

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 10, No.1 (Aug-2021)

E-mail address: Marwa_marwan21@uomosul.edu.iq, bmahmood@biocomplexlab.org, bmahmood@uomosul.edu.iq

 http://journals.uob.edu.bh

On the Relations among Object-Oriented Software Metrics:

A Network-Based Approach

Marwah M.A. Dabdawb1 and Basim Mahmood2

1Software Engineering Department, University of Mosul, Mosul 4100, Iraq

2Computer Science Department, University of Mosul, Mosul 41002, Iraq
2BioComplex Laboratory, Exeter, UK

Received 19 Jan. 2021, Revised 22 Mar. 2021, Accepted 03 Apr. 2021, Published 5 Aug. 2021

Abstract: Recent years have witnessed a great revolution in software applications. The quality of the software is important insofar as

it contributes to providing better services for users. Software metrics are mainly used to obtain feedback on the quality of software

design. These metrics enable developers to identify the potential weaknesses of their designs. Furthermore, software metrics may have

correlations with each other and impact the outcome of each other. This specific case may cause a misleading interpretation of the

design, which eventually affects the quality of software and waste the time and effort during the design phase. Therefore, selecting the

appropriate metric during this phase should be carefully performed. In this work, we use network science concepts for deeply

investigating the relations among object-oriented software metrics. The analysis approach is based on network visualization and

network measurements. The dataset of this work was collected from accredited references in the field of Software Engineering. This

study involves the main 104 metrics that are basically used during software design. The findings demonstrated interesting facts on the

relations among metrics. Besides, this work is considered as a comprehensive analysis and assessment that takes into account different

dimensions of the relations among software metrics. We believe that the analysis and the results can make it easy for developers in

selecting the appropriate metrics during the design phase.

Keywords: Complex Network, Data Analysis, Object-Oriented Metrics, Software Engineering

1. INTRODUCTION

In recent decades, many software measurements have

been extensively developed and used in assessing software

quality. These measurements are considered crucial factors

in determining the quality of software products [1].

Software measurements are also referred to as Metrics.

These metrics provide managers and developers with

feedback in a form of quantitative observations on the

property of software in terms of the following [2]:

- Quality of software and system complexity.

- Deduction of effort in the design and development.

- Ease of use and the difficulty of testing.

- Understanding, tracking, and progress during the

various stages of software development life cycle.

Nowadays, the software development process relies

massively on object-oriented models. To assess the quality

of object-oriented software, several metrics can be

involved in the process. In a software development

environment, object design is a crucial aspect according to

"IEEE Software Engineering Standards", and it is essential

to measure software design quality by using these metrics,

which assist in verifying the quality of software properties

[3].

Software metrics have been classified into Traditional

metrics and Object-Oriented metrics. The latter, which is

our scope in this study, has become a dominant approach

to structure software requirements, designs, and

implementations. It applies the concepts of

understandability, reliability, reusability, and

maintainability in a better manner than the traditional

approach. Object-oriented designs are constructed using

classes, each of which contains a set of attributes and

methods, and the implementations of these classes are

objects [4][5].

The software design phase is considered one of the

most crucial aspects of software quality. Practically, it is

important for software developers to evaluate their designs

at each step using appropriate metrics. The decision of

selecting a metric for the software model should be

carefully performed. However, using inappropriate metrics

may cause a misleading interpretation of software

http://dx.doi.org/10.12785/ijcds/100182

902 Marwah M. A. Dabdawb & Basim Mahmood: On the Relations among Object-Oriented…

 http://journals.uob.edu.bh

evaluation, which eventually wastes time and effort. In fact,

a well-understanding of software metrics plays a key role

in obtaining an optimal evaluation of a design.

Understanding a metric depends on the concept of that

metric as well as on its relations to other metrics.

Although of its importance, the problem of

understanding the relations among metrics has not received

enough attention in the literature. Few studies considered

this issue in their works and showed the influence of

metrics relations on the consequent decisions of the design.

A recent work, in 2020, was performed by Kuk et al. [6]

and presented an analytical study of the object-oriented

metrics to find the relationship between the value of the

metrics with the level of security of the software. These

relationships were determined by examining software

vulnerabilities with code-level metrics. The authors

demonstrated a relationship between the considered

metrics and software security issues by using

CWE/OWASP tools that were used for the classification of

software vulnerabilities. In the same year, Schnoor and

Hasselbring [7] conducted a study to find a relation

between the dynamic weighted metrics and their

corresponding static metrics. Their data were collected

from four diverse experiments and the results showed that

there was a strong relationship between dynamic and static

metrics. They also found a difference in the analysis

between class level and package level metrics. In the same

context and for assessing system architecture, Etzel et al.

[8] in 2020 used metrics from code level and object-

oriented design analysis to enrich system architects with

assessment information about the quality of the system

architecture. The collected metrics were examined with

Electronics Architecture and Software Technology -

Architecture Description Language (EAST-ADL) model.

The study provided important suggestions for software

developers.

Moreover, Aggarwal et al. [9] conducted an empirical

study on the relations among 22 software metrics that were

developed by several researchers. The authors applied

these metrics on three projects and presented descriptive

statistics, analysis of components, and correlation analysis.

They relate these metrics to each other and deduced one

group of metrics that can provide sufficient information for

use. Another study was performed by Prasad and Nagar

[10] on the relation between two types of metrics. The

study examined the correlation between the current object-

oriented metrics (Coupling and Cohesion) and procedurally

oriented metrics (Cyclomatic Complexity, Line of Code,

and Knot metric). The authors also performed an empirical

study to determine a new set of metrics that capture new

dimensions in coupling measurement, which are used in the

conceptual coupling of classes. Although many metrics

were introduced in the literature, there is still a lack of

understanding of how these measurements relate to each

other. In this context, Ó Cinnéide et al. [11] proposed an

empirical technique to estimate software metrics and to

seek the relationships among them. This technique was

based on search-based refactoring. To achieve this, the

researchers implemented their approach on 5 common

Cohesion metrics. They used eight Java systems (real

world), involving 300,000 lines of code and more than

3,000 refactorings. Their results revealed significant

insights into the chosen software metrics.

Furthermore, Chong and Sai [12] introduced an

approach to integrate and harmonize current metrics that

evaluate the complexity of object-oriented software

systems based on 3 levels of metrics: code level, system-

level, and graph level. First, an object-oriented source code

was turned into UML class diagrams. Then, using the

concepts of complex networks, classes were converted into

nodes while edges represented the relationships among the

nodes. Based on code-level and system-level metrics,

nodes and edges were weighted based on the complexity of

classes and the relationships among them. After that, they

analyzed the software system using graph-level metrics to

collect patterns that reflected particular characteristics of

maintainability and reliability of software systems.

Another study performed by Bhardwaj and Ajay [13]

assumed that although software projects are different and

maybe unique; but still have features in common such as

software size, duration, effort, and productivity. The

authors clarified the relationship among these main (key)

metrics and how they affect each other. They also

illustrated how these metrics can be applied in predicting

the total number of defects in software. The study

concluded that the software size metric is the most

important and has the most influence over other metrics.

According to the literature, we still have the problem of

understanding the relations among metrics in terms of the

following:

- Most of the studies considered a few numbers of

metrics when analyzing the relations among them.

- Most of the studies have not provided a clear

definition of how to relate a metric to another one.

In this work, we try to fill the aforementioned gaps and,

hence, our contributions are:

- Perform a comprehensive study on the relations

among 104 metrics that belong to 11 object-

oriented software properties.

- Propose a definition for relating metrics to each

other and makes it useful in this study.

The advantages of this work lie in the following:

• Supports software developers in making

suitable decisions on the object-oriented

metric(s) they use during the design phase.

• Enriches developers with useful knowledge on

the relations among software metrics, and;

 Int. J. Com. Dig. Sys. 10, No.1, 901-915 (Aug-2021) 903

http://journals.uob.edu.bh

• Provides developers with a wider and a deep

view of the evaluation of their designs, which

saves the consumed time and effort.

The rest of this paper is organized as follows: the next

section presents the research method that is used in our

study including the dataset collection and network creation.

In section 3 we present the obtained results and discuss

them. Finally, we conclude our work in Section 4.

2. RESEARCH METHOD

This study is considered an analysis and evaluation of

the relations among object-oriented metrics. This kind of

works uses network measurements as the main tool for

obtaining technical results. In this section, we describe the

evaluation measurements that are used in the analysis. We

also describe the process of data collection and network

creation method.

A. Network Measurements

The measurements of this work are inspired from the

field of complex networks. This kind of measurement is

considered the most suitable when investigating relations-

related issues. The field of complex networks is one of the

modernist fields of study that was started in the 2000s. The

structure of a complex network can be formed as a Graph

(G) that contains Vertices (V) and Edges (E) connecting

them. A Weight (W) can be assigned to each edge within a

graph (network) based on the nature of the relation between

two nodes. Practically, several measurements can be used

for evaluating the performance of a network in two levels,

Network-Level and Node-Level as follows:

Network-Level Measurements [14] can measure a
particular feature in the whole network structure and
include the following:

• Average Degree (AvgD) of a network. This

measurement reflects the average number of relations

for all the nodes in the network.

• The density (DS) of a network is another measurement

that shows the ratio of the potential connections to the

actual number of connections in the network.

• The clustering Coefficient (CO) of a network reflects

the tendency of a node to cluster with other network

nodes and can be formalized as follows:

C𝑂(𝑖) =
2|{𝑙𝑖𝑘∶ 𝑛𝑗,𝑛𝑘 ∈ 𝑁𝑖,𝑙𝑖𝑘 ∈ 𝐸}|

𝑘𝑖(𝑘𝑖 − 1)
 (1)

Where ljk is the edge between the nodes nj and nk. Ni

is the total number of nodes and ki is the neighbors of

node i in the network. The average clustering

coefficient (AvgC) is the mean of all the CO values in

the network.

• The shortest path length can also be considered as an

indicator of network structure. The average shortest

path length (P) reflects the average shortest paths

among all network nodes.

• The diameter (DT) of a network represents the path

length between the farthest nodes in that network.

Node-Level Measurements [14] can evaluate the

performance of nodes in a network and include the

following:

• Degree Centrality (Cd) of a node represents the

number of connections of a node in a network.

• Betweenness Centrality (Cb) reflects how well-

positioned a node in the flow of information within a

network. This means high values of Cb reflect a high

level of importance for a node in a network. The Cb

of node j can be defined as follows:

𝐶𝑏(𝑗) = ∑
𝜎𝑖𝑘(𝑗)

𝜎𝑖𝑘𝑖≠𝑗≠𝑘
 (2)

Where σik is the shortest path between the nodes i and k.

σ(j) is the number of paths that pass-through node j.

• Closeness Centrality (Cc) shows how close a node

from other network nodes and can be formalized by

the following:

𝐶𝑐(𝑖) =
𝑁−1

Σ𝑗𝑑(𝑗𝑖)
 (3)

Where d(ij) is the distance between the nodes i and

j.

• Eigen Centrality (E), this measurement evaluates the

influence of a node in a network in terms of its

connections to the well-connected nodes in that

network. To calculate E, consider a graph G (V, E),

where V is a set of Vertices and E is a set of Edges

among these vertices and an adjacency matrix A = (a

v, t) for the vertices v and t such that a v,t = 1 if

both nodes are connected and 0 otherwise. The X

score for node v can be as follows:

𝑋(𝑚) =
1

𝜆
∑ 𝑥𝑡𝑡∈𝑀(𝑣)

=
1

𝜆
∑ 𝑎𝑚,𝑡𝑥𝑡𝑡∈𝐺(𝑣)

 (4)

Where x(m) is the neighbors of node m and λ is the

Eigenvalue. As a vector notation, the equation above can

be rewritten as follows:

𝐴𝑥 = 𝜆𝑥 (5)

This term represents the Eigen centrality E of a node

(metric).

904 Marwah M. A. Dabdawb & Basim Mahmood: On the Relations among Object-Oriented…

 http://journals.uob.edu.bh

B. Dataset Collection

The collected dataset included 11 design properties that

were presented by the distinguished work of Bansiya et al.

[15], namely, Design size, Hierarchy, Abstraction,

Encapsulation, Coupling, Cohesion, Composition,

Inheritance, Polymorphism, Messaging, and Complexity.

For each property, we collected the most popular related

metrics that contribute to assessing that property. To this

end, we collected 104 object-oriented design metrics that

were presented in the literature (see the Appendix). These

metrics were at different levels (Object, Class, Package,

and System) and different states (Static or Dynamic [5]).

Thereafter, each metric was assigned to its corresponding

design property.

C. Network Creation

In this section, we present the proposed strategies for

forming the dataset (nodes and edges) and making it

suitable for generating the network. In general, the dataset

of a network should define the nodes and edges. As

mentioned, to calculate a metric, parameters (or formulas)

should be involved in the calculation process. Therefore,

each metric was represented as a node, and two metrics

were considered to be connected by an edge if and only if

there existed parameters (or formulas) in common (see Fig.

1). This means, metrics from different properties could be

connected, which was desired since this work digs deeply

into the relations among different metrics that belong to

different properties. The weight of the edge for a pair of

metrics was driven by the number of parameters in

common. The more parameters in common between the

two metrics, the more weight was set. The dataset in this

case will be used to generate what we call MTR Network

(MeTRics Network).

3. RESULTS AND DISCUSSIONS

In this section, we present the visualizations and

analysis of the MTR network results of the MTR network.

Fig. 2 depicts the visualization of the MTR network, which

shows how dense the relations among different properties.

The main characteristics of the MTR network are

presented in Table I. The average degree in the MTR

network reflects the average frequency of connections

among the metrics from different properties, which was

high compared to network size (nodes and edges). Also, the

average shortest path between any given two metrics in the

network is approximately 2 edges meaning that the

distances among different metrics are short regardless of

the property they belong to. This result is also confirmed

when we observe the diameter of the network. Since the

average degree of the network is high, the density of

network relations is also high taking into consideration the

number of nodes in the network. Moreover, the MTR

network reflects a strong average tendency of its metrics to

cluster together and form a community. In this regard, we

tested the communities in MTR using the Girvan-Newman

algorithm [44]. This algorithm finds the edges with high

betweenness centrality values, then, it removes these edges

leaving the nodes (metrics) themselves. The steps of the

Girvan-Newman algorithm can be as follows:

• Step 1: For a given network, calculate the

betweenness centrality for all the edges within

the network.

• Step 2: Remove the edges that have the highest

betweenness centrality levels (edges that

connect the communities).

• Step 3: Re-Calculate the betweenness centrality

for all network edges.

• Step 4: Repeat Step 2 and Step 3 until all the

edges removed from the network.

The experiments show that MTR metrics tend to form
36 communities of metrics when reaching a modularity
level of 0.174 considering the number of edges in the MTR
network (see Fig. 3).

The figure shows that when decreasing the modularity
level in the algorithm, the number of detected edges is
significantly increased. These preliminary findings lead us
to dig into the network and analyze the relations among the
metrics. The better way to perform such an analysis is to
involve network centrality measurements and analyze the
obtained results. To this end, we decide to use the centrality
measurements that were described in Section 3.

Figure 1. The creation of nodes and edges in the Metrics Network.

 Int. J. Com. Dig. Sys. 10, No.1, 901-915 (Aug-2021) 905

http://journals.uob.edu.bh

TABLE I. THE CHARACTERISTICS OF THE MTR NETWORK IN TERMS OF NETWORK MEASUREMENTS

of Nodes
of

Edges
Average
Degree

Average Clustering
Coefficient

Average Path
Length

Diameter Density

104 1122 22.65 0.88 1.98 4 0.22

Figure 2. The visualization of the MTR network. Different colors reflect different properties in the MTR network. Node size reflects the dense of the
connections (degree).

906 Marwah M. A. Dabdawb & Basim Mahmood: On the Relations among Object-Oriented…

 http://journals.uob.edu.bh

Figure 3. Performance of Girvan-Newman algorithm and the modularity
level

The first step in testing network centrality

measurements on the MTR network is to show the impact

of the Collective Centralities (CL) of a metric m. Therefore,

we performed calculations based on the following

equation:

𝐶𝐿 = 𝐶𝑏(𝑚) + 𝐶𝑐(𝑚) + 𝐶𝑑(𝑚) + 𝐸(𝑚) (6)

Since the clustering coefficient of a metric can explain

the tendency of a metric to cluster with the other metrics,

we propose to raise the power of CL to the clustering

coefficient and calculate the strength of each metric

compared to the other metrics in the MTR network. Hence,

the strength S of a metric m is calculated as follows:

𝑆(𝑚) = (𝐶𝐿)𝐶𝑂(𝑚) (7)

Fig. 4 shows the mean values of the strength of each

property. The strength of a property is calculated by

averaging the strength of each metric classified under that

property. The figure shows that Coupling is the strongest

property in terms of its relations to other metrics in the

MTR network followed by Encapsulation and Composition

properties. This finding is important and tells us that

software developers should give enough attention to the

strength of properties during the design phase. Moreover,

we analyze the variations of each property in the MTR

network (see Fig. 5). According to this analysis, some

properties have a few numbers of metrics; therefore, they

show a low level of variations. Fig. 5 also shows interesting

results, for instance, the Coupling property reflects a high

level of variations. It means that the Coupling property has

metrics with weak relations, which drives this behavior in

the variations. This phenomenon has appeared in many

properties in the MTR network such as Complexity,

Polymorphism, and Inheritance. Therefore, we decided to

visualize the strength of all the metrics in the MTR

network.

Figure 4. Strength level for properties

Figure 5. Variation levels for each property in the MTR network.

Fig. 6 depicts the strength of each metric along with its
property. Based on this visualization, it is clear that
Coupling and Cohesion properties have a high number of
strong metrics with a few weak metrics that led to the
variations.

The stated results were performed using Equation 7.
However, for the sake of the analysis to be more in-depth,
we planed to investigate the impact of each network
centrality measurement in CL. In this context, we tested the
four centrality measurements by involving them in a
regression model where the measurements represent the
independent variables and CL is the dependent as follows:

𝐶𝐿~𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝑛𝑒𝑠𝑠 + 𝐸𝑖𝑔𝑒𝑛 + 𝐶𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠 + 𝐷𝑒𝑔𝑟𝑒𝑒 (8)

Using this model, our hypothesis testing as follows:

Null Hypothesis:

 𝐻0: 𝜇(𝐶𝑏) = 𝜇(𝐸) = 𝜇(𝐶𝑐) = 𝜇(𝐶𝑑) (9)

Alternative Hypothesis:

 𝐻1: 𝜇(𝐶𝑏) ≠ 𝜇(𝐸) ≠ 𝜇(𝐶𝑐) ≠ 𝜇(𝐶𝑑) (10)

Table II presents the one-way ANalysis Of VAriance
(ANOVA) table of our model. Given this output, we cannot
accept the null hypothesis of equal means of the four
centrality measurements, and there exist differences in the
measurements according to the alternative hypothesis.

 Int. J. Com. Dig. Sys. 10, No.1, 901-915 (Aug-2021) 907

http://journals.uob.edu.bh

Figure 6. Strength of metric relations.

TABLE II. ONE-WAY ANOVA FOR THE CL MODEL

Sum of

Squared
Errors

Mean of
Squared
Errors

F-
Statistics

P-
Value

Measurements 17.43 5.809 75.88 0.00002

Residuals 31.54 0.077

Furthermore, we evaluated the measurements in terms

of their impact on the model. To this end, we used the

Akaike Information Criterion (AIC) method and created

several models. These models are created using

combinations of the centrality measurements that are used

to calculate CL. The results showed that when considering

the betweenness centrality measurement as an independent

variable in the models, AIC produces minimum outputs

(better models). This specific case could not be obtained

using the other measurements. According to that, the

betweenness centrality measurement can be considered as

the most significant contributor to the collective

centralities. Also, most of the variations in CL were

explained by the betweenness as well as it is considered as

a central concept when it comes to relations. Hence, this

result can be used as an indicator in our further analysis in

this work. Now, based on the aforementioned finding, Fig.

7 shows the levels of betweenness centrality for all the

metrics in the MTR network. It can be observed that

Cohesion metrics have the highest level of betweenness

centrality, which means they are well-positioned in the

MTR network and the metrics under this property are

considered as bridges across different properties. Another

interesting result is that the PF metric has the highest level

of betweenness centrality, which means it is a well-

positioned metric within all the shortest paths in the MTR

network. This is because PF parameters contribute to

calculating several metrics in MTR. Since the MTR

network has influential metrics, developers should be

aware of this fact and take it into account during the design

phase. In addition to the presented analysis and results, we

performed a correlation analysis for all the properties in the

MTR network. Fig. 8 shows the correlation matrix (1

(strongest) to -1 (weakest)) and the relations among all the

pairs of properties. The strongest pairs in MTR were

(Inheritance-Complexity), (Size-Complexity), and (Size-

Inheritance). Interestingly, it can be seen that three

properties gained the strongest relations in MTR. This

outcome is due to the common concepts that are associated

with them (e.g., internal interactions). The correlations

among other properties are also shown in the figure. In

software engineering, Coupling is usually contrasted with

Cohesion; therefore, they correlate with each other.

Furthermore, we perform more visualization for the MTR

network.

908 Marwah M. A. Dabdawb & Basim Mahmood: On the Relations among Object-Oriented…

 http://journals.uob.edu.bh

Figure 7. Level of betweenness centrality

Figure 8. Correlation matrix of properties in the MTR network

Fig. 9 depicts a property-based visualization for all the

metrics. This visualization tells us many facts on the MTR

network. For instance, there is a strong relation between

Coupling and Cohesion through the metrics pairs (IC-

LCOM) and (CBO-LCOM). In fact, Coupling contains

measurements that are related to the degree of association

and dependence of one module with another, while

Cohesion represents the correlation of the parts of one

 Int. J. Com. Dig. Sys. 10, No.1, 901-915 (Aug-2021) 909

http://journals.uob.edu.bh

module [45]. Another reason behind this relation is that

they use the same parameters but with an external concept

in Coupling and an internal concept in Cohesion.

Furthermore, the coupling property contains 6 strong

within-pairs (DAC-CTA), (Ca-Ce), (IC_CC-IC_OC),

(IC_CD-EC_CD), (IC-CBO), and (IC-CBM), which

makes the clustering coefficient of this cluster to be 0.87.

Also, the relation between Coupling and Inheritance

through the metrics ((IC-MFA), (CBM-MFA) and (CBM-

MIF)) is due to the fact that there are three types of

coupling: interaction coupling, component coupling, and

Inheritance coupling, which is generated from inheritance

[46]. The other relation is between Polymorphism and

Inheritance. This relation is originated because

polymorphism arises from inheritance [47]. Finally, it was

observed that all the metrics in Cohesion property are

connected with strong relations except the metrics NRCI,

CAM, RCI, and LCOM; they are weakly connected to the

other metrics in their property. This is because they use

unique parameters that are not frequently used by the other

metrics in the Cohesion property.

The other visualization that was performed on the MTR

network is Level-based, which can be Class, System,

Object, and Package levels. Fig. 10 portraits the classes in

the form of clusters, each of which has a different color.

The visualization also shows that the biggest cluster is the

Class level metrics, while the smallest one is the Package

level. We can observe that there is a strong relation between

Class and System levels through the pair (MIF-PF) as well

as between Class and Object levels through the pair

(IC_OC-IC_CC). Therefore, these two pairs of metrics

play as bridges across different levels.

The last visualization of the MTR network was

performed based on the state of the metrics, which can be

Static or Dynamic. Fig. 11 shows that the relation between

Static and Dynamic state metrics exists and the Static

metrics have strong relations with each other. In fact, static

and dynamic metrics have parameters in common;

therefore, there is a relationship between them but the

circumstances when collecting these metrics is different.

Dynamic metrics usually collected in run-time, while static

metrics don't need execution. That means, static metrics

deal with the structural aspects of the software system

while dynamic metrics deal with the behavioural aspects of

the system. Also, the major dynamic metrics proposed for

Coupling and Cohesion.

Figure 9. Property-Based visualization of the MTR network. Each property has a different color and the size of nodes reflects the levels of

Betweenness Centrality (high levels reflected by the big size nodes).

910 Marwah M. A. Dabdawb & Basim Mahmood: On the Relations among Object-Oriented…

 http://journals.uob.edu.bh

Figure 10. Level-Based Visualization of the MTR network. Each level has a different color and the size of nodes reflects the levels of

Betweenness Centrality (high levels reflected by the big size nodes).

Figure 11. State-Based Visualization of the Metrics Network. The Static and Dynamic state metrics are shown in two clusters. Different colors reflect
different properties. The size of nodes reflects the levels of Betweenness Centrality (high levels reflected by the big size nodes).

 Int. J. Com. Dig. Sys. 10, No.1, 901-915 (Aug-2021) 911

http://journals.uob.edu.bh

4. CONCLUSIONS

This article presented a comprehensive study on
software object-oriented metrics. We generated what has
been called the MTR network, which contained metrics and
relations among them. We visualized, analyzed, and
evaluated the network using concepts and measurements
inspired from the Complex networks field.

Our results could be of interest to software developers
during the design phase. We believe that investigating the
relations among software metrics is an important aspect
that should be of focus by software literature. It could be
concluded that network measurements can be considered as
strong tools for analyzing the relations among software
metrics. The use of such techniques provided us with a deep
view from different angles and different dimensions to the
data because the nature of this approach digs into the
relations among objects and how they relate to each other.

Moreover, we found many interesting facts on the
metrics and they can be useful when it comes to software
design assessment. Also, the results showed that several
metrics should be given more attention by software
developers since most of them have relations with each
other.

Finally, understanding the relations among software
metrics, as we strongly believe, plays a significant role in
producing well-designed software and makes it easier when
making a decision on using a particular metric, which
eventually reduces the time and efforts that can be
consumed in the assessment of the design.

As future work, we are working on extending our
dataset to include more metrics in addition to the currently
considered object-oriented metrics. We also plan to
generate a Giant component that includes the majority of
software metrics aiming at having different views on the
relations among different kinds of metrics.

ACKNOWLEDGMENT

We are grateful to the Software and Computer Science
departments/University of Mosul for making this work
achieved. We also would like to thank the departments of
Software and Computer Science for providing us with all
the possible support in performing this research.

REFERENCES

[1] Suresh, Yeresime, Jayadeep Pati, and Santanu Ku Rath.
"Effectiveness of software metrics for object-oriented
systems." Procedia technology 6 (2012): 420-427.

[2] Tahir, Amjed, and Stephen G. MacDonell. "A systematic mapping
study on dynamic metrics and software quality." 2012 28th IEEE
International Conference on Software Maintenance (ICSM). IEEE,
2012.

[3] Deshpande, Mrs Bhagyashri Sunil, Binod Kumar, and Ajay Kumar.
"Object Oriented Design Metrics for Software Defect Prediction:
An Empirical Study." (2020).

[4] Fenton, Norman, and James Bieman. Software metrics: a rigorous
and practical approach. CRC press, 2014.

[5] Goel, Brij Mohan, and Satinder Bal Gupta. "A Comparative Study
of Static and Dynamic Object-Oriented Metrics." International
Journal of Information Technology & Systems 5.1 (2016).

[6] Kuk, Kristijan, Petar Milić, and Stefan Denić. "Object-oriented
software metrics in software code vulnerability analysis." 2020
International Conference on INnovations in Intelligent SysTems
and Applications (INISTA). IEEE, 2020.

[7] Schnoor, Henning, and Wilhelm Hasselbring. "Comparing static
and dynamic weighted software coupling metrics." Computers 9.2
(2020): 24.

[8] Etzel, Christoph, Florian Hofhammer, and Bernhard Bauer.
"Towards metrics for analyzing system architectures modeled with
EAST-ADL." (2020).

[9] Aggarwal, K. K., et al. "Empirical Study of Object-Oriented
Metrics." J. Object Technol. 5.8 (2006): 149-173.

[10] Prasad, Lalji, and Aditi Nagar. "Experimental analysis of different
metrics (object-oriented and structural) of software." First
International Conference on Computational Intelligence,
Communication Systems and Networks. IEEE, 2009.

[11] Ó Cinnéide, Mel, et al. "Experimental assessment of software
metrics using automated refactoring." Proceedings of the ACM-
IEEE international symposium on Empirical software engineering
and measurement. 2012.

[12] Chong, Chun Yong, and Sai Peck Lee. "Analyzing maintainability
and reliability of object-oriented software using weighted complex
network." Journal of Systems and Software 110 (2015): 28-53.

[13] Bhardwaj, Mridul, and Ajay Rana. "Key software metrics and its
impact on each other for software development projects." ACM
SIGSOFT Software Engineering Notes 41.1 (2016): 1-4.

[14] Albert, Réka, and Albert-László Barabási. "Statistical mechanics of
complex networks." Reviews of modern physics 74.1 (2002): 47.

[15] Bansiya, Jagdish, and Carl G. Davis. "A hierarchical model for
object-oriented design quality assessment." IEEE Transactions on
software engineering 28.1 (2002): 4-17.

[16] Genero, Marcela. Defining and validating metrics for conceptual
models. Diss. Universidad de Castilla-La Mancha, 2001.

[17] Li, Wei, and Sallie Henry. "Object-oriented metrics that predict
maintainability." Journal of systems and software 23.2 (1993): 111-
122.

[18] Lorenz, Mark, and Jeff Kidd. "Object-oriented software metrics: a
practical guide". Prentice-Hall, Inc., 1994.

[19] Reißing, Ralf. "Towards a model for object-oriented design
measurement." 5th International ECOOP workshop on quantitative
approaches in object-oriented software engineering. 2001.

[20] e Abreu, F. Brito. "The MOOD metrics set." proc. ECOOP. Vol. 95.
1995.

[21] Chidamber, Shyam R., and Chris F. Kemerer. "A metrics suite for
object oriented design." IEEE Transactions on software engineering
20.6 (1994): 476-493.

[22] Li, Wei. "Another metric suite for object-oriented programming."
Journal of Systems and Software 44.2 (1998): 155-162.

[23] Briand, Lionel, Prem Devanbu, and Walcelio Melo. "An
investigation into coupling measures for C++." Proceedings of the
19th international conference on Software engineering. 1997.

[24] Harrison, Rachel, Steve Counsell, and Reuben Nithi. "Coupling
metrics for object-oriented design." Proceedings Fifth International
Software Metrics Symposium. Metrics (Cat. No. 98TB100262).
IEEE, 1998.

[25] Tang, Mei-Huei, Ming-Hung Kao, and Mei-Hwa Chen. "An
empirical study on object-oriented metrics." Proceedings sixth
international software metrics symposium (Cat. No. PR00403).
IEEE, 1999.

[26] Martin, Robert. "OO design quality metrics." An analysis of
dependencies 12.1 (1994): 151-170.

912 Marwah M. A. Dabdawb & Basim Mahmood: On the Relations among Object-Oriented…

 http://journals.uob.edu.bh

[27] Yacoub, Sherif M., Hany H. Ammar, and Tom Robinson. "Dynamic
metrics for object-oriented designs." Proceedings Sixth
International Software Metrics Symposium (Cat. No. PR00403).
IEEE, 1999.

[28] Arisholm, Erik, Lionel C. Briand, and Audun Foyen. "Dynamic
coupling measurement for object-oriented software." IEEE
Transactions on software engineering 30.8 (2004): 491-506.

[29] Hassoun, Youssef, Roger Johnson, and Steve Counsell. "A dynamic
runtime coupling metric for meta-level architectures." Eighth
European Conference on Software Maintenance and Reengineering,
2004. CSMR 2004. Proceedings. IEEE, 2004.

[30] Singh, Paramvir, and Hardeep Singh. "Class-level dynamic
coupling metrics for static and dynamic analysis of object-oriented
systems." International Journal of Information and
Telecommunication Technology 1.1 (2010): 16-28.

[31] Sharble, Robert C., and Samuel S. Cohen. "The object-oriented
brewery: a comparison of two object-oriented development
methods." ACM SIGSOFT Software Engineering Notes 18.2
(1993): 60-73.

[32] Briand, Lionel, Sandro Morasca, and Victor R. Basili. "Defining
and validating high-level design metrics." (1994).

[33] Bieman, James M., and Byung-Kyoo Kang. "Cohesion and reuse in
an object-oriented system." ACM SIGSOFT Software Engineering
Notes 20.SI (1995): 259-262.

[34] Li, Wei, and Sallie Henry. "Maintenance metrics for the object-
oriented paradigm." [1993] Proceedings First International
Software Metrics Symposium. IEEE, 1993.

[35] Hitz, Martin, and Behzad Montazeri. Measuring coupling and
cohesion in object-oriented systems. na, 1995.

[36] Henderson-Sellers, Brian. Object-oriented metrics: measures of
complexity. Prentice-Hall, Inc., 1995.

[37] Yang, X. Research on class cohesion measures. Diss. MS Thesis,
Department of Computer Science and Engineering, Southeast
University, 2002.

[38] Badri, Linda, and Mourad Badri. "A Proposal of a new class
cohesion criterion: an empirical study." Journal of Object
Technology 3.4 (2004): 145-159.

[39] Bonja, Challa, and Eyob Kidanmariam. "Metrics for class cohesion
and similarity between methods." Proceedings of the 44th annual
Southeast regional conference. 2006.

[40] Fernández, Luis, and Rosalía Peña. "A sensitive metric of class
cohesion." (2006).

[41] Al Dallal, Jehad. "A design-based cohesion metric for object-
oriented classes." International Journal of Computer Science and
Engineering 1.3 (2007): 195-200.

[42] Al Dallal, Jehad, and Lionel C. Briand. "A precise method-method
interaction-based cohesion metric for object-oriented classes."
ACM Transactions on Software Engineering and Methodology
(TOSEM) 21.2 (2012): 1-34.

[43] Kim, E. M. An experimental evaluation of OOP complexity metrics:
SOMEFOOT. Diss. Master thesis, Chonbuk National University,
1993.

[44] Girvan, Michelle, and Mark EJ Newman. "Community structure in
social and biological networks." Proceedings of the national
academy of sciences 99.12 (2002): 7821-7826.

[45] Yadav, Sushma, S. Sunil, and S. Uttpal. "A review of object-
oriented coupling and cohesion metrics." International Journal of
Computer Science Trends and Technology 2.5 (2014): 45-55.

[46] Virdi, Harjot Singh, and Balraj Singh. "Study of the Different Types
of Coupling Present in the Software Code." International Journal of
computer Science and Information Technology 3.3 (2012): 4153-
4156.

[47] Rodriguez, Daniel, and Rachel Harrison. "An overview of object-
oriented design metrics." (2001).

Marwah M. A. Dabdawb received her Bachelor
degree in Software Engineering in 2008 from the
University of Mosul. Her M.Sc. degree was from the
same university in 2018. She currently works as a
faculty member at Software Department, University
of Mosul, Iraq. Her main research interests include
Software Engineering and Artificial Intelligence.

Basim Mahmood received his M.Sc. degree in
Computer Science from the University of Mosul in
2009. His Ph.D. degree was in 2015 from the college
of Engineering at Florida Institute of Technology,
USA. He is working as a faculty member at the
Computer Science Dept., University of Mosul, Iraq.
He also works as a researcher in the BioComplex
Laboratory, Exeter, UK. His current research

interests include Complex Networks, Big Data Analysis and Data Mining.

 Int. J. Com. Dig. Sys. 10, No.1, 901-915 (Aug-2021) 913

http://journals.uob.edu.bh

APPENDIX: Table showin the detailes of metrics used in our work alongside with their parameters and

references.

Acronym Title Property

Level
(System,

Package,

Class, Object)

State (Static,

Dynamic)
References Parameters

1 DSC “design size in classes” Size S S [15] 1- No. of classes in the design.

2 NODP “The Number of Direct Parts” Size C S [16] 1-Number of “direct part” of a “whole” class.

3 NP “The Number of Parts” Size C S [16]
1-Number of “direct and indirect parts” of a “whole”

class.

4 NW “The Number of wholes” Size C S [16]
1-The number of “direct or indirect whole” of a “part”

class.

5
SIZE1 (classical

LOC)
“Size of procedures or functions” Size C S [17] 1-No of semicolons in a class.

6 SIZE2 “Size of properties defined in a class” Size C S [17]
1-Attributes in class.

2-Private (local) methods.

7 PM “Number of Public Methods” size C S [18] 1-Public methods in a class.

8 NM “Number of Methods” size C S [18]
1-Number of methods in a class (private, public and

protected).

9 NPV
“Number of Public Variables per

class”
size C S [18] 1- Counts the number of public variables in a class.

10 NV “Number of Variables per class” size C S [18] 1-Counts the total number of variables in a class.

11 NCP “Number of all classes in the package” size P S [19] 1-Number of all classes in the package.

12 NOH “Number of Hierarchies” Hierarchies C S [15]
1-No. of ancestor.

2-no. of Descendants.

13 ANA “Average Number of Ancestors” Abstraction S S [15]
1-Number of Ancestors.

2-Total Number of Classes.

14 MHF “Method Hiding Factor” Encapsulation C S [20]
1-Private(hidden) methods.

2-Total methods (visible+ hidden).

15 AHF “Attribute Hiding Factor” Encapsulation C S [20]
1- Private (hidden) attributes.

2- Total attributes (visible+ hidden).

16 DAM “Data Access Metric” Encapsulation C S [15]
1-No. of private attributes.

2- No. of attributes.

17 CBO “Coupling Between Objects” Coupling C S [21]
1- Instance variable.

2-Class methods.

18 RFC “Response For a Class” Coupling C S [21] 1-Class methods.

19 MPC “Message Passing Coupling” Coupling C S [17] 1- Message passing.

20 DAC “Data Abstracting Coupling” Coupling C S [17] 1-Data type of attributes (instance)= other class.

21 CTA
“Coupling Through Abstract” Data

Types
Coupling C S [22] 1-Data type of attributes r (instance)= other class.

22 CTM
“Coupling Through Message

Passing”
Coupling C S [22] 1- Message passing in class.

23 CF “Coupling Factor” Coupling S S [20]

1- Total no of classes.

2-Client class.

3- Server class.

24 NAssocC
“The Number of Association per

Class”
Coupling C S [16] 1- Class associations.

25 DCC “Direct Class Coupling” Coupling S S [15]
1-Number of Attribute and Parameter.

2- Total Number of Classes.

26 NDepIn “The Number of Dependencies In” Coupling C S [16] 1-Class dependency.

27 NDepOut “The Number of Dependencies Out” Coupling C S [16] 1-Class dependency.

28 ACAIC

“A: coupling to ancestor classes.

D: Descendants

O: other

CA: class attributes

CM: class method

IC: import coupling, the measure

counts for a class c all interactions

where c is using another class.

EC: export coupling, count

interactions where class d is the used

class”

Coupling C S [23]
1- Ancestor classes.

2- Type of class attributes.

29 OCAIC “OCAIC” Coupling C S [23] 1- Class attributes.

30 DCAEC “DCAEC” Coupling C S [23]
1- Descendants class.

2-Type of attributes in descendants classes.

31 OCAEC “OCAEC” Coupling C S [23] 1- Class attributes.

32 ACMIC “ACMIC” Coupling C S [23]
1-Ancestor classes.

2-Type of method parameters in the class.

33 OCMIC “OCMIC” Coupling C S [23] 1- Class method.

34 DCMEC “DCMEC” Coupling C S [23]
1- Descendants classes.

2- Type of method parameters in Descendants classes.

35 OCMEC “OCMEC” Coupling C S [23] 1- Class method.

36 NAS “Number of Associations” Coupling C S [24] 1-number of association lines.

37 CBM “Coupling between methods” Coupling C S [25]
1-No. of original methods.

2-Inherited method.

914 Marwah M. A. Dabdawb & Basim Mahmood: On the Relations among Object-Oriented…

 http://journals.uob.edu.bh

3- Coupling between original and inherited method

.through parameters or variables etc.

38 Ca
“Afferent Coupling (incoming

coupling)”
Coupling P S [26]

1- no of classes.

2-class dependency.

39 Ce
“Efferent Coupling (outgoing

coupling)”
Coupling P S [26]

1- No. of classes.

2-Class dependency.

40 EOC “Export Object Coupling” Coupling O D [27] 1- No. of message exchange between two obj.

41 IOC “Import Object Coupling” Coupling O D [27] 1- No. of message exchange between two obj.

42 IC_OD

“IC: import coupling

EC: export coupling

O: object

C: class

C = counts the number of distinct

classes that a method in a given class

or object uses or is used by.

M = counts the number of distinct

methods invoked by each method in

each class or object.

D = counts the total number of

dynamic messages sent or received

from one class/object to or from other

classes or objects”

Coupling O D [28] 1- No. of messages between obj.

43 IC _OM “IC _OM” Coupling O D [28] 1-Object method.

44 IC_OC “IC_OC” Coupling O D [28]
1-No. Of server classes.

2-Obj. method.

45 IC_CM “IC_CM” Coupling C D [28] 1- Methods in obj.

46 IC_CD “IC_CD” Coupling C D [28]
1- Total no of messages.

2- Methods in obj.

47 IC_CC “IC_CC” Coupling C D [28]
1- No. of server classes.

2- Methods in obj.

48 EC_OM “EC_OM” Coupling O D [28] 1- Distinct method.

49 EC_OD “EC_OD” Coupling O D [28] 1- Messages between obj.

50 EC_OC “EC_OC” Coupling O D [28] 1- No of client classes.

51 EC_CD “EC_CD” Coupling C D [28]
1-Total no of messages.

2- Methods in obj.

52 EC_CM “EC_CM” Coupling C D [28] 1- Methods in obj.

53 EC_CC “EC_CC” Coupling C D [28] 1-Total no of client classes.

54 DCM “Dynamic Coupling Metric” Coupling C D [29]
1- Program execution steps.

2-No. of obj.

55 DCa “Dynamic Afferent Coupling Coupling C D [30]
1- No. of classes accessing the methods of a class.

2- Total number of classes.

56 DKSC “Dynamic Key Server Class” Coupling C D [30] 1- Number of calls sent to a class.

57 DKCC “Dynamic Key Client Class” Coupling C D [30] 1-Number of calls sent by a class.

58 DKC “Dynamic Key Class” Coupling C D [30]
1- Total number of static calls sent and received by all

the classes.

59 PAC “Percentage Active Classes” Coupling C D [30]

1- Number of classes sending or receiving at least one

method calls.

2- Total number of classes.

60 VOD “Violation of the law of Demeter” Coupling C S [31] 1-Class method.

61 IC “Inheritance Coupling (IC)” Coupling C S [25]

1-No of parent classes.

2- Class original methods.

3- Class inherited method.

4-Coupling between original and inherited method

.through parameters or variables etc.

62 LCOM1 “Lack of Cohesion of Methods” Cohesion C S [21]
1- Class methods.

2- Class attributes.

63 LCOM2 “Lack of Cohesion of Methods” Cohesion C S [21]
1- Class methods.

2- Class attributes.

64 CAM “Cohesion Among Methods of Class” Cohesion C S [15] 1- Method’s parameters types.

65 RCI “Ratio of Cohesive Interactions” Cohesion C S [32] 1- Set of cohesion interaction in a module.

66 NRCI
“Neutral Ratio of Cohesive

Interactions”
Cohesion C S [32] 1- Set of cohesion interaction in a module.

67 PRCI
“Pessimistic Ratio of Cohesive

Interaction”
Cohesion C S [32] 1- Set of cohesion interaction in a module.

68 ORCI
“Optimistic Ratio of Cohesive

Interactions”
Cohesion C S [32] 1- Set of cohesion interaction in a module.

69 TCC “Tight Class Cohesion” Cohesion C S [33]
1- Public methods of the class.

2- Attributes.

70 LCC “Loose Class Cohesion” Cohesion C S [33]
1-Class methods.

2-Attributes.

71 LCOM3 “Lack of Cohesion of Methods” Cohesion C S [34]
1- Class methods.

2- Class attributes.

72 LCOM4 “Lack of Cohesion of Methods” Cohesion C S [35]
1- Class methods.

2-Class attributes.

73 LCOM5 “Lack of Cohesion of Methods” Cohesion C S [36]
1-Class attributes.

2- Class methods.

74 OLn “OLn” Cohesion C S [37] 1- Class methods.

 Int. J. Com. Dig. Sys. 10, No.1, 901-915 (Aug-2021) 915

http://journals.uob.edu.bh

2- Class attributes.

75 DCd “Degree of Direct Cohesion” Cohesion S [38]
1-Methods of the class.

2- Class attribute..

76 DCi “Degree of Indirect Cohesion” Cohesion S [38]
1-Methods of the class.

2- Attributes.

77 CC “Class Cohesion” Cohesion C S [39]
1- Methods of the class.

2- Class attribute.

78 SCOM “Class Cohesion metric” Cohesion C S [40]
1- Methods of the class.

2- Class attribute.

79 PCCC “Path Connectivity Class Cohesion” Cohesion C S [41]

1- No. of attributes.

2-No. of methods.

3-Number of simple paths in graph.

80 MMAC
“Method-Method through Attributes

Cohesion”
Cohesion C S [42]

1- No. of attributes.

2- No. of methods.

81 LCOM “Lack of cohesion Metric” Cohesion C D [21]
1- Methods.

2-Instance variables.

82 MOA “Measure of Aggregation” Composition C S [15] 1- Attributes in class.

83 DIT “Depth of Inheritance Tree” Inheritance C S [21] 1- Number of ancestor classes.

84 NOC “Number of Children” Inheritance C S [21] 1- Class direct children.

85 NAC “Number of Ancestor Classes” Inheritance C S [22] 1- Number of ancestor classes.

86 NDC
“Number of Descendant Classes all

subclasses”
Inheritance C S [22] 1- Descendant classes.

87 MIF “Method Inheritance Factor” Inheritance C S [20]

1- Inherited methods.

2- Available methods (new method+ inherited method-

overriding method).

88 AIF “Attribute Inheritance Factor” Inheritance C S [20]
1- Inherited attributes.

2- Available attributes.

89 MFA “Measure of Functional Abstraction” Inheritance C S [15]
1- Inherited methods.

2- All methods (origin and inherited) for a class.

90 NMI
“Number of Methods Inherited by a

subclass”
Inheritance C S [18] 1-Number of methods inherited by a subclass.

91 NMO
“Number of Methods Overridden by

a subclass”
Inheritance C S [18] 1- Total number of methods overridden by a subclass.

92 NMA
“Number of Methods Added by a

subclass”
Inheritance C S [18] 1- Total number of methods defined in a subclass.

93 PF “Polymorphism Factor” Polymorphism S S [20]

1-Overriding methods in class.

2-New methods in class.

3- Number of descendants of class.

4- Total no of classes.

94 NOP “Number of Polymorphic Methods” Polymorphism C S [15]
1-Overriding method.

2-Overloading method.

95 CIS “Class Interface Size” Messaging C S [15] 1- Public methods.

96 WMC “Weighted Method Per Class” Complexity C S [21] 1- Method complexity.

97 NLM “Number of Local Methods” Complexity C S [22] 1- No. of local methods.

98 NOM “Number of Methods” Complexity C S [15], [17] 1- No. of methods.

99 CMC “Class Methods Complexity” Complexity C S [22] 1-Method complexity.

100 WAC “Weighted Attribute per Class” Complexity C S [31] 1-Weighted attributes Of class.

101 SC “Static Complexity” Complexity S S [43]
1- Methods complexity in class.

2- All classes.

102 DC “Dynamic Complexity” Complexity C D [43] 1- Methods reused.

103 AMC “Average method complexity” Complexity C S [25]
1-No of methods.

2-Methods complexity.

104 NOT “Number of Tramps” Complexity C S [31] 1- Parameters in method.

