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Abstract: The characterization of Shorea spp. tree species among other forest trees appears relatively complicated. Therefore, certain
errors tend to occur during planting stock material collection, particularly at seedling or juvenile stages. This mis-identification could
probably be minimized by initial sound identification, although it requires very extensive efforts. As a consequence, precise and rapid
identification system is required to differentiate the sample at the seedling phase. The identification process involves usually the use
of leaves, in which venation forms a major leaf feature with unique architecture and consistent pattern to segregate Shorea species.
However, geometric properties also exist and can be extracted, using a geometric mathematical model. The approach determine the
position of venation point by applying the linear coordinate values. This study was aimed at identifying Shorea species, using using
random forest classification techniques. In addition, information on leaf venation’s geometric features include the attribute angle, length,
distance, scale projection, angle difference, straightness, length ratio, as well as densities of leaf vein, branching and ending points, were
necessary. In particular properties, the mean, variance and standard deviation are evaluated. Subsequently, to obtain the most important
traits, feature selection was conducted, using Boruta algorithm. The results showed the success of the applied model in classifying
Shorea species, by leaf venation feature. Also, optimum accuracy was attained at 91.90%, with cut-off training and testing data of
90:10, by analyzing 1000 single trees. Furthermore, extensive sensitivity and precision values were obtained at 89.95 and 90.66%,
respectively. These results clearly indicated a superior performance model.
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During the collection of planting stock materials from
natural regeneration, distinguishing correct species is often
problematic due to complex morphological traits. Therefore,
an error occurrence during collection is also possible and an
initial identification method with accuracy and rapid process
is required.

1. INTRODUCTION

Shorea spp. are described as a group of timber-
producing tree species in Indonesia with important value of
commodity [1]. The genus Shorea with 194 species, occurs
in the tropics [2], as well as possesses significant economic
value, due to the good timber quality. In addition, the timber
is commonly processed as a light-to-heavy construction
material. Shorea also produce non-timber forest products,
including resin, tengkawang, nut fruit and tannins [3].

In the field, species identification is usually conducted
using leaves [7], [8], [9]. These plants morphological traits
are easy to locate in the forest floors that exhibit several dis-
tinct characteristics [10]. In particular, leaf venation offers a
significant feature to differentiate the Shorea species, along-
side a unique architecture and consistent pattern [11], [12].

Massive forest exploitation threatens plant sustainabil-
ity [3]. A total of 156 out of the 194 species were incorpo-
rated in red list, while 59.6% and 25% occurred in critically

endangered and e endangered categories, respectively [4].

Ex-situ conservation appears to be a promising strategy
against species extinction. This concept involves transfer of
plants from their natural habitats [5], for example through
natural regeneration such as wildlings [6].

Various geometric properties are associated with leaf ve-
nation and can be extracted using a linear mathematical
model. This approach determines the of the venation point,
by applying geometric coordinate values [13], [14], [15].

Several studies have classified plants based on the leaf
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venation feature. Properties applied to differentiate fruit
trees are growth, include angle (Ang), length (Len) and
distance (Dis) [16] while to classify medicinal plants are
densities of leaf vein, branching and ending points were
employed [15]. However, to distinguish Shorea species, four
attributes including, scale projection (Spr), angle difference
(Adi), straightness (Str), and length ratio (Lra), were in-
volved [9].

This research generally applied the feature angle, length,
distance, scale projection, angle difference, straightness, and
length ratio, as well as densities of leaf vein, branching
and ending points, in order to identify Shorea species. In
certain instances, the mean, variance, and standard deviation
are calculated. Subsequently, to obtain the major leaf vena-
tion properties, feature selection is greatly preferred, using
Boruta algorithm. This approach was initially employed
to improve the procedure for selecting the most important
random forest features (Breiman’s importance) [17]. Fur-
thermore, the technique was successfully applied in high-
throughput DNA methylation sequencing dataset [18]. The
results showed the capacity of Boruta algorithm to enhance
classification performance by 6.77%. Another utilization
involved the analysis of OMICs dataset (leukemia, lung can-
cer, poriasis, and peripheral blood mononuclear cells), with
accuracies of 98, 99, 99, and 98%, respectively [19]. The
findings from feature selection were subsequently adopted
to classify individual Shorea species.

Random Forest (RF) is a widely applied classification
technique. This approach was successfully used to catego-
rize medicinal plants, with 99% accuracy [20], while for
grape disease, 86% was achieved [21]. Also, the prediction
of activity level of stroke sufferers attained 88.24% accu-
racy [22], and 99.97% to classify DDoS attacks [23].

2. METHOD
A. Data Collecting

In this study, Shorea leaves were acquired in several
nurseries, including the IPB Faculty of Forestry and En-
vironment, Forestry Research and Development Center,
as well as Bogor CIFOR Forest. The herbarium process
was initiated prior to sample compression, followed by
scanning. A total of 212 Shorea leaf images was scanned
and classified, depending on the species (S. leprosula, S.
selanica, S. ovalis, and S. acuminata). Moreover, individual
variety comprises 53 pictures. Figure 1 a sample of leaf
images from four Shorea species.

B. Segmentation

Segmentation is very significant in image processing.
The approach separates the image into several homogeneous
components, with possible extracting into objects. This pro-
cedure was followed by a careful observation to determine
the interest region [24].

Figure 2 represents the segmentation of Shorea leaf
image data. The process was conducted four stages. First,
a single surgical technique was used to detect primary,

000 ¢

S. leprosula S. selanica S. ovalis S. acuminata

Figure 1. Leaf image samples of four Shorea species

Figure 2. Segmentation process of Shorea leaf image data

secondary, and tertiary leaves venation. Sobel operation
provided a similar technique for edge detection by ex-
amining vertical and horizontal edges of the image [25].
Second phase is description as thresholding process that was
known to sharpen the the leaf venation colour or alter the
image into a binary appearance [26]. The range of threshold
values occurred between 1-255, but tends to vary, based on
previous segmentations. However, the third phase employed
morphological techniques, including dilation and erosion,
to eliminate noise and connect broken venations [27], [28].
In addition, the values of both events varied significantly,
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Figure 3. Samples of leaf image segmentation for four Shorea
species
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Figure 4. Bifurcation, intermediary and extreme points on the
venation of Shorea ovalis leaves

depending on thresholding results. Dilation increase object
segments’ size by extending surrounding layers. Simulta-
neously, instigated the size reduction by decreasing sur-
rounding layers [24]. The final stage involved the thinning
process, used to trim the line [29], or modify the white
image (venation) thickness to 1 pixel. Figure 3 shows the
leaf image segmentation of four Shorea species.

C. Vein Detection

in this stage, the image data segmentation results were
determined by bifurcation, intermediary, and extreme point
coordinates. Bifurcation is the initial branching and links
between primary, secondary, and tertiary venations. In addi-
tion, the last pixel is referred as the extreme point. Figure 4
shows the intermediary in the in the form of a link between
bifurcation and extreme point.

The basic concept in determining bifurcation and ex-
treme points relate to a pixel with more than two neighbors.

Figure 5. Determination of bifurcation and extreme point pixels in
structure: (a) pixel p is a bifurcation, neighbor p > 2 pixels (b) pixel
p is an extreme point, neighbor p < 2.
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Bifurcation
XuY1

Figure 6. Representation of feature extraction results

Therefore, pixel p is the bifurcation observed in Figure 5a
(pixel p has adjacent pl, p5 and p7). A pixel p value
less than two represents the extreme point as illustrated
in Figure 5b (pixel p has a neighbor pixel p5). Pixel
points apart from bifurcation and extreme points are called
intermediary.

D. Feature Extraction

The feature extraction was conducted after detecting the
venation. This process calculates the feature angle, distance,
length, straightness, angle difference, length ratio, scale
projection, Leaf vein density, area, total skeleton length,
total branching point and ending point, the densities of
branching and ending points. Figure 6 represents the vena-
tion feature extraction result, with bifurcation and extreme
points. These coordinates are connected to form a segment
and also extracted by calculating the values of basic and
derived features (Table I and II).

The angle feature relates to the angle formed in each
segment, while distance describes the space between bi-
furcation and extreme points. Also, length represents the
extent of bifurcation to the extreme point, while area
defines the pixel count of leaf image. In addition, the total
skeleton represents the total segment as a complete entity.
Furthermore, total branching point refers to the amount of
bifurcation exiting the yield. The total ending points are
the quantity of generated ending points by the leaf. These
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TABLE I. Primary feature of shorea leaves venation

Base Feature Symbols
Angle a
Length /
Distance d
Area A

Total Skeleton length Tsy,
Total Branching Point Tgp
Total Ending Point Tep

TABLE II. Feature derivated venation of shorea leaves

Derived Features Symbols Definition
Angle Difference o la; —
Straightness N li/d;
Length Ratio R L;/Max(])
Scale Projection Pj; I_’J_’/ (Max(d;,d j))2
Vein Density D, Tsr/A
Branching Point Density Dgp Tgp/A
Ending Point Density Dgp Trp/A

seven primary features are used to produce seven derived
components the highlighted equation in Table II.

E. Feature Selection

Feature selection is a very significant phase prior to clas-
sification, where relevant properties influencing potential
outcomes are considered. This aspect reduces data dimen-
sions and irrelevant components [17], as well as improves
the effectiveness and efficiency of applied algorithm [30].
However, the major intuitive measure to determine the
relevant properties is by attempting the entire feature com-
binations. For instance, several features are obtained as F,
and also the decision to use or not use each feature, results
in a blend of 2¥. Under these conditions, an arrangement
with the best performance is preferred. However, the above
method appears very time-consuming [31].

Conversely, there is also a wrapper technique for feature
selection, including the use of Boruta algorithm to eliminate
irrelevant attributes, develop and improve data quality, as
well as enhance model performance and accuracy [17].

Boruta algorithm functions by creating copies of a par-
ticular set of features to expand the available information.
The duplicate is referred as a shadow feature. Subsequently,
Boruta algorithm resets the shadow elements, in order to
eradicate correlations. Therefore, to determine the most im-
portant features, mean reduction impurity (MDI) is applied.
This approach trains the shadow feature using RF classifier
and also evaluates each duplicate’s most important property.
In addition, the shadow feature with maximum MDI score
signifies the best performance. Also, the algorithm develops
tests with only the basic features (excluding clone shadow)
in determining attribute importance. As a consequence, Z

score is considered. Furthermore, the algorithm performs
an implicit evaluation by comparing the feature with a
higher Z value and maximum shadow feature. A higher
estimate is probably saved into a vector known as a hit.
This stage is conducted repeatedly to attain a predetermined
iteration value, followed by the creation of a hit table.
During iteration, the algorithm determines the feature with
the best Z score and tags this estimate as important. The
last setoff is obtained from the hit vector, while the first to
last technique (get hit vector) repeated until the importance
level is attained for the entire feature attributes [17], [30].
Figure 7 represents the algorithm.

F. Random Forest

Random forest is a classification method developed by
Leo Breiman. This technique comprises several tree c;
models, where each unit display the classification results;
and subsequently the most occurring outcome becomes
selected [32]. The random forest algorithm functions by
performing the best split search using, Gini index calcu-
lation [33]. In addition, a higher value shows a sufficient
tendency in becoming the next root or splitting node. This
approach is also employed to determine the final label.
Equation 1 represents the Gini index calculation [34].

N
Gini(t) = 1= 3 p(Cilt)? (1)
i=1

The final result of random forest describes the sum-
mation or voting of individual tree classification. Figure 8
depicts this method architecture. Trees 1,2,...,b is the
number of trees used for the classification, while ki, k»,. ..,
kp, represents class labels. The random forest produces class
k labels after voting on each tree’s results [35]. The final
random forest classification result is the summation of initial
learners’ outcome or the results of each tree classification.
These results are subsequently added on the class basis.
Finally, the class with the maximum number is selected as
the final classification result. as observed in Equation 2 [36].

F) = argiss 3" 1y = hi() 2)

J=1

Where f(x) is the result of the classification random for-
est and /j(x) represents the outcome of each tree grouping.
Meanwhile, I(y = h;(x)) is an indicator function, where the
value of 1 similar results as class y or otherwise, the value
of 0.

3. RESULT AND ANALYSIS

The extraction of base and derivative features from each
Shorea leaf image demonstrated various values and the
diversity pattern that was believed to distinguish the sample
species. Table III, Table IV, and Table V represent the
feature extraction results for Figure 6.
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Figure 8. Random forest architecture [35]

TABLE III. Extraction results of angle, length, distance, straightness, TABLE IV. Extraction results of scale projection and different angle
and length ratio features features
Segment Ang Len Dis Str Lra Segment Adi Spr

1 -210.9 6 5.8 1.03  0.02 land 2  68.532 0.130
2 -142.4 26 164 159 0.10 2 and 3 149.03 -0.714
3 360 9 7 1.29  0.03 3 and 4 14243 -0.338
4 75.9 13 124 1.05 0.05 4 and 5 102.53  -0.047
5 -90 44 43 1.02  0.17 4 and 6 166.58 -0.108
6 3474 12 9.2 1.30 0.05 5 and 6 148.79 -0.712
7 -230 43 40.5 1.06 0.16 6 and 7 175.14 -0.079
8 63.4 5 4.5 1.12 0.02 7 and 8 118.32  -0.158
9 91.1 55 541 1.02 0.21 8 and 9 177.66 -0.029
10 3023 46 449 1.02 0.18 9and 10 113.50 -0.147
11 -2386 9 844 1.14 0.37 10 and 11  142.70 -0.102
12 63.4 9 6.7 1.34  0.03 11 and 12 13237 -0.004
13 88.9 56 55 1.02 021 12 and 13 158.53 -0.165
14 330.6 20 184 1.09 0.07 13 and 14 6347 0.351
15 -233.9 135 1224 1.10 0.51 14 and 15 13799 -0.104
16 85.6 53 521 1.02 0.20 14 and 16 135 0.2
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TABLE V. Extraction results of total skeleton features, total branching point, total ending point, area, branching point density and vein density

Features TS TBP TEP Area

Branching Point Density Ending Point Density  Vein Density

Values 43763 37 38 76

0.487

0.5 575.83

Notes: TS = Total Skeleton, TBP = Total Branching Point, TEP = Total Ending Point.

Table III and Table IV represent the value of the feature
angle, distance, length, straightness, scale projection, angle
difference, and length ratio. However, in order to determine
the feature value, a segment (bifurcation and connected
extreme points) was acquired. Consequently, calculating
the scale projection and angle difference required the seg-
ments to overlap. In contrast to the angle, distance, length,
straightness, and length ratio features, overlapping was not
considered.

Table III and Table IV feature on each leaf data
demonstrates more than one value in contrast to the vena-
tion attributed listed in Table V, which barely one value.
Meanwhile, in Table III and Table IV, the values em-
ployed were mean, standard deviation, and variant measure-
ments [15], [16].

Overall, the total features applied in the next process
were 28, and were also outlined in Table VI.

The min-max normalization technique was initiated after
the value of each feature of Shorea leaf venation was
obtained.

A. Feature Selection

The results acquired using the Boruta algorithm showed
2 features were rejected, while 26 were accepted out of a
total of 28. This chosen estimate indicated the components
with important information, while two rejected factions well
less considered.

Boruta randomly performed 113 forest runs in 24 sec-
onds. The 26 accepted features included Moa, Soa, Voa,
Mol, Sol, Vol, Mod, Sod, Vod, Mos, Vos, Msp, Mda, Sda,
Vda, Mlr, Slr, Vlr, Ts, Tbp, Tep, Ar, Bpd, and Epd, while
the 2 rejected or not important aspects were Ssp and Vsp.
Figure 9 shows the feature selection results.

The blue boxplot represents the minimum, average, and
maximum z score of the shadow feature, while red and
green form the z scores of rejected and accepted features,
respectively. These 26 characteristics are adopted as clas-
sification datasets, compared to a dataset with complete
features.

B. Application of Random Forest

In this stage, the classification using the random forest
method was conducted with a related package available in
R, although several steps are involved.

The first approach is to define the random forest package
to request for the library used in developing the classifi-

TABLE VI. Feature value of leaf venation produced from Figure 6

25

20

Venation Features Values
Mean of angle (Moa) 39.957
Stand. dev. of angle (Soa) 221.129
Varian of angle (Voa) 48898.4
Mean of length (Mol) 62.4211
Stand. dev. of length (Sol) 64.3837
Varian of length (Vol) 4145.2603
Mean of distance(Mod) 57.4680
Stand. dev. of distance (Sod) 61.3103
Varian of distance (Vod) 3758.9
Mean of straightness (Mos) 1.1744
Stand. dev. of straightness (Sos) 0.3337
Varian of straightness (Vos) 0.1114
Mean of scale projection (Msp) 0.0046
Stand. dev. of scale projection (Ssp) 0.3009
Varian of scale projection (Vsp) 0.0905
Mean of different angle (Mda) 116.2987
Stand. dev. of different angle (Sda) 44.3795
Varian of different angle (Vda) 1969.546
Mean of length ratio (Mlr) 0.2361
Stand. dev. of length ratio (Slr) 0.2466
Varian of length ratio (VIr) 0.0608
Total skeleton (Ts) 43763
Total branching point (Tbp) 37
Total ending point (Tep) 38
Area (Ar) 76
Branching point density (Bpd) 0.487
Ending point density (Epd) 0.5
Vein density (Vd) 575.83
Feature Importance
=
=
&
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*géiefgﬁéﬁé?gs*é‘
3
I I
LR L D MLt

Figure 9. The feature selections results
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TABLE VIL. Details of accuracy (in%) and running time (in minutes) for each model established from cut-off (90:10, 80:20 and 70:30) and number

of single tree 500

Feature Selection Dataset

All-Feature Dataset

Fold 90:10 80:20 70:30 90:10 80:20 70:30
A B A B A B A B A B A B
1 89.29 1.039 9792 1.045 87.72 1.049 86.67 1.039 8824 1.040 9091 1.038
2 9091 1.046 89.58 1.041 8841 1.041 90.00 1.039 8529 1.039 9538 1.038
3 82.61 1.042 84.78 1.041 9091 1.040 100.0 1.044 93.18 1.047 90.48 1.040
4 96.00 1.044 9556 1.047 8841 1.040 7692 1.042 9038 1.039 8545 1.041
5 90.00 1.047 90.00 1.046 8730 1.046 8571 1.041 90.00 1.041 86.21 1.039
Average 89.76 1.043 91.57 1.044 88.55 1.043 87.86 1.041 89.42 1.041 89.69 1.039

Note : A =Accuracy and B = Running time.

TABLE VIII. Details of accuracy (in%) and running time (in minutes) for each model established from cut-off (90:10, 80:20 and 70:30) and number

of single tree 700

Feature Selection Dataset

All-Feature Dataset

Fold 90:10 80:20 70:30 90:10 80:20 70:30
A B A B A B A B A B A B
1 80.77 1.051 87.80 1.048 89.23 1.045 9643 1.051 86.84 1.048 90.16 1.044
2 88.89 1.046 90.00 1.049 83.61 1.045 9130 1.048 8636 1.049 94.64 1.043
3 91.67 1.052 91.89 1.051 8571 1.044 84.62 1.050 91.84 1.044 81.25 1.046
4 88.89 1.055 91.84 1.051 92.19 1.049 9444 1.044 83.78 1.046 8871 1.047
5 84.62 1.044 8421 1.050 8947 1.046 8333 1.044 87.10 1.052 8525 1.045
Average 86.97 1.049 89.15 1.050 88.04 1.046 90.03 1.047 87.18 1.048 88.00 1.045

cation model. Second stage involves parameter setting, in-
cluding the quantity of single trees built in excess 500, 700,
and 1000 with the number of nodes as well as the default
predictor variables. Subsequently, the model is developed
on the label basin the form of classification reference and
training data. Finally, the prediction results are analyzed and
further evaluated.

The determination of several cut-offs (90:10, 80:20, and
70:30) was conducted to analyze the sensitive of random
forest performance. This circumstance is very important in
classifying Shorea species, in order to obtain an optimal
evaluation value. Table VII shows the calculation results of
the classification accuracy obtained from a model known to
apply selected and unselected features and the number of
single trees 500 as well as the evaluation value of k — fold
cross-validation model, where k = 5.

The evaluation of the random forest model in Table VII
shows the maximum accuracy average value obtained dur-
ing classification model, using the selection feature dataset
with cut-off training and testing data 80:20, with 91.57%
accuracy and running time 1.044 minutes. However, the pro-
cess was not significantly different from similar approach
using overall feature dataset, Where the cut-off training and
test data 70:30, including the average classification accuracy
value of 89.69% with running time 1.039 minutes were
applied.

Table VIII shows the classification accuracy calculation

results obtained from a model believed to employ selected
and unselected features as well as 700 single trees. The
evaluation value of k — fold cross-validation model was
evaluated, where k = 5.

The random forest model evaluation results in Table VIII
reported the maximum accuracy average value was obtained
using overall feature dataset with a cut-off training and
testing data 90:10, and accuracy of 90.03% with running
time 1.047 minutes. However, no major variation was
observed in comparison to similar approach using the
selection feature dataset with cut-off training and testing
data 80:20, including the average classification accuracy
value of 89.15% with running time 1.050 minutes.

Table IX shows the classification accuracy calculation
results obtained from a model known to employ selected
and unselected features with 1000 single trees. The evalua-
tion value of k— fold cross-validation model was evaluated,
where k = 5.

The random forest model evaluation results in Table IX
showed the maximum accuracy average value is obtained,
using the selection feature dataset with cut-off training and
testing data 90:10, with an accuracy of 91.90% with running
time 1.054 minutes. Table VIII also revealed the average
accuracies of the three cut-off features dataset was more
preferred, in comparison to the overall feature dataset.

Based on the evaluation results, Table VII, Table VIII,
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TABLE IX. Details of accuracy (in%) and running time (in minutes) for each model established from cut-off (90:10, 80:20 and 70:30) and number

of single tree 1000

Feature Selection Dataset

All-Feature Dataset

Fold 90:10 80:20 70:30 90:10 80:20 70:30
A B A B A B A B A B A B
1 7778 1.054 84.85 1.051 86.89 1.054 90.48 1.068 8596 1.052 94.03 1.043
2 9091 1.054 89.19 1.045 89.06 1.050 80.00 1.054 88.10 1.059 8596 1.047
3 100.0 1.054 100.0 1.054 9437 1.051 96.00 1.059 91.11 1.051 87.50 1.048
4 95.83 1.054 89.58 1.055 86.49 1.050 7895 1.055 8837 1.052 9333 1.048
5 95.00 1.052 90.00 1.045 93.15 1.050 90.48 1.057 79.07 1.057 8857 1.049
Average 9190 1.054 90.72 1.050 89.99 1.051 87.18 1.059 86.52 1.054 89.88 1.047

TABLE X. Comparison of average value of precision and sensitivity (in%) of each dataset using 90:10 cut-Off and number of single trees 1000.

Fold S.acuminata S. leprosula S. ovalis S. Selanica Average

Preci. Sensit. Preci. Sensit. Preci. Sensit. Preci. Sensit. Preci. Sensit.

1 100.0 1000 8750 77.78 81.82 90.00 100.0 100.0 92.33 91.945

2 100.0 100.0 8571 66.67 7500 8571 100.0 100.0 90.18 88.10

3 100.0 100.0 90.91 7143 60.00 7500 100.0 100.0 87.73 86.61

4 100.0 1000 8571 9231 8750 77.78 100.0 100.0 9330 92.52

5 92.30 100.0 100.0 7143 66.67 100.0 100.0 90.91 89.74 90.59
Average 9846 100.0 8997 7592 7420 8570 100.0 98.18 90.66 89.95

Note: Preci. = Precision and Sensit. = Sensitivity.

and Table IX represent the random forest performance,
using a dataset of selection features and cut-off training and
testing data 90:10, with 1000 trees as the best model. This
conclusion was evidenced by the optimum average accuracy
of 91.90% with running time 1.054 minutes.

Apart from using accuracy to measure a model per-
formance, precision and sensitivity also offer effective al-
ternatives. The precision calculation is ascertaining the
classification significance. In contrast, sensitivity determine
the extent of balance in classifying the actual class correctly.
Sensitivity and precision testing applies a selection feature
dataset with cut-off training and testing data 90:10,in ad-
dition to 1000 single trees. Table X presents the precision
and sensitivity values for each class.

Table X shows that S. leprosula and S. ovalis obtained
the minimum average sensitivity and precision value of
75.92 and 74.20%, respectively. Meanwhile, S. acuminata
and S. Selanica both acquired the maximum sensitivity and
precision values of 100%. This showed the individual class
actual data was correctly classified, in order to attain a
high category, containing the proportional estimate. The
conclusions were evidenced in the average precision and
sensitivity of 90.66 and 89.96%, respectively. Based on
the above estimates, the model demonstrated an excellent
performance, as the average precision was greater, com-
pared to the sensitivity, although the difference was not very
significant.

4. CoONCLUSIONS

Information regarding leaf morphology is very impor-
tant to study. Through leaves, botanists can identify the
characteristics of plants. Leaf venation is a part of the
leaf that can be used as a characteristic of plant species
because it has different patterns. This study identifying
Shorea species, based on the features found in leaf venation.
The features in leaf venation were successfully extracted,
namely: features angle, distance, length, straightness, scale
projection, different angle, length ratio, total skeleton, total
branching point, total ending point, area, branching point
density, ending point density and vein density. This feature
is used as a dataset to build a classification model using the
random forest classification technique.

The results showed the success of the applied model in
classifying Shorea species, by leaf venation feature. Also,
optimum accuracy was attained at 91.90%, with a cut-off
training and testing data of 90:10, by analyzing 1000 single
trees. Furthermore, extensive sensitivity and precision val-
ues were obtained at 89.95 and 90.66%, respectively. These
results clearly indicated a superior performance model.
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