eye blink signal. 

 Some researchers [31] used Source separation 

followed by Pattern recognition techniques based on 

temporal and frequency features. The correlation-based 

Template Matching (TM) method we use in this work is 

simpler and proved to flawlessly detect the eye blinks 

across all tested cases despite the user-dependent 

variations in eye blinks (time and amplitude scaling). To 

implement TM, we needed to create an eye blink template. 

For that several measurements were taken with deliberate 

voluntary eye blinks clearly visible in the collected EEG 

signal. Next, ICA was performed on the signals. The most 

distinct single eye blink is manually segmented as shown 

in red in Figure 9. Next, the blink was smoothened using a 

low-pass filter and zero-padded to match the 500 

dimension of the other signals as shown in Figure 10.  

Figure 11 depicts the correlator used to implement TM 

with  𝒔𝑘 denoting one of the 14 ICA-generated signals and 

𝑺𝑅
∗  is the conjugate spectrum of the template (reference) 

signal performed with a 2N-point Fast Fourier Transform 

(FFT). The candidate for an eye artefact signal is chosen 

as the one leading to the largest Magnitude Peak. A signal 

is decided to be a blink in the case this peak exceeds an 

empirical threshold (= 0.5). Otherwise, it is decided that 

the signal is free of eye artefacts. This threshold test is 

needed to rule out the rare cases where the user does not 

blink during the 4-second recording interval. Multiple eye 

blinks will appear  
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as multiple peaks in the output of the correlator thanks to 

the shift-invariance nature of the correlation operation. It 

is important to normalize the signals at the input of the TM 

so that the peak magnitude of all auto-correlations is equal 

to unity. 

 

 
 

Figure 9. Segmented eye-blink 

 

 
 

Figure 10. Smoothed eye-blink template signal. 

 

 
Figure 11.  Correlator block diagram used for TM. 

 

   For a quantitative illustration of the effectiveness of ICA 

in removing eye blinks, a signal was recorded that was free 

of eye and was then artificially contaminated with a blink 

extracted from another contaminated signal. The three 

signals seen in Figure 12 are the clean signal, the same 

signal after its contamination, and the decontaminated 

signal after eliminating the blink. The root mean-square 

error (RMSE) was calculated between the decontaminated 

signal and the originally clean signal and was found to be 

8.5%. 

Figure 12. The original clean signal, blink-contaminated signal, and 

cleaned signal. 
 

6. SYSTEM  OPERATION AND TESTING 

   Figure 13 depicts the control flow chart of the proposed 

BCI system. The number of blinks in a second is tracked 

by a counter. The starting state is set as X=1, during which 

the system looks for continuous blinks. If the system 

detects 2 blinks/second or more for 3 consecutive seconds, 

the system is started, and the user is informed of the 

activation by a welcoming voice message. The state now 

changes to X=2. Four seconds worth of samples are then 

collected and inspected for eye blinks. Emergency mode 

is activated if the eye blink counter exceeds the set 

threshold. When operating in this mode, the system 

triggers an alarm signal, calls the user’s pre-assigned 

emergency contact, and then shuts down to prevent the 

user from triggering unintended commands. Throughout 

all the tests performed, the proposed system flawlessly 

detected this activation /emergency situation. 
   On the other hand, if the system does not detect a train 

of fast blinks, the collected samples are treated as an epoch 

and are analyzed. The signal undergoes the phases of 

artefact removal, feature extraction, and classification 

towards a decision on the intended command. If it is 

decided that the epoch belongs to the first class of 

thoughts, the system is set to execute it and the state is 

changed to X=4. If, however, the thought is classified in 

the second class, another level of classification is needed 

before a command is executed. This is designated as X=3, 

and the system loops back to collect another epoch of four 

seconds. The system prompts the user for another thought, 

and the measured signals undergoe the aforementioned 

processing. When the system has decided on the action, 

the state is changed to X=4. Here, the system informs the 

user of the action it will take and requests confirmation by 

collecting new samples and inspecting them for a train of 

blinks, which is the cue for cancellation. If no such train 

of blinks is detected, the state is changed to X=5 and the 

system performs the command. Otherwise, the action is 
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cancelled. In both  cases, the cycle is repeated by returning 

the state to X=1. 

   As such, the proposed interactive system is 

asynchronous in that it does not continuously classify 

thoughts, thus greatly reducing the occurrence of errors 

due to timing problems. The user is also not required to 

give commands at pre-set times, like in synchronous BCI 

systems. Instead, it is a self-paced system that constantly 

looks for a train of voluntary fast blinks, which is the cue 

for system activation. The user, therefore, can 

conveniently choose when to activate the system. Once 

activated, the user is notified and he/she can give a 

command or call for emergency. The average waiting time 

for calling an emergency is less than 10 seconds. The 

system is fault-tolerant as it provides the possibility of 

canceling a command before its execution if the system 

wrongly classifies a thought. The system is versatile as it 

is customizable based on the requirements and capabilities 

of the users allowing them control over various devices, 

and in different modes. The binary control turns devices 

on or off, while the multilevel control provides higher 

flexibility such as the up/down adjusting of the bed 

position, TV volume, room temperature, …etc. The 

command delay time is 10 seconds  for binary control 

and15 for multilevel.  

   Several mental activities have been used to test the 

proposed BCI system, such as a simple mathematical 

operation, the imagination of geometrical shapes and 

colors, as well as the movement of some limbs (left/right 

arm/leg).  As expected, the choice of pairs of classes 

impacts the performance of the system. The smaller the 

correlation between mental activities, the better is the 

clustering of the feature vectors, hence the better is the 

performance. This is reflected by Table II showing the 

system performance for several pairs of mental activities. 

The “Math” versus “Left” thoughts showed best 

classification rates reaching 90 %. The fact this pair 

outperformed its “Math/Right” counterpart is most likely 

related to the right-handedness of the users. The cognitive 

aspect of this problem, albeit interesting, is beyond the 

scope of this work. 

 
TABLE II. System Performance for Some Pairs Of Mental Activities 

  

 

 

 

 

 

   In practice, users have different mental capabilities, 

hence some custom-tailoring is needed in order to 

optimize the classes of mental activities that best suit each 

user. Operating the system in real-time required that some 

issues be addressed. These include synchronization, 

simultaneous data streaming and analysis, as well as 

accounting for erroneous classifications. For most uses, 

MATLAB is a single-threaded application, meaning that a 

single command must finish before the next can be started. 

This is hindering for real-time processing since data must 

be read and processed simultaneously. To circumvent this, 

the Fieldtrip [32] buffer is used to stream data in smaller 

blocks. The headset reads the current EEG data and writes 

them into the buffer, while concurrently  MATLAB reads 

the previously stored data from the buffer and analyses it. 

The command delay is longer than the epoch duration, 

which protects the buffer from overflowing.    

7. CONCLUSION 

A versatile system intended to assist severely disabled 

patients was designed and successfully implemented. It 

aims at offering them a fair level of autonomy and 

facilitating communication with their environment based 

on a novel blink-mitigated blink-driven BCI. It relies on 

an elaborately-developed MATLAB code, an Arduino 

microcontroller, as well as Emotiv’s wireless headset. 

Hence, by combining ICA and TM, this BCI differentiates 

between involuntary eye blinks (considered artefacts, 

hence removed) and deliberate fast eye blinks (considered 

synchronizing signals) used for distress calling, start/stop 

signalling, as well as fault-tolerance owing to the 

confirmation/ cancellation of commands prior to their 

execution. Rapid eye blinks serve as a cue for the system 

activation, allowing it to function in asynchronous mode 

with fewer errors. The system also offers an easy 

interactive user interface that can be customized to meet 

the requirements and abilities of the different users. The 

system caters for the safety of users while executing 

commands and allows them to call for help in case of 

emergencies throughout its operation.  

   Using a very reduced feature space based on sub-band-

powers generated by the Wavelet Transform, the system is 

efficiently operated in real time with a command delay 

between 10 to 15 seconds. Two classes of brain activities, 

chosen to suit the capabilities of each patient, are used to 

navigate through a flexible menu of commands intended 

to individually meet the users’ needs. The sub-band-

power-based features extracted by a 5-level Wavelet 

Transform are classified using a two-hidden-layer 

Cascaded Feed-Forward Neural Network with a success 

rate reaching 90%. The system can flexibly be adapted to 

suit various scenarios involving binary load control (on/off 

of TV, light, A/C, etc…) as well as multilevel control 

(up/down level of bed, TV volume, room 

temperature…etc.). The merits of this system have been 

Combination Performance 

Math vs Left 90% 

Math vs Green 83.3% 

Math vs Right 80% 

Left vs Right 70% 
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successfully demonstrated in practice, showing its 

potential contribution to smart hospitals and patient-care 

facilities. 
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