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Abstract: Major advantages occur in modern agriculture, including effective position and space needs, sufficient meteorological
management, water efficiency, and controlled nutrient use. The Internet of Things (IoT) definition suggests that different ”things,” such
as communication devices as well as all other physical objects in the world, can be connected and regulated over the Internet. Wireless
Sensor Networks (WSNs), in particular, may be thought of as important data collection and transmission systems. It is possible to build
automated systems for improved agricultural environmental control using the IoT and WSN. But WSN is suffering from the motes’
limited energy supplies, which decreases the total network’s lifetime. Each mote periodically collects the tracked feature and transmits
the data to the sink for additional study. This method of transmitting massive volumes of data allows the sensor node to use high energy
and substantial bandwidth on the network. In this article, we suggest a lightweight lossless compression algorithm based on Differential
Encoding (DE) and Huffman techniques that is particularly beneficial for IoT sensor nodes that monitor the features of the environment,
especially those with limited computing and memory resources. Instead of trying to formulate innovative ad hoc algorithms, we
demonstrate that, provided general awareness of the features to be monitored, classical Huffman coding can be used effectively to describe
the same features that are measured at various time periods and locations. Results utilizing temperature measurements indicate that it
outperforms common methods developed especially for WSNs, even though the suggested system does not reach the theoretical maximum.
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1. Introduction and Overview
The Internet of Things (IoT) may be defined as a plat-

form where virtual and physical objects are interconnected
and communicate with each other [1]. IoT systems consist
of different technologies like cloud computing, wireless
sensor networks and embedded intelligence. IoT systems
consist of different technologies like cloud computing,
wireless sensor networks, and embedded intelligence. IoT
systems capture environmental data using RFID (Radio
Frequency Identifier), cameras, sensors, and so on [2].
These systems offer advanced services such as real-time re-
mote monitoring, online analytics, and remote management.
IoT is applied in many remote monitoring applications in
vast domains from healthcare to smart factories, including
smart homes, smart cities, smart agriculture, improving
productivity and reducing costs [3], [4].

The current agricultural fields need new and enhanced
methods. With the lack of water production and the abun-
dance of demand for it and the worrying climate change,
other external problems arise [5]. Also, in order to perform

activities such as watering or fertilizing, farmers need to
visit their plants frequently (e.g., every day or every few
days, depending on the plant and trees). In some cases,
farmers need to stay close to their remote farms in order
to protect the crop and their resources. When the farmed
areas are large, it becomes increasingly difficult and more
human resources are required to perform these tasks. This
can cause a significant increase in operational costs with
a limited impact on productivity [6]. In the era of the
IoT, a solution is to deploy a WSN-based IoT as a low-
cost remote monitoring and management system for these
remote farms. Farms adopting IoT technologies are often
referred to as ”smart farms.” Some of the benefits of the
IoT can be utilized to improve the quality of services for
automated and remote farming systems.

We assume that a WSN-based IoT used for smart
farming gathers environmental data regularly from various
sensor nodes and transmits the data to a sink for additional
study [7]. This periodic method produces massive data
redundancy being passed to the sink, particularly when
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there are no alterations to the monitoring function (for
example, if the temperature remains constant). At the sensor
node level, this vast quantity of periodic data is much
more overwhelming. Typically, these sensors have limited
computational, energy, and storage capacity and cannot
handle or store this amount of data.Hence, issues have
emerged at this stage surrounding computing resources,
storage space, and data mining. And last but not least, one
of the main challenges is to minimize energy usage when
sending large amounts of data via the IoT network [8].

To resolve these problems and to minimize the quantity
of data obtained from the sensor nodes, we suggest a
simple lossless compression algorithm based on Differential
Encoding (DE) and Huffman techniques. This is especially
helpful for IoT sensor nodes, particularly those with re-
stricted computing and memory resources. The compression
approach benefits from the high correlation that typically
happens in smart farming between consecutive measure-
ments collected by IoT sensor nodes.

By utilizing the principle of entropy in compression
along with the correlation attribute, we prove that a com-
pression ratio higher than that achieved by state-of-the-art
algorithms can be accomplished by simply using Huffman
encoding. We demonstrate that if we create a fixed dictio-
nary based on Huffman used for encoding the successive
measurements differences for a large data set, the achieved
ratio of compression of the similar phenomenon’s test
sensor data set at various locations and times is quite similar
to what would be carried out if a separate dictionary were
designed for every test sensor data set.

The rest of this research will be as follows: Section 2
discusses similar works, while Section 3 outlines our pro-
posed lossless compression algorithm. A variety of experi-
mental findings support the proposed method in Section 4.
Section 5 presents a discussion about the results the method
has produced. Finally, the article concludes in Section 6.

2. RelatedWorks
WSN-based IoT data reduction has gained a lot of in-

terest in recent years. Traditionally employed core methods
of data reduction may be categorized as prediction, data
aggregation, data compression, multi-channel multi-paths,
compressive sensing, scheduling and clustering [9], [10],
[11], [12], [13], [14], [15], [16], [17], [18], [19], [20]. We
will mention and clarify some of those solutions in this
section.

Both lossless and lossy solutions that leverage the strong
temporal similarity of sensor node data can be found in
the literature on compression techniques for WSNs. One
of WSN’s earliest data-compression lossy techniques, LTC
(Lightweight Temporal Compression) [21], used a series
of lines to estimates the data obtained by every node in a
WSN. K-RLE [22] is a variant of the data compression
process called run-length encoding (RLE) in WSN. It uses
the range of values [K − d,K + d] to approximate a series

of N readings as the pair (N, d), where K determines the
system’s precision.

While lossy compression approaches may usually obtain
high ratios of compression at the cost of modest precision
losses, it might not be obvious in certain WSN implemen-
tations, until collecting data, how much information should
actually be overlooked before losing the system’s ultimate
intent. Event-based contact strategies aim to address this is-
sue by restricting the transition of sensor data to client query
responses [23]. In certain instances, though, without first
examining the raw sensory data, the client will be unable
to formulate queries. Consequently, in WSN a variety of
approaches for compressing data losslessly were suggested

Even so, in this research, we take into account strategies
that aim to perform effective lossless compression of data
by exploiting only the data temporal correlation obtained
by every sensor node and locally conducting all the com-
putations, without depending upon the input from another
node. Lossless entropy compression (LEC), S-LZW and
ND-Encoding are among the most popular and successful
solutions in this area.

By assuming minimal sensor node resources, the re-
searchers strengthened Lempel-Ziv-algorithm Welch’s in S-
LZW [24]. Using a 256-character dictionary, the algorithm
effectively segments the information to be packed into fixed-
size blocks, and then compresses each block individually.

In the LEC method [25], the difference between the
values of the successive sensor samples is calculated, and
then these differences are converted into segments that
increase exponentially in size. Every segment correlate to
the needed number of bits to show the differences in values.
After that, the entropy with a fixed compression table (as
shown in Table I) is used to code these segments according
to the JPEG algorithm. The symbols being compressed
are expressed by associating segment number vi with the
element index fi inside the segment. The researchers used
real data gathered by WSNs about the climate and recorded
high compression ratios.

ND-Encoding [26] is a compression algorithm that
achieves high-ratio compression as the data slowly different
from the normal distribution. In this technique, the struc-
tured dictionary provided in Table II is used to encode the
residues of the data characterized by normally distributed
and very small variance.

A predictive coding method is another kind of com-
pression algorithm. Generally speaking, this category of
algorithms is inspired by the presumption that only certain
residues are sufficiently encoded in certain situations, result-
ing from a discrepancy between the real and expected value.
This is often referred to as two-modal transmission (TM).
The TM approach introduced in [27] employs a second-
order linear predictor. The only problem with this method
is that, due to the limited computing and storage resources
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TABLE I. LEC Dictionary.

di vi fi li
0 00 0 2
-1,+1 010 1 4
-3,-2,+2,+3 011 2 5
-7,...,-4,+4,...,+7 100 3 6
-15,...,-8,+8,...,+15 101 4 7
-31,...,-16,+16,...,+31 110 5 8
-63,...,-32,+32,...,+63 1110 6 10
-127,...,-64,+64,...,+127 11110 7 12
-255,...,-128,+128,...,+255 111110 8 14
-511,...,-256,+256,...,+511 1111110 9 16
-1023,...,-512,+512,...,+1023 11111110 10 18
-2047,...,-1024,+1024,...,+2047 111111110 11 20
-4095,...,-2048,+2048,...,+4095 1111111110 12 22
-8191,...,-4096,+4096,...,+8191 11111111110 13 24
-16383,...,-8192,+8192,...,+16383 111111111110 14 26

TABLE II. ND-Encoding Dictionary.

di vi fi li
0 00 0 2
-1,+1 01 1 3
-3,-2,+2,+3 10 2 4
-5,-4,+4,+5 110 2 5
-7,-6,+6,+7 1110 2 6
All others data 1111 ρi 4+ρi

available in IoT sensor nodes, the predictive algorithms are
extremely complex, and only the sink will run the right
estimator.

While some of the aforementioned approaches depend
on the temporal similarity of data gathered by WSNs to
reach a good compression ratio, they ignore the fact that
it is normally fairly simple to predict the specifics of the
phenomenon to be observed by a certain WSN before
the sensors are deployed. The researchers suggested the
Aggregation and Transmission Protocol (ATP), a two-phase
adaptive protocol, in [28], which functions independently
on each sensor node in order to reduce the transfer of data
and preserve power. To extract consistency from raw data,
the proposed protocol searches for associations between
data obtained within a p-period during the aggregation pro-
cess. Although the sensor node during the sending process
is searching for a periodic data link, the Fisher test uses the
one-way ANOVA model.

In [29], a new method of filtering prefixes was proposed
by the writers to stop computing identical values for all
possible pairs of sets. For content consistency, they describe
a current filtering technique. They were interested in pur-
suing a new part of the filtering aggregation problem by
using a local processing strategy to discern the similarities
of neighboring node-created data sets.

In order to minimize the amount of information sent to

the sink, the implementation of a lightweight lossless data
compression algorithm is our data reduction technique at
the sensor node. It is based on Huffman and differential
encoding techniques.

This section presents some relevant background infor-
mation related to the development of the measurement sys-
tem, the energy calculation methodology, and the evaluation
of the experimental results.

3. The Lightweight Data Compression
In this section, we describe the data compression issue

for smart farming measurements in WSN-based IoT and
introduce an easy compression solution, that considers the
features of the captured measurements by the sensor nodes,
which acts to decrease algorithmic complexity without
compromising compression ratios.

A. Problem Definition
We take into account a sensor node in smart farming

that monitors environmental measurements. Every sensor
node captures at a time interval of t one measurement that
defined, after analog to digital conversion, as m[t] ∈ M,
where M ⊂ Z.

The source alphabet is said to be the set M =
{m0,m1, ...,mN−1}. Every symbol mi ∈ M is represented by
a specific source encoder with a codeword of length li bits,
such that L =

∑N−1
i=0 pili expresses the mean of bits number

required for representing every source symbol, where pi
is the likelihood of m[t] = mi. If the source encoder is
unavailable, then equal-length codewords will be used for
representing all the source symbols, such that the length of
symbol is Lu = ⌈log2N⌉ bits/symbol. In fact, the theoretical
limit for the minimal number of bits/symbols for a distinct
source is the entropy of the source and is expressed by
Equation 1:
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H(M) =
N−1∑
i=0

pili = −
N−1∑
i=0

pilog2(pi) (1)

where li = −log2(pi) is the measure of information for
a source symbol mi. We can calculate the compression
algorithm performance by making a comparison between
the mean length of the symbol after compression to the
entropy of the source. For example, let’s take the case
of the integer temperature data set, denoted as Set 1,
for the period from 1/1/2009 to 7/8/2011 for the city of
Hagerstown, MD, USA, which contains 26,843 samples
and the rate of sampling is every 10 minutes [30]. Because
the values of temperature measured ranging between −16
C and +37 C, therefore, the 54 distinct source symbols
in this alphabet required Lu = 6 bits/symbol to represent
these symbols without compression. In this case, the entropy
of the source is H = 5.29 bits/symbol, that could be
achieved by simple Huffman code. Evidently, this specific
source and after developing a Huffman code, is need after
compression just L = 5.31 bits/symbol. Even so, since the
values of temperature have somewhat a uniform probability
distribution therefore the reduction in the mean length of
symbol is just 0.69 bits or 11.5%.

We will perform even better when taking into account
the successive measurements differences, such that the
transmitted data will be di = mi − mi−1. For example, the
entropy regarding to Set 1 for the difference in successive
measurements is just Hd = 2.13 bits/symbol, that resulted
in reducing of 59.7% regarding to the temperature entropy
of Set 1. The robust correlation between the successive
temperature measurements has led to this reduction, which
in turn causes the differences probability distribution to
be significantly erratic. Therefore, the compression of the
differences between the successive temperature measure-
ments is much more appropriate than the compression of
the temperatures themselves.

B. Proposed Scheme
The goal of this research is to formulate an easy loss-

less compression technique that approaching the efficiency
of optimum entropy coding when depending on a fixed-
dictionary. The new technique proposed introduces a minor
improvement to the basic technique, which is to exclude the
negative values that can occur as a consequence of finding
differences between the consecutive measurements. The
method for eliminating negative values suggests finding the
smallest value in each group and then finding the difference
between the group’s values and the smallest value. This
process aims to decrease the size of the dictionary utilized
to encode the resulting differences without sacrificing data
accuracy or compression ratio

Assuming N measurements set, M = {m1,m2, ...,mN},
where W − bits is used to define each measurement, W
represents the resolution of analog to digital module. δ de-
notes the minimal measurement in set M, i.e. δ = min{mi},
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Figure 1. The successive temperature measurement differences.

and denotes the set of differences as D = {d1, ..., dN}, where
(di = mi − δ, i[1, ...,N]).

It is clear that the use of set C = {δ,D} will lead to
reconstructing the original set of values M with very high
accuracy where, mi = di + δ. In addition, if the correlation
between measurements in set M is high then the set C
will need a few bits to represent it. So, the set C can be
interpreted as a compress version of set M.

In fact, in our proposed technique β is used to denotes
to the number of bits needed to represent the biggest
difference di, also, δ is represented with W bits, as a
result, the number of bits needed to represent the set C
is LC = W + β × N bits. Now, let’s compare the bits
number required to represent the set M compared with C,
i.e. LM = N × W. Presuming the correlation among the
measurements of set M is high, then each difference di is
represented by a few bits β such that β <W, therefore if
β <W× (N − 1)/N would match LC < LM.

So, by following this method of compression, we will
have obtained a lossless data compression algorithm that
we call the Minimum Di f f erential Encoding (MDE) if we
can represent the M set by the C compressed set without
using a dictionary and source encoder.

When studying the distribution of probability for the
measurements and for the differences of successive mea-
surements for several sensors data set conducted at various
locations we found a high similarity in the distributions of
the differences across all sensors data set. As shown in Fig-
ure 1, illustrating the distribution of differences probability
between successive measurements in Set 1.

Almost all of the distributions as shown in the figure are
Laplacian with a mean of zero. Most importantly, if we list
the differences between all sensors dataset, the result will
be (0,±1,±2,±3,±4, ...), from most probability to the least.
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In our case, as seen in Figure 2, there would be a large
likelihood of residues having small values (i.e. di <= 3).
Therefore, in practice, a fixed Huffman alphabet can be
used to compact various sets of measurement if we take
into account the temperatures differences, since all sets
have very similar behaviour and the ideal Huffman alphabet
appears to be identical for each set.
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Figure 2. Successive measurement differences with minimum value.

Thus, we suggest in this research to create a fixed alpha-
bet derived by applying the Huffman algorithm to a broad
temperature measurement data set of sensors. We assign
Sensor 1 to be the reference data set, for no special reason.
The proposed technique utilizes for creating a dictionary a
data set as a reference for a specific criterion under moni-
toring (e.g. temperature), unlike LEC, that often utilizes the
same dictionary. In the reference data set, the repetition of
each available symbol is counted for using them to create
the Huffman tree that describe the alphabet of compression.
The various temperature datasets are compressed based on
this alphabet, and as illustrated in Table III. The suggested
technique’s complexity is very limited due to the fixed al-
phabet. For example, the AVR microcontrollers, commonly
utilized in sensor nodes, require just 468 bytes of memory
when implementing the encoding and decoding of Huffman
[31]. Due to its ultimate simplicity we use Huffman coding
in this research; furthermore, similar findings will possibly
be provided by other entropy coding methods like arithmetic
coding. Then we can describe the modified algorithm as
MDEH if we use the MDE together with the Huffman
dictionary as presented in Table III. Note that MDE and
MDEH are methods of lossless compression.

In the suggested technique, like in any differential
compression method based on a dictionary, two specific
situations should be assumed: (i) the minimum measure-
ment, δ, should be sent uncompressed; (ii) also, the table
of compression, e.g. Table III, encompasses a small number
of difference values, depending on the data present in the
reference dataset. Even so, the likelihood of a word that

TABLE III. MDEH Dictionary.

di codeword li
0 1 1
1 10 2
2 100 3
3 1000 4
4 10000 5
5 100000 6
ξ 000000 6+ρi

doesn’t appear in the dictionary is incredibly low (view
Figure 2). And therefore its value may be transmitted
uncompressed and defined in the Huffman dictionary by
the inclusion of a special symbol. In other words, the
codeword not included in the original dictionary and whose
existence reveals without ambiguity can be sent to indicate
that the symbol that follows it is not compressed using
a codeword of predetermined length. The special symbol
in Table III is ξ with 6 bits. After the MDEH calculate
the difference di = mi − δ, it will be feeding it to the
entropy encoder. The encoder is lossless and based on the
dictionary presented in Table III, a codeword string is used
to express any difference value di that is non-zero. Finally,
it must be noticed that the proposed MDEH needs a very
limited dictionary that could be avoided using the statement
of switch-case. As a consequence, we might assume that
MDEH has lower memory requirements compared to other
algorithms of compression.

4. Results
To test our proposed technique using the OMNET++

discrete simulator, we carried out multiple collections of
simulation experiments. We use a set of real data in simula-
tion experiments, as an example of weather measurements,
obtained by sensors equipped with a weather-board from the
research center of Intel Berkeley [32]. In Berkeley, there
are 54 sensors placed at the lab for collecting environmental
measurements like light values, voltage, temperature and
humidity, one measurement every 31 seconds. In this re-
search, only one class of the sensor node measures has been
taken for the purpose of the study, which is the temperature
(the rest of the measures can be treated in the same manner)
for simplicity.

A. Comparing with Lossy Algorithms
In this section, the efficiency of MDE/MDEH techniques

is compared with ATP and PFF. ATP and PFF are protocols
for WSNs devoted to lossy aggregated data. As we have
known, the compression ratio in lossy approaches is higher
than lossless approaches, even so, we selected ATP and
PFF to demonstrate the efficacy of our techniques. In this
relation, we carried out a number of simulation tests with
various criteria so as to include all the cases. Owing to the
scale of experiments and limited papers, the findings of the
tests are not displayed all. We have evaluated the efficiency
of our proposed techniques and used the following metrics:
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quantity (in KB) of transmitted measurements, compression
ratio, energy consumption and data precision.

Figure 3 displays the quantity of sent measurements (in
KB) by sensor nodes using different techniques (PFF, ATP,
MDE and MDEH) to the sink.
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Figure 3. The quantity of sent Measurements (in KB) to the Sink.

As shown in Figure 3, our proposed MDE/MDEH
techniques outperform the other methods and decreased the
quantity of sent measures to a maximum of 12.5% and
39.4% using MDE, while MDEH decreased the quantity
to a maximum of 6.7% and 21% compared to PFF and
ATP respectively. The explanation for this is due to the
procedure used in the encoding. Also, MDEH optimizes
the performance more than MDE, where MDEH uses a
dictionary of fixed size for encoding the differences between
successive measurements using as low as possible bits.

The cumulative energy consumption of the entire net-
work is total energy dissipation. The radio model of the
first-order [33], [34], as in Equation 2, is MDE/MDEH’s
model of energy usage for transmitting a κ-bit packet with
a distance of ν.

ET X(κ, ν) = Eelec × κ + βamp × κ × ν
2 (2)

Where, Eelec is the energy dissipated by the transmit-
ter/receiver and βamp represents the amplification energy for
free space. The analytical findings, as shown in Figure 4,
the energy absorbed by MDE is decreased up to 66% and
59% while MDEH is decreased up to 82% to 76% compared
to PFF and ATP, respectively. Also, note that the MDEH
dictionary greatly decreases energy usage in comparison
with MDE by 46%.

The analytical findings, as shown in Figure 4, disclose
that the energy consumed by MDE is reduced to a maximum
of 66% and 59% while MDEH is reduced to a maximum of
82% to 76% compared to PFF and ATP, respectively. Also,

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

20 50 100

E
n

e
rg

y
 C

o
n
s
u
m

p
ti
o

n
 (

in
 J

o
u

le
s
)

Measurements / Period

MDEH
MDE

 ATP(δ=0.07)
ATP(δ=0.05)
ATP(δ=0.03)
PFF(δ=0.07)
PFF(δ=0.05)
PFF(δ=0.03)

Figure 4. Total Energy Consumption.

note that the MDEH dictionary greatly decreases energy
usage in comparison with MDE by 46%.

The CR compression ratio is utilized in this research
as another criterion for measuring the efficiency of the pro-
posed techniques. The criterion calculates using Equation 3.

CR = 100 ×
(
1 −
C

M

)
% (3)

Where C represents the compressed data set and M is
the original set. MDE/MDEH offers improved efficiency in
almost all instances as regards the mean of ratios of com-
pression as seen in Figure 5. The analysis findings disclose
that when applying ATP, MDE and MDEH respectively, the
compression ratio achieved is 83%, 87.8% and 93.7%.
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We have used another metric in our studies to show
the feasibility of the techniques suggested, which is the
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precision of the data reconstructed. According to this study,
the accuracy of the data is specified as the percentage of
data lost or not obtained in the sink as a result of operations
of aggregation or compression within each sensor node. The
results of experiments regarding the accuracy of the data are
illustrated in Figure 6.
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Figure 6. Decompressed Measurement Accuracy.

In all scenarios, MDE/MDEH offers good performance
concerning the accuracy of data in comparison with ATP
and PFF, as displayed in Fig. 6. The empirical findings
disclose that when implementing our suggested lossless
MDEH, MDE techniques, the accuracy of reconstructed
data is 100%. Unlike PFF and ATP, in which some data
is lost.

B. Comparing with Lossless Algorithms
We assess the efficiency of MDE /MDEH in this section

with lossless compression algorithms explicitly designed
for WSNs. The Two-Modal algorithm, the algorithm ND-
Encoding and the LEC algorithm were specifically taken
for comparison. In these experiments, the temperature mea-
surements from Intel and for three different sensor nodes as
in [26] are taken for comparison. Table IV presents simple
descriptive statistics regarding the sensor’s measurements
used in the comparison.

TABLE IV. Descriptive statistics regarding the sensors measure-
ments.

Node ID Physical parameter Min Max Mean Std
3 Temperature (◦C) 17.6 26.4 21.2 2.4
8 Temperature (◦C) 17.2 26.5 20.9 2.3
19 Temperature (◦C) 16.2 28.9 21.7 3.2

A set of 10,000 temperature measurements divided into
100 packets each include 100 words defined by W = 16
bits is considered for each node. The ratios acquired for
compression are displayed in Figure 7 and Figure 8. MDEH
offers better results concerning mean and maximum ratios
of compression in all scenarios as seen in Figure 7 and
Figure 8.
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Through experiments, it was found that there is a direct
relationship between the compression ratio and energy-
saving. Note also that the new MDEH dictionary greatly
improves the mean and maximum compression ratio as
opposed to MDE. In comparison, the great difficulty of
TM methods (e.g., linear prediction and optimum encoding)
does not substantially increase the compression ratio as seen
in the figure.

To highlight the generality of the technique proposed,
we used some other data sets randomly, rather than the
sensor 1 data set, to assess the efficiency of the proposed
technique if we used another set for creating the dictionary.
The findings of the assessment are illustrated in Table V.

The length’s average of the symbol (L), that produced if
we used the data set at the top for generating the dictionary
to compress data set on the left side, is illustrated in the
rows of the table. The mean length of the symbol for all
selected data sets is displayed in the last row. As appear
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TABLE V. The length’s average of the symbol (L) when compressing the measurements utilizing dictionaries created from another set.

Sensor 1 Sensor 14 Sensor 28 Sensor 35 Sensor 40 Sensor 51 σ
Sensor 1 1.512 1.519 1.617 1.547 1.589 1.652 0.056
Sensor 14 1.512 1.505 1.617 1.546 1.526 1.603 0.047
Sensor 28 1.813 1.813 1.792 1.89 1.932 2.051 0.098
Sensor 35 1.104 1.104 1.414 1.104 1.104 1.112 0.125
Sensor 40 1.26 1.26 1.533 1.267 1.281 1.316 0.106
Sensor 51 1.12 1.12 1.428 1.12 1.13 1.128 0.124
Avg. 1.38 1.38 1.56 1.41 1.42 1.47

that the length’s average of the symbol for all data sets
is fairly consistent. The symbol length standard deviation
σ is displayed in the last column. Generally speaking, the
variation is very minimal as shown in the table.

In terms of the proposed method’s complexity, it’s worth
noting that only counting operations are needed for imple-
mentation, and the iterations number required for execution
is in the order of O(N). Furthermore, only the compressed
set C must be stored in terms of storage requirements. As
a result, storage requirements are restricted.

The GW should be knowing the value of the minimum
measurement δ in each received set to recreate the original
collectionM in a successful manner; hence, this value must
encode and transmit in addition to the compressed sequence,
resulting in an h − bit overhead. It is necessary to obtain
the value of δ, if δ is restricted to be a power of two, i.e.,
δ = 2β−1. We have h = ⌈log2 β⌉ = O(log2(log2)(N)) bits in
this instance, which is a very minimal overhead.

ATP algorithm has an O(N2) time complexity. Finally,
PFF has a time complexity of O(N× log2(N)). Furthermore,
the message complexity in our proposed method is primarily
determined by the number of collected data (N) in the
period, which is determined by the application. If a large
value for N is required, several solutions, such as data
packet division, can be used.

C. Comparing with Another Dataset
To demonstrate the efficacy of the approaches we’ve

conducted other simulation experiments using another real
data set as in [35]. This dataset represents meteorological
readings captured periodically every hour for 6 years (for
the period 1/1/2010 to 31/12/2015) in five different Chinese
cities. Liang et al. measure data in a very different way from
[32]. Since it is collected at quite a lower recurrence and
in a setting in which the physical phenomena being tested
have a wider range of variance, data collected in [35] has a
higher variance in measured values. We take a time period
of 18 and 42 slots in both datasets of five cities and Intel,
we found the range of maximum and minimum differences
in [35] are 18 and 1, while in [32] are 2.78 and 0.02
respectively. Table VI shows the statistical characteristics
of the five cities dataset used in these experiments.

In Figure 9, we can see the amount of data remaining
after performing the compression based on the MDE and

MDEH methods. From the figure we conclude the following
things:

• The results show that the greater the amount of
variation in the data will lead to data compression
by a lesser degree.

• The amount of captured data is affecting the per-
centage of remaining data, as the amount of data
remaining increases with the increase in the captured
data.

• The remaining data percentages range from 23.6-
90.9% and from 18.6-81.1% for MDE and MDEH
respectively.
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Figure 9. Ratio of remaining data using five cities datasets.

Figure 10 depicts the quantity of data (in KB) sent to
the GW when the MDE and MDEH methods are employed
by the sensor nodes.

The results shown in Figure 10 can be summarized as
follows:

• The more data collected by the sensor nodes; the more
data is sent to the GW.

• The greater the amount of variance between the data,
the greater the amount of data sent to the GW.
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TABLE VI. The Key Features of the Temperature Datasets.

Location Range Mean Samples Sampling
Interval

Set 1 Beijing -19 to 42 12.58 52585 60 Min
Set 2 Chengdu -3 to 38 17.69 52585 60 Min
Set 3 Guangzhou 2 to 38 21.99 52585 60 Min
Set 4 Shanghai -5 to 41 17.47 52585 60 Min
Set 5 Shenyang -28 to 35 8.64 52585 60 Min
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Figure 10. Ratio of sent data sets using five cities datasets.

• Using MDEH reduces the amount of data sent by a
higher percentage than the MDE method due to the
use of the fixed dictionary.

• The saving percentage (that is, the amount of data
captured but not sent to the GW) that we obtained is
from 23.6-90.9% and from 18-72% using MDE and
MDEH methods, respectively.

The main goal of data compression is to reduce the
amount of data. In Figure 11, we can see the amount of
data remaining after performing compression based on the
MDE and MDEH methods.

From the figure we conclude the following:

• The results show that the greater the amount of
variation in the data, the less compression will be
given to the data.

• The amount of data captured is affecting the per-
centage of data compression, as the amount of data
remaining increases with the increase in the captured
data.

• The data compression ratios range between 9-76%
and 27-81% for MDE and MDEH respectively.

Finally, with regard to the accuracy, the proposed meth-
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Figure 11. Compression Ratio of data using five cities datasets.

ods maintain the accuracy of the data completely, and when
decompressing it, the accuracy ratio is 100%, as the large
variance between measurements does not affect its accuracy,
but rather affects the amount of data that will be sent to the
GW.

5. Discussion
This section focuses further on the suggested method by

exploring the viability of applying it under the limitations
and requirements that the application faces. To ensure the
correctness of the assumptions of the proposed methods,
we used measurements of integers that have lower data
variance. If the measurements in the dataset are real, we
round it before applying the methods under-study.

For real measurement processing, we need a certain
mechanism to define the integer part and fractional part of
the number. This requires the use of additional bits, or the
use of codes of fixed length and not variable length as is the
case in Huffman encoding. Or it is possible to reduce the
resolution of the measurements to one or two decimal digits
according to the requirements of different applications, and
then suggest the generation of a fixed dictionary for them.
It will also lead to a noticeable reduction in the amount
of data that will be sent and the amount of energy spent,
which leads to prolonging the life of the network.

From the simulation results obtained and presented in
the fourth section, it becomes evident that the proposed
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methods work well with data of the integer type in which
the variance is small. While it gives acceptable results to
some extent with the data that have a large variance. Thus,
it depends on the type of application and the nature of the
data. The number of data collected in a period and the
range of data variance are two significant factors in the
efficiency of our techniques. For example, take into account
a system which measures data with a greater variation, such
as outdoor temperature readings over a broad variety of
frequencies, than a system which measures the temperature
of a living being. In comparison to the application that
measures outdoor temperature, the application that mea-
sures body temperature would generate the same or similar
readings many times in each period.

Finally, data compression is an energy-saving technique.
The network’s load is the data in several respects. Evidently,
the network’s whole life is focused on the monitoring of
data of interest. The load, packet, or parcel that the network
plans to collect and transmit to the GW is known as data. As
a result, data compression at sensor nodes reduces network
load, thus extending network lifespan.

6. Conclusions and FutureWork
In this research, we proposed a lightweight lossless

compression algorithm based on Differential Encoding (DE)
and Huffman techniques which is particularly beneficial
for IoT sensor nodes, that applied in WSN for agriculture
to monitor any irregular meteorological data situation that
could damage farming. Instead of trying to formulate in-
novative ad hoc algorithms, we demonstrate that, provided
general awareness of the features to be monitored, classical
Huffman coding can be used effectively to describe the
same features that measure at various time periods and
locations. Owing to the very low computing and memory
requirements of the proposed system, it can be conveniently
used in practical WSNs. Results utilizing temperature mea-
surements indicate that it outperforms common methods
developed especially for WSNs, even though the suggested
system does not reach the theoretical maximum.
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