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Abstract: In recent years, the continued advances of the deep learning as a part of machine learning produces an accuracy which
resembles the people’s performance in processing various challenges of the real world. U-Net, as convolutional neural network
(CNN), is one of the deep learning architectures that have been utilized to perform segmentation in several applications. The
flexible design of the U-Net, utilizing the data augmentation approach, has been contributed in the achievement of successful
predictive results for different image sizes particularly with training few datasets implementing efficient computations. However,
the accuracy of one application may need adding additional improvement on the basic U-Net, due to the encoding and decoding
processes, which causes some information loss. Another challenge is that the training and testing of a large amount of labeled
data is a very computation-intensive process which needs to be minimized. Therefore, this review aims to describe the basic
building blocks of 2D U-Net architecture, addressing its challenges and then it explains the most important cooperation issue between
software and hardware. Finally it introduces important conclusions with considerable remarks that may help in selecting a suitable model.
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1. INTRODUCTION

The adoption of computer vision systems to interpret,
analyze, segment and visualize pixels information in a
specific application is extremely important. It requires in-
telligent technologies that are able to adapt with many
variables, such as the type of task and environmental
conditions for data collection. Some of the deep learning
segmentation algorithms are fully convolutional network
(FCN)[1], SegNet[2], DeepLabv3[3], but the most popular
one is the U-Net which was designed by Ronneberger
et al. [4] to segment the biomedical images. U-Net and
its variants have been helped in reducing the amount
of time required by the experts in numerous medical
diagnoses in diseases like liver[5], cardiac[6,7], lung[8],
brain[9,10,11,12,13,14,15,16], retina[17,18,19,20]. In addi-
tion to that, it became the successful component for other
research tasks, such as robotic vision in surgery to seg-
ment surgical tool[21,22,23], remote sensing [24,25,26,27],
detecting the markings of the road lanes to support au-
tonomous driving [28] etc.

U-Net is an extension of a fully convolutional network
(FCN) which includes large feature channels in the up
sampling section helping the designed network to transfer
context data to layers of higher resolution. Another modifi-
cation is to use a stack of convolutional layers rather than

dense layers. The network of U-Net learns the input images
in end-to-end and pixel-to-pixel way through fusing three
specific functional components: encoder, decoder, short and
long connections generating a Ushaped structure as illus-
trated in a figure (1). The encoder pathway is the same as
in the traditional convolutional network which is composed
of repeated blocks. Every block consists of implementing
two alternative 3x3 unpadded convolutions and a rectified
linear unit (ReLU), and then passes the results to a down
sampling layer applying a max pooling operation of a 2×2
size with a stride equils to 2. Through every down sampling
level of the encoder, the spatial information is divided by
two while the number of feature channels is doubled by two.
On the contrary, approximation symmetric decoder path is a
repeated series of up sampling level where each one divides
the number of feature channels by two and doubles the
spatial information by two. The decoder incorporates the
operation of both of the features and spatial information via
a 2x2 up-convolution then the result is concatenated with
cropped features from the corresponding encoder layers,
then passes the outcome to two alternative 3x3 convolutions
and ReLU. The last layer employs a sigmoid activation
function. Finally, each one of 64-component feature vector
is mapped to the desired number of classes using a 1x1 con-
volution layer. The final network includes 23 convolutional
layers [4].
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Figure 1. 2D U-Net architecture

Although the U-Net architecture gives a good gener-
alization performance and an accepted training time when
executed over GPU device [4], many researchers have noted
that it lacks some aspects for example, how the differ-
ent computations complexity influence on the performance
accuracy as well as which component is related to the
run time. So to overcome that, they suggested various
extensions as in references [5-64]. For both of training and
testing phases they exploited software optimization with
the development of processor’s device technologies such
as GPU[5,9,29], FPGA[25,30], Google TPU[31,32], and
mobile as embedded systems[33].

In the review proposed in this paper, the performance
parameters of U-Net with the fundamental components are
explained. Also, suitable suggestions for resolving variant
challenges are demonstrated.

The main contribution of this review is as follows:
1. State the main challenges and computations intensive
affecting the U-Net performance.
2. Explore the most important developments and updates
that have been made to make the 2D U-Net architecture
more efficient.

In addition to this introduction, this review paper in-
cludes four other sections. Section 2 presents the main
challenges that reflect the performance of the deep learning
models(U-Net) architecture. Section 3 discusses the per-
formance improvements through the cooperation of one
parameter or more of image datasets attributes, model
parameters, hyper parameters and implementation stack.

Section 4 summarizes the major improvements of the UNet.
Finally, some conclusions are made in section 5.

2. CHALLENGES OF DEEP LEARNING MODELS

This section addresses the major challenges imposed by
the performance which restrict the implementation of an
application using the deep learning models (such as baseline
2D U-Net).

• Training dataset size: As a general rule, referring
to the large amount of dataset required for training
a deep neural models, consequently depends on the
application in hand.

• Accuracy: The ratio of the number of correctly pre-
dicted samples to the total number of input samples
is expressed as a percentage. The high accuracy, the
better the performance.

• FLOPs: Number of floating point operations required
by an algorithm/model.

• Memory size limitation: The available memory is
inadequate storage space for handling the amount of
available datasets.

• Time: Any deep learning model contains training
and testing time. In both, the shorter the time is
the better performance especially for real time ap-
plications.Training time is the amount of time taken
to train the model on datasets to obtain specific
accuracy during the training process. Testing time is
the amount of time taken when applying one batch
dataset on the trained model to produce predication
result for the real time applications.

• Latency: It is the time interval between the beginning
and end of calculation.

• Throughput: The number of input or the size of data
which can be processed for every unit time.

• Power consumption: The energy consumed per unit
time.

• Energy efficiency: The energy consumed for every
data point.

• Model compression: It is the reduction of one or
more of the followings: in number of filters, number
of parameters, number of bits, number of convolu-
tional layers and network depth.

• Object appearance: Objects may vary in location,
shape, size, and noise level.

• Class imbalance: Refers to the irregular distribution
of classes within the training dataset.

• Overfitting: A state that appears when the training
dataset has limited parameters which leads to mem-
orizing the noise instead of learning the data, so
the error will be high and the performance will be
decreased.

• Generalization: The ability of using the architecture
with new data collected from different sources.
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3. AN OVERVIEW OF U-NET AND ITS VARIANTS
ARCHITECTURES

To alleviate U-Net challenges and problems, many vari-
ants with a lot of ideas have been proposed for enhancing
baseline blocks with different ways as illustrated in fig-
ure(2).

Figure 2. U-Net and some of its evolution variants architectures

Cicek et al. [34] presented 3D U-Net network version to
segment volumetric images from some annotations. Semi-
automated and fully-automatically are two segmentation
setups that are applied on the kidney which has complex and
high variable 3D structure. In a Semi-automated, the user
annotating a number of slices in each volume required to be
segmented, then the model trains on these few annotations,
providing a 3D dense segmentation, while in the Fully-
automated; The model is trained with annotated-slices from
a representative training group and can applied on new
annotated volumes. Dubost et al.[35] proposed a GP-Unet to
deal with global image-level labels. It trains a 3D regression
network with merging a FCN with global pooling. The
network employed in brain MRI for detecting enlarged
perivascular spaces, achieving high sensitivity. Li et al.
[36] tackled the issues of 2D-convolutions that disregard
the 3D contexts and the 3D-convolutions that requires high
computational cost. They suggested a new hybrid densely
connected UNet, named H-DenseUNet. It is used for ex-
tracting both of intra-slice and inter-slice features, which are
connected and improved by utilizing a hybrid feature fusion
layer. The designed model is trained in end-to-end and eval-
uated to segment Liver and Tumor datasets. Zhou et al. [37]
introduced an efficient nested UNet (UNet++) to segment
medical images. UNet++ exploits the redesigning of skip-
connections to reduce Disparity between feature maps for
the sub-blocks of contacting and expanding. Additionally,

it utilized the deep supervision to improved the accuracy
of segmentation. Zhang et al. [38] proposed a Multi-scale
Dense U-Net (MDU-Net) based on the quantization. It
enhances the information flow in the encoder, decoder and
between them through multi-scale dense pathways. Further-
more, it decreases the overfitting in the architecture. Jin et
al. [39] extracted pixel-to-pixel 3D structures using a 3D
hybrid residual attention-aware(RAUNet), where attention
models adaptively focus on particular parts and the residual
to allow for deepest network as well as resolving gradient
vanishing problem, while U-Net takes multi-scale attention
information then combines low level features with high-
level features. Good results achieved when the suggested
model is tested on datasets of 3DIRCADb and MICCAI
2017 of segmenting Liver Tumor. Also, when was applied
on the BraTS2018 and BraTS2017 to segment brain tumor.
Dolz et al. [10] proposed new Dense Multi-path U-Net
for multimodality segmentation. It has three main ways
including, first each modality processed in a specific path
and provides better data utilization, second the network is
connected densely to help model which allows model to
train the scale in which the modalities must be tackled and
merged and finally, the inception modules were extended
with dilated convolutions to tackle the variability in size.
On the other hand, it handled volumes as series of 2D
slides leading to discard 3D context. Cl‘erigues et al.[11]
proposed Stroke U-Net (SUNet) to segment stroke lesion
employing multimodal images, another benefit for SUNet,
it as solves the problem of class imbalance utilizing tiny
patches with balanced training patch sampling technieque
and the dynamically weighted loss function. Zhuang [17]
proposed LADDERNET. It is including a chain of several
U-Nets and the skip-connections helps LADDERNET in
including several paths to passing the information. Another
invention is modifying the residual modules with sharing
the same weights between two convolutional layers within
one module, which produces a reduction in the number of
parameters. The proposed method was tested to segment
blood vessel in retinal images. Lachinov et al. [12] intro-
duced Cascaded UNet to automatically segmenting brain
tumor and handled multimodal MRI inputs while frequently
refining segmentation outputs that results from a prior stage.
Oktay et al. [40] suggested Attention U-Net with new atten-
tion gate (AG) model which focuses on object structures of
changing shape and sizes while maintaining computational
efficiency. Alom et al. [18] suggested a Recurrent U-
Net (RU-Net) and Recurrent Residual U-Net (R2U-Net).
The two architectures have advantages of achieving better
accuracy compared to U-net with same count of parameters
and being suited for deep models. Both models are used
to test three segmentation datasets, including blood vessel,
lung, and skin cancer lesion.Kohl et al. [41] suggested a
probabilistic U-Net for inherent ambiguities. The proposed
segmentation model is a generative and depends on a
merging of a U-Net network and the conditional variational
autoencoder, which is able to efficiently generating an
infinite number of reasonable hypotheses. Hasan et al. [21]
modified the baseline U-Net and called UNetPlus which is
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used for tracking the position of the surgical instruments.
UNetPlus includes a prior trained encoder unit with batch
normalization which accelerates converges. The decoder
unit is re-built by using interpolation of type nearest-
neighbor (NN) instead of the transposed convolution. Li et
al.[42] proposed a probabilistic-map-guided bi-directional
recurrent UNet referred to as PBR-UNet, which solves
the loss of spatial data in 2D ways and 3D computation-
intensive cost. PBRUNet merges intra-slice data with the
probabilistic adjacent maps to construct the local 3D hybrid
regularization scheme, followed by a bi-directional recur-
rent unit optimization.

To solve the resulting information losses of series pool-
ing and stride convolution in U-Net architecture, Gu et al.
[43] proposed context encoder network (CE-Net) for captur-
ing further high level information while maintaining spatial
information for 2D medical images segmentation. CE-
Net has three blocks, including a feature-encoder block, a
context-extractor and a feature- decoder block. The network
was applied on various tasks,including detection of retinal
vessel ,segmenting layer of retinal OCT, segmenting of optic
disc, segmenting of cell contour, lung segmentation. Gao et
al. [44] suggested Graph U-Net for the issue of how to
represent the learning of graph data. Graph U-Net includes
graph pooling (gPool) and graph unpooling (gUnpool) and
achieved better results, as they stated, for both of graph
and node classification applications. Yu et al. [45] designed
new multi-scale Spatial-Temporal U-Net called ST-UNet
for tasks modeling of the graph-structured time series,
combining multi-granularity graph convolution(ST-Pool and
STUnpool) with dilated recurrent skip path connections via
the U-Net design. Additionally, ST-UNet provides the trade-
off between capacity and efficiency with regard to flexibility.
Li et al. [19] evolved a connection sensitive attention UNet
referred to as CSAU to accurately segment retinal vessel. It
enhances the accuracy at pixel level as well as the interest
of topology structures through both of connection sensitive
loss with attention gate. Mehta and Valloli [46] proposed
W-Net to count the crowd and estimate Density map. W-
Net contains a reinforcement decoding section which helps
the model to converge faster and also generates density
maps with high value of SSIM index. Wang et al. [47]
proposed new sclera segmentation architecture referred to
as ScleraSegNet. It is built from enhanced U-Net model
with adding attention blocks between the encoding unit
and the decoding unit at the final level of U-Net to learn
more discriminative features. Jiang et al. [48] designed a
cascaded deployment of an Attention Hybrid Connection
Network (AHCNet) to segment liver tumor in CT images.
It merges the soft with hard attention technique and short
and long connections to realize effective feature extrac-
tion and fusion. Kohl et al. [49] proposed a Hierarchical
Probabilistic U-Net called as HPU-Net to model the Multi-
Scale Ambiguities. It integrates with a conditional varia-
tional auto-encoder (cVAE) to provide the flexibility for
learning the complicate structured distributions via different
scales. Jin et al. [20] suggested Deformable UNet termed

DUNet which is used for extracting context information and
enabling precise position by integrating both of low-level
feature maps and high-level ones. DUNet uses deformable
convolution module instead of UNet’s convolution layers,
DUNet is capable of capturing the retinal blood vessels
that appears at different scales and shapes. For training
and testing the model,DRIVE, CHAS E DB1 DB1 and
STARE are employed. Results illustrated the segmentation
of retinal vessel using DUNet outperforms with an accuracy
of 0.9697/0.9724/0.9722 and 0.9856/0.9863/0.9868 as
AUC score. Moradi et al. [6] introduced new multi-feature
pyramid U-net architecture called (MFP-Unet) to segment
LV (Left Ventricle) in the echocardiography images. MFP-
Unet is based on merging the pyramid of feature and the
dilated convolutional filters and concatenating the feature
maps in all decoder’s levels. Ke et al. [50] proposed multi-
task U-net with lazy labels, which is applied to perform the
segmentation on microscopy images. The model provides
accurate results and is applicable on the images that have
poor contrast at the boundaries of object. Ni et al. [22]
processed specular reflection and class imbalance prob-
lems by proposing new Residual Attention U-Net named
RAUNet architecture used for segmenting cataract surgical
tool. Cata7 dataset was built to evaluate the proposed
model, the resulting performance is 97.71% of a mean
Dice and the mean IOU is 95.62%. Yan et al. [7] pro-
posed U-Net generative adversarial network term Unet-
GAN as a generic framework to handle gathering images
from different sources and vendors. Cardiac cine MRI from
three main vendors (Philips, GE, and Siemens) is used as
an example, showing a significant in enhancement for a
segmentation task. Diakogiannis et al. [24] introduced a
framework includes new learning architecture ResUNet-a
with Tanimoto as new dice loss to label highly resolution
images. ResUNet-a employs a baseline U-Net integrated
with a connections of residual type, atrous convolutions, and
pyramid scene parsing as pooling. The proposed framework
was evaluated to segment the dataset of ISPRS 2D Potsdam.
Results are a competitive outperforms with 92.9% as an
average F1 score over all classes of a best model. Zhou et
al. [8] introduced a U-Net incorporating attention technique.
The proposed network is used for segmenting a dataset
of a CT image of a COVID-19, resulting Dice coefficient
of 83.1%, Sensitivity of, 86.7% and 99.3% as Specificity.
Furthermore the segmentation time of one CT slice is 0.29
sec. Qin et al. [51] proposed U2-Net for silent objects detec-
tion. The designed model with using ReSidual U-modules
helps in capturing more information from various scales in
addition to rising the depth of the designed network without
leading to increase the computation cost. Two models are
instantiated, including a large model U2-Net with (176.3
MB and 30 FPS) and a small model U2-Net+ with (4.7 MB,
40 FPS). Huang et al. [52] combined multi-scales features
using UNET 3+. This method is useful for the organs which
may appear at different scales. Additionally, it enhances the
efficiency of the computation due to ability of decreasing
the number network parameters. The classification guided
block with a hybrid loss function produced an accurate
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locatization and boundary improved segmentation map. The
evalutations on datasets of a liver and a spleen show that
the model of UNet 3+ outperforms over related works.

Despite of most exiting U-Net researches are striv-
ing to have good accuracy and minimum loss especially
with medical applications, however, the selection of train-
ing model configuration was imposed by the concerts of
simplicity and minimum running time. Commonly, data
parallelism and model parallelism approaches are applied
to perform parallel training. Data parallelism iterates the
network model and operates a divided batch on multiple
devices. This type cannot minimize model’s memory for
each device or handle the memory issue for big models. To
resolve this, Model parallelism divides a network model to
multiple sections. However, it needs good design to reduce
overheads. Therefore, Oyama et al. [5] introduced scalable
hybrid-parallel algorithm to train big size 3D U-Net model.
It handles the challenges of computation, memory, and I/O
achieving a speedup of 1.42 when employing 512 GPUs in
compared with 256 GPUs.

Currently, there are other attempts to reduce the com-
plexity of U-Net variants of huge number of parameters
and operations through achieving trade-off between various
parameters.

Venkataramani et al. [53] decreased the inherent com-
plexity of model through training with file sharing. The
method find a small group of filters with merging coeffi-
cients to construct filter in each one of convolutional layer
during training time, leading to reduce parameter number
required to be trained. The method was considered the
segmentation problem of 3D lung-nodule in a CT images,
producing good experimental results at few number of
training data. Hu et al. [54] proposed 2.5D segmentation
to estimate cancer’s area in MRI images. 2D patches are
produced from volumetric MRI images at three orthogonal
orientations. The 2.5D network has realized better perfor-
mance than the basic 2D U-net. Although the accuracy of
2.5D segmentation is less than 3D U-net model, it superiors
over 3D U-net with computation efficiency. Imai et al. [14]
dealt with the limitation of GPU memory, where 3D U-
Net was trained with full resolution images of size 192 ×
192 × 192 voxels in the dataset of brain tumor. The output
result, included a reduction of 17.1% in communication
overhead which is the most important issue. Also, the mean
Dice coefficient is improved, by a 4.48% to detect a total
tumor sub region and a 5.32 % for detecting tumor core
sub region compared to a patch method at patches of size
of 128 × 128 × 128 voxels. The overall acceleration time
of the training was 3.53x. Guo et al. [55] proposed stack
dense U-Nets for localizing facial landmark in the images.
The designed model has a channel aggregation module and
a scale aggregation network structure to enhance model’s
capacity without increasing the size of models. Another
benefit was exploiting the deformable convolution and co-
herent loss to make the invariant with random face input

images. Heinrich et al. [33] suggested new approach called
Ternary Net to accelerate model inference.It uses activations
and trainable weights, also it employs sparse and binary
kernels as ternary convolutions instead of floating point
matrix multiplications. Ternary Net reported 10-fold reduc-
tion in memory needs and a speedup of 10x. Mangalam
and Salzamann [56] studied the employing of knowledge
distillation for compressing U-Net. This was done by mod-
ifying the U-net model to include batch normalization as
well as a class re-weighting. The resulted model is used
to segment a biomedical image, achieving a reduction of
1000x with accuracy closer to baseline UNet. Liu et al.
[30] optimized U-Net segmentation as CNN algorithm by
sharing the memory and exploration of the design space
to made the parallelism parameters optimal and quantizing
the data. The model is applied on Cityscapes Dataset of
real time scene segmentation and evaluated on Zynq ZC706
kit. The results are 107 GOPS and 0.12 GOPS/DSP at a
quantization of 16-bit, which supporting upto 17 fps for
an image inputs of size of 512x512 and with a 9.6W
power consumption. Isunuri and Kakarla [9] proposed an
optimized U-Net (OU-Net) with an adaptive thresholding.
OU-Net employes one convolution layer every level, this
led to reduce the cost of computation and produces a fast
segmentation for the brain. Brügger et al. [13] proposed
a partially reversible U-Net architecture which decreases
memory requirements significantly for volumetric images.
The proposed model is eliminates the requirement for store
activations in the backpropagation. The memory savings is
demonstrated on the dataset of BraTS challenge. Zhou and
Yang [23] focused on the effect of normalization in the
training UNet model to use the semantic segmentation in
2D biomedical field. Four types of normalization, including
Batch Normalization (BN), Instance Normalization (IN),
Layer Normalization (LN), and Group Normalization (GN)
are compared and the validated on the Right Ventricle (RV),
Left Ventricle (LV) and aorta, datasets. The reported results
demonstrated IN or a GN with high group number provides
higher accuracy. Liu and Luk [25] proposed a uniform
architecture as hardware accelerator to achieve real time RSI
segmentation. The developed architecture is implementing
both of convolution and de-convolution efficiently and is
optimized using different parallelism levels and layer fusion.
The architecture is implemented on Intel’s Arria 10 plat-
form, producing low latency of 17.4 ms and high throughput
of 1578 GOPS. Bahl et al [26] proposed lightweight,
adaptable, and high-accuracy architecture, which is suitable
to work on low power bounded devices. The proposed
solution is tested to perform binary segmentation on remote
sensing images, especially to extract clouds and trees from
the datasets of RGB satellite images. Peng et al. [27]
proposed new end-to-end way built from enhanced UNet++
with a deep supervision (DS) technique used for Change
Detection (CD) in a datasets of (VHR) satellite images.
Wang et al. [57] presented new recurrent U-Net architecture
which maintains the compactness of the baseline U-Net and
can work in environments with the training data volume
and computational power being bounded. The architecture
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shows its effectiveness in segmenting various applications,
including hand, retina vessel, and road. AskariHemmat et
al. [58] introduced quantization model to decrease memory
consumption while preserving accuracy. The model with
a 4 bits and 6 bits for both of weight and activations
respectively is applied to segment three datasets of EM,
GM and NIH, achieving a reduction of 8 fold in memory
needs at loosing 2:09% , 0:57% , and 2:21%, in dice score,
for NIH, GM, and EM. Chiley et al. [59] trained the U-
Net neural models by using a robust normalizer named
Online normalization to segment images. Pati et al. [29]
studied the effect of inference accelerators on the choice of
hardware. Various configurations are applied to determine
the suitable hardware for processing the images model in
healthcare field constraints. For the medical images with a
high resolution, Hou et al. [31] used spatial partitioning
to deal with memory limitations. The method is helped
in training a 3D U-Net on a CT scans of a resolution of
512×512×512, without resulting additional computational
overhead. Civit et al. [32] studied the generalization of UNet
architectures to resolve the image segmentation issue in the
cloud. The generalized model is used for segmenting the
Optic Disc and Cup that may be employed as application in
glaucoma detection. (RIM-One V3,DRISHTI and DRIONS)
are three public image datasets which are combined to
obtain a good performance for independent image acqui-
sitions. Ojika et al. [15] analyzed multimodal brain tumor
and used a 3D U-Net model to segment a 3D images. Also,
they handled the training of memory intensive models by
employing a server system with large memory size of 1TB.
Niepceron et al. [16] proposed fully-automatic brain tumor
segmentation implemented with compressed model and low
cost GPU embedded computing such as Nvidia Jetson AGX
Xavier (JAX). The compression model coupled depthwise
separable as convolution with Independent-Component. On
the other hand, the characteristics of the JAX are power
consuming, weight as well as it contains a modular scalable
architecture appropriate for real time tasks. However, for
deep learning applications memory and computation costs
are necessary to be low for limited resources devices. For
instance, Beheshti and Johnsson [60] proposed an efficient
energy and memory architecture named Squeeze U-Net
which is suitable for real time mobile utilization. The
designed model is a combination of SqueezeNet and U-
Net, where the design fire module of SqueezeNet is used
in both of the encoder and decoder U-Net’s paths. It is
evaluated on a datasets of CamVid road Scenes, the results
show it preserved the accuracy and it is faster than U-Net
by 17% and 52% in both inference and training using GPU.
Further, it realized a reduction of 3.2X in MACs and 12X
in model size to 32MB. Gadosey et al. [61] introduced
Stripped-Down UNet architecture, which is named SD-
UNet, as a very fast, small with efficient computation used
for devices that have bounded computational resources.
The SD-UNet network employed layers with depthwise
separable convolution but it degraded accuracy and to solve
this a combination of weight standardization with group
normalization is used. SD-UNet segments the datasets of

neuronal structures(ISBI) challenge and brain tumor chal-
lenge (MSD), achieving comparable results. Compared with
baseline U-Net, SD-UNet has three main benefits including
a reduction of 23x in model size, a fewer parameters less
than by 8x, and 8x in FLOPs. Vaze et al. [62] handled the
issue of real time ultrasound implementation on CPUs. The
proposed method adapting U-Net with thin CNN, separa-
ble convolution layers, and knowledge distillation as three
efficient train techniques used to reduce the needs for large
memory space and accelerates the inference running on the
CPUs while preserving accuracy. The proposed network
segments nerve in the 2D ultrasound images producing
a speed up of 9x over baseline U-Net on a CPU (at a
processing rate of 30 fps) and a reduction space of 420x in
memory. Joardar et al. [63] merged the benefit of ReRAM
and GPU, resulting GRAMARCH architecture with high
features, such as accelerating both of a matrix and vector
operations that are used in the training, minimize the total
communication when mapping the layers of deep neural
network (DNN) on it and building 3D NoC to move the
data with high throughput. Furthermore, it is able to execute
any layer in the DNN and it handles loss accuracy problem
that results from low precision calculations using ReRAMs.

Figure (3) shows how U-Net architecture was extended
to new types via linking several processes and mathe-
matic operations which are described as major four sub-
sections: image datasets attributes, model parameters, hyper
parameters and implementation stack, where every section
performs a specific function.

Figure 3. Performance cooperation parameters of U-Net
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A. Image datasets attributes

Images are examples of training samples and can be
represented via a 2D matrix or m-D matrix as collection of
many features. Ronneberger et al. [4] employed 2D image
ignoring the spatial data for the third dimension z-axis.
Thus Cicek et al. [34] attempted to enhance the accuracy
with increasing spatial information using extended dense
3D U-Net architecture that only needs sparse annotated
volumetric images for learning but it consumes more time
and computations cost. Hu et al. [54] suggested 2.5D U-
Net which achieves tradeoff between the computations cost
and the accuracy through converting 3D data to 2D patches
taken at different depth, width and height directions and
training each with separate U-Net model. It then fuses the
result by calculating the average of the three prediction
probability maps. Li et al. [36] linked 2D Dense UNet
network for intra-slice features with 3D network for inter-
slice features via a hybrid feature fusion (HFF) and the
test time relies on the total number of slices. Li et al.
[42] handled spatial loss by fusing intra-slice information
and inter-slice probabilistic then it the outcome passes to a
bidirectional recurrent network. Oyama et al. [5] introduced
strong scalable hybrid-parallel algorithms to apply training
pipeline on a large scale 3D U-Net based CNN, the train
pipeline covers the computations and the I/O. Hybrid-
parallel algorithm is based on adding spatial parallelism
with the standard data parallelism where one-sample in the
spatial domain is partitioned for achieving strong scaling
which is superiors over the mini-batch dimension with
greater aggregated memory capacity.

The Images color is another important factor which
controls the number of channels. For instance both of
black-white and gray images utilize one channel to produce
one feature map, in contrast RGB uses three channels (red,
green and blue color) when yielding one feature map.
The color of the image determines the depth of memory
(number of bits), black-white represents each pixel by
one bit while gray images represent one pixel by 8-bit
and RGB requires 24-bit, 8-bit for each of red, green and
blue color. As memory depth becomes high as the training
time increases. To enhance training accuracy, images may
need some preprocessing using different operations such
as resizing, cropping and pixel normalization [61]. Data
augmentation is a main preprocessing for increasing the
number of dataset using some geometric transformation.
Ronneberger et al. [4] were the first to use robust and
invariance data augmentation with elastic deformation.
Niepceron et al. [16] used elastic transformation, flipping,
Gaussian noise or shifting. Imai et al. [14] have been
augment the size of the data with applying a random
flip of the axis and permutation in different directions
implemented in parallel to a void CPU bottleneck so it
does not add extra overheads.Gadosey et al. [61] exploited
augmentation strategies with height, width shift range,
zoom range and horizontal flip. The data augmentation
helps in preventing the overfitting problem, further

realizes invariant model and generalization capability [54,
27]. Other attempts for enhancing data labels, Ke et al
[50] overcame the problem of needing pixel-intensive
annotations by proposing a multi-tasking U-net to perform
segmentation with lazy labels. Dubost et al. [35] utilized
individual global label for one image at the training and
was able to determine small structures location. Data
splitting ratio determines the ratio of training samples and
may be splited randomly as in [8] or using other types.
Despite of a significant number of training examples with
labels is a key to success for the training of DNN models
and getting better accuracy but it is constrained by memory
size. Ronneberger et al. [4] employed overlap-tiling strategy
for the large size of image. Imai et al. [14] extent the size
of effective GPU memory by exploiting data-swap with
CPU-GPU communication to trains 3D medical images
instead of partitioning a big image into small patches that
may influence segment accuracy when the target objects
spans to several patches. Hou et al. [31] implemented
spatial partitioning with performing halo exchange in
tensorflow-TPU, to Mesh-Tensor Flow. The Halo exchange
process means exchange data as patch margins between
GPU/TPU devices prior to convolution operations.

B. Model parameters

Different model parameters are tackled individually in
this article.

1) Model size

The selection of one approach is depending on the
network structure. The continued growth in model size will
make training large models difficult because it is hard to
fit training with the limits of memory of one-GPU. The
number of parameters is an essence factor to reflect the
topology ability of designed model, thus Zhang et al. [38],
compressed the parameters by adopting Incremental Quan-
tization (INQ) as a regularization function faces potential
overfitting as huge dense. Vaze et al. [62] developed thin U-
Net having little feature channels at each layer, decreasing
model size and producing fast inference. Mangalam and
Salzamann [56] presented a modified distillation strategy,
achieving a compressed Unet architecture with upto 1000x
while maintaining an accuracy approaching the baseline U-
net. Venkataramani et al. [53] suggested a way depending on
finding a small group of filters and the merging parameters
in order to derive each filter in every convolutional layer at
the same training time, thus decreasing the required number
of parameters that will be trained with and assist in avoid
overfitting as small annotated data being available. Zhou et
al. [37] used deep supervision to allow model pruning and
enhancement. Thus, a stronger pruning leads to a further
reduction in pridiction time but at the cost of significantly
degraded accuracy. Qin et al. [51] increased the depth for
the entire structure without rising of computational cost
due to the pooling processes employed in the RSU-blocks.
Isunuri and Kakarla [9] replaced the two convolution layers
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by one layer. Cl‘erigues et al. [11] used four resolution
levels.

2) Convolution operator

A convolution is the essence linear operator in the
convolutional layer which extracts the important features of
input data channels by repeated sliding the learnable filter of
stride number over an input data then applying element-wise
multiplication-accumulation outcome with corresponding
window of input data and generate neurons that construct
an output feature maps. Cicek et al. [34] extended 2D
convolution to 3D convolution. To increase several receptive
fields, Dolz et al. [10] exploited dilated convolution with
different scales to tackle the variability in sizes. Diakogian-
nis et al. [24] utilized several parallel atrous convolutions
expanding receptive field using different scale rate which
assist in learning more context. Gu et al. [43] adapted atrous
convolution to overcome the result loss from pool layer. Guo
et al. [55] exploited deformable convolution for improving
transformation-invariant feature learning. Niepceron et al.
[16] utilized the depth wise separable convolution that rely
on factorizing standard convolutions to a deep convolution
then passes output to a standard convolution which has a
kernel of 1 × 1 named point wise convolution. This type
helped in compressing the model in term of the number
of learnable parameters and training time. Beheshti and
Johnsson [60] replaced the pooling by convolutions with
stride 2 to perform down sampling, increasing the network
expressiveness.

3) Activation function

Activation functions are nonlinear layer which apply
mathematical operations on the linear output of the previous
layer producing a nonlinear output for the next layer. These
layers are typically used after each convolution layer or
fully connected layer. There are various types of activa-
tion functions, for instance, Ronneberger et al. [4] used
rectified linear unit abbreviated as ReLU. Cl‘erigues et al.
[11] employed parametric ReLU(PReLU). Oyama et al. [5]
employed leaky ReLU. Peng et al. [27] adopted scaled
exponential linear units termed SeLUs that permits stronger
regularization schemes and makes learning very robust.
Heinrich et al. [33] utilized the parameterized ternary hyper-
bolic tangent. AskariHemmat et al. [58] achieved a flexible
balance between accuracy and memory aspects by using
fixed point quantization for both weights and activations,
instead of floating point, which reduces the amount of logic
required for computational block implementation and leads
to reduce the overall system power consumption. As a result
the technique is appropriate for both of CPU and GPU
hardware.

4) Pooling operator

To reduce the dimension size of the feature maps
from the previous layer, pooling operator with some stride
number is used. Pooling helps in realizing variance property

and reducing computation complexity. Cicek et al. [34]
utilized 3D max pool. Average pooling is used in reference
number[36]. The global pooling layer is inserted prior the
last layer at training phase [35]. Gao et al. [44] used gpool
for graphic data. Yu et al. [45] employ ST-Pool for spatio-
temporal graph structure.

5) Normalization layers

Batch normalization (BN) considered as the first sug-
gested algorithm to solve the interval covariate shift. It
employs the calculated mean and variance within a mini-
batch of data to normalize its features within activation.
BN is used for training very deep neural networks to
standardize the outputs of the previous layer to zero mean
and unit variance. This will make the learning process
more stable with faster convergence in minimum number
of training epochs [23]. In reference[34] batch normal-
ization is inserted before every ReLU. Zhou and Yang
[23] compared between four normalization ways BN,IN,LN,
and GN. In the IN normalization both of the mean and
variance are computed along channel and batch. In the LN
normalization both of the mean and variance are computed
along batch. In the GN normalization both of the mean
and variance are computed along batch and partitioned
channel. Inserting normalization will increase the runtime.
Generally, BN is faster than IN, LN, and GN. GN with large
group number and IN achieved better accuracy than other
methods. To solve BN theoretical constraints, Chiley et al.
[59] introduced online normalization which offers training
without batches leading to reduced activation memory size.
It processes with automatic differentiation by adding sta-
tistical normalization as a primitive. Online Normalization
realizes the top Jaccard similarity coefficient compared to
none, BN, LN normalization types. Gadosey[61] applied a
weight standardization (WS) which standardizes gradients
through backpropagation and applied on the input for the
convolution layer counter to BN and GN that are applied
either on the activations or the output layer. Further, the
researchers illustrated through experiments a fusing of WS
and GN realizes BN-comparable performance at large batch
sizes. Niepceron et al. [16] employed GN help in training
models on smaller batches, accelerating training and avoid-
ing memory restrictions.

6) Dropout layer

Dropout indicates neglecting units such as neurons
through the training stage of a particular group of neurons
that is selected at random. It is a regularization mechanism
which blocks neural network models from overfitting as
in [4]. AskariHemmat et al. [58] explained that when this
mechanism is used in conjunction with quantification, the
accuracy drops much.

7) Deconvolution operator

Deconvolution and un pooling are revers operations
of the convolution and they are necessary to restore the
image space from the trained feature maps. Cicek et al.
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[34] extended 2D deconvolution to 3D deconvolution, but
it is computationally costly and demands acceleration. Liu
et al. [30] designed hardware to accelerate deconvolution
algorithms using FPGA compared with using CPU and GPU
software implementations. The FPGA realized speedup of
4.14x to 9.48x over fully utilized 8-core CPU also with
much less power consumption. On the other hand, FPGA
consumes less power and better energy efficiency than a
GPU but takes more times due to fewer numbers of DSPs
(900). Hasan et al. [21] employed up- sampling operation
relying on nearest-neighbor (NN) instead of transposed
convolution. Niepceron et al.[16] used up sampling layer
with bilinear interpolation as an alternative to transposed
convolution.

8) Connections for Multi-scale transmission

Multi-scale features fusion and transmission are
influential factor in segmentation accuracy, Ronneberger
et al. [4] employed plain skip-connection to copy the
context data from the encoder blocks to the decoder
blocks at the same level. Zhou et al. [37] attempted an
improvement by introducing UN++ which is nested and
dense skip-connection and not just between the encoder
and decoder, but still it is lacking enough information from
the full scales. Then Peng et al. [27] enhanced it using
multiple side-output fusion (MSOF) as deep supervision
followed by a sigmoid function in order to create the final
change map (CM). Huang et al. [52] proposed full scale
skip-connections that could find the feature maps of one
decoder layer by copying the information from both of
the smaller and same inter-connection at the encoder unit
as well as from intra-connection among the large scales
at the decoder. This approach could captures fine-grained
details as well as coarse-grained semantics from full scales
achieving better accurate position-aware with few number
of parameters. Oktay et al. [40] added attention gates (AGs)
to the plain skip connection to help in detecting salient
features, also enabled detecting target with different shapes
and sizes. Bahl et al [26] proposed CUNet then extended
to C-UNet++ which has less number of parameters, both
does not contain skip-connection due to no introduction
of more improvement in performance metrics when used
as cloud segmentation . Li et al. [36], densely connected
the layers within micro block to maximize the information
flow. Zhang et al. [38], utilized multi-scales dense links
for U-Net encoder unit, decoder unit and cross them
to enhance the flow of information. Dolz et al. [10]
divided the encoding path into N streams, every input for
one image modality, then fuses with hyper-dense links
through the same and between several paths. Guo et al.
[55] employed stack dense U-Nets with scale aggregation
network topology structure with a channel aggregation
building. Li et al. [19], improved the accuracy and vessel
boundary, developing a connection sensitive attention UNet
(CSAU) by combining the connection sensitive loss with
the attention gates as well as learns attention weights then
concatenating it at the output of the network. Mehta and

Valloli [46] proposed a reinforcement decoding branch to
speed up the network convergence as well as assisting the
network to predict density maps and with high SSIM index.

C. Hyper parameters

To deal with one application, five main parameters are
necessary to be chosen which are: weight initializations,
learning rate, batch sizes, optimization approaches and loss
function.An appropirate initialization for the weights is
the main aspect, else some portions of the neural network
might results in excessive activations and the others never
participate. Ideally, the initial weights must be adapted,
so that every feature map within the designed network
possess approximately unit variance. For instance, Gaussian
distribution is used in [4] and glorot normal initialization
is employed in [16,58]. The learning rate is the most
significant hyper parameter which is controlled by how
much variation in the model as a response for the evaluated
error every time of updating model weights. Selecting the
suitable learning rate is a big challenge, where a very
small value may lead to elongate training process that
may be disrupted, while a very large value may lead to
learning a set of suboptimal weights too quickly or an
unstable training process. Batch size is the number of
training samples used per iteration. The large batch will
improve the accuracy estimation of parameter gradients
but at the expense of memory, while the reverse happens
with small batch size [59]. For instance, Niepceron et al.
[16] trained the model in tiny mini-batch with batches of
size equal 2. Optimizers perform an indispensable function
in reducing the loss incurred by the process of network
training as well as in the neural network model during
training. There are various algorithms for optimization such
as stochastic gradient descent (SGD)[4][47], Adam[10],
Adadelta[35], Nesterov-accelerated Adaptive Moment
Estimation (Nadam)[55], Adafactor[31]. Loss layer is
considered the final fully connected layer which describes
the model’s prediction for a single example by calculating
the loss or error between desired and actual outcomes.
A weighted cross-entropy loss function is utilized in
reference[36]. In reference[35], a mean sequare loss
is applied to optimize the weights. Diakogiannis et al.
[24] presented a new dice loss termed Tanimoto which
achieved better convergence, and performs well even in
very unbalanced classes. Niepceron et al. [16] merged two
losses, binary cross-entropy that abbreviation as (BCE)
and dice. Imai et al. [14] used dice loss. Guo et al. [55]
designed a coherent loss to outside transformed data.

D. Implementation stack

The developers have introduced several stacks of an
efficient frameworks and hardware computing to facilitate
and optimize performance of the U-Net learning algorithm.
Each stack has a special structure and gives a different qual-
ity features for one application problem. For instance, Imai
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et al. [14] used a stack implementation of TensorFlow1.8
framework with a feature TensorFlow Large Model Support
(TFLMS) dictated to perform data swapping as a solution of
GPU limitation memory while offering parameters to reduce
the communication overhead. The TensorFlow1.8 support
Keras APIs running on RHEL 7.3 as an operating system
(OS), then both of CUDA9.1, and cuDNN7.0.2 are used as
driver and library. The implementation was done on IBM®
Power Systems™ S822LC that includes two POWER 8-
CPU (ten cores operates at 3.54 GHz) and a CPU memory
with 512 GB. The system includes four NVIDIA® Tesla®
P100s, each one with GPU memory of 16-GB. Both of
CPU and GPU are integrated using NVLink 1.0 with a
bidirectional bandwidth of 80 GB/sec.

The most frameworks used with U-Net and its variants
are Caffe[4][47], Theano[35], PyTorch[10] and MXNet[55].
Hou et al. [31] have participated in a new Mesh-TensorFlow
based framework that is able to handle images of various
volumes with a model parallelism in different mappings.
In general, frameworks supports various APIs of several
languages such as Python[35], C++[30], Verilog [30]
and others. Pati et al. [29] compared three inference
accelerators as OpenVINO (CPU), TensorRT (GPU),
and WinML (CPU, GPU), the results show that WinML
should be employed. Variant compilers operate with
frameworks such as cu/DNN. Ojika et al. [15] achieved a
3.4x speedup using TensorFlow with deep neural network
library (DNNL) compared to stock TensorFlow without
DNNL at similar training batch size. The frameworks are
executed over one of the operating systems like Linux,
Ubuntu 14.04 [54] and windows [29]. Pati et al. [29]
achieved faster inference speed over Linux compared to
window. However, the configuration of the frameworks
dictates how the workload is distributed on the available
hardware processing units via driver and interconnection
technologies like AXILite Bus [30]. On the other hand,
the choice of a suitable processor is one way to evaluate
the influence of hardware on performance baseline U-Net
models at training and inference phases. Main hardware
platform types cover CPUs [9], GPUs [5,9,29], TPUs
[31,32], FPGAs [25,30], servers [15] and heterogeneous
[63]. Implementation of the U-Net concepts on the
general purpose processors, as CPU is not suitable due to
performance bottlenecks which lack a parallel property.
To solve memory bottleneck without employing down
scaling or tiling/patch tricks when fitting the images
into memory, Ojika et al. [15] assisted data scientists in
training approximately 1TB full scale healthcare images
on 3D U-Net and implemented over CPU-based server
using single node Dell EMC PowerEdge server that has
a 4-socket 2nd Generation Intel Xeon Scalable processor
and supporting a large system memory of 1.5 TB. GPU is
more efficient to accelerate the implementation than CPU,
Isunuri and Kakarla [9] employed U-Net for performance
analysis. The resulted training time is 467sec and 33sec for
CPU and GPU, respectively. Pati et al. [29] analyzed the
inference time over NVIDIA K80 GPU, NVIDIA V100

GPU, and Intel Xeon CPU, then recommend employing
NVIDIA V100 as faster computing hardware. Oyama et al.
[5] implemented strong scalable hybrid-parallel algorithms
based training pipeline on a GPU supercomputer, a speed
up of 1.42 is obtained for the 3D U-Net model over
a 512 of GPUs which is faster than 256 GPUs. TPUs
are modern processors that employ a systolic array into
multiplication. Google TPUs consider efficient resources
to accelerate the learning time for cloud-based service;
this may lead in pruning the network to be lighter with
little impacts in prediction efficiency. Also, TPUs helps in
testing wider and deeper architectures to solve the memory
limitation of numerous existing one GPU systems [32].
Civit et al. [32] applied generalized U-Net segmentation on
images from different acquisition sources as a cloud-based
service. To reduce the execution time, the training and
prediction are done with employing cooperative iPython
notebook environment Google Colaboratory, that support
Keras framework and implemented on cloud architectures.
The Google tensor processing units (TPU) processors and
the GPU used for a small group of trials. The TPUs are
faster than cloud GPU solutions by a range of 2 to 3
times. Hou et al. [31] trained models over a cluster of
TPUs. Each one contains 2 cores. On the other hand,
the reconfigurability and customization features of FPGA
emerge to be a good platform to power-efficient and higher
performance for neural networks based CNN. Liu et al.
[30], designed a CNN accelerator applied on the real time
image segmentation. The accelerator was built on U-Net
and the tailored architecture is implemented over FPGA
with a sharing input buffer and non-linear optimization
to construct space exploration. The results show, that the
FPGA is superior on a fully exploiting 8-threads CPU by
10x speedup and 110x energy efficiency, respectively. On
the other hand when compared to GPU, FPGA is slower
but gives an enhancement of 8x energy efficiency. Liu and
Luk [25] proposed a uniform design to run convolution and
deconvolution operations with random kernel size using
one vector multiplication module. The implementation
was done with Intel’s Arria 10 SOC FPGAs that includes
an A10-SX 660 device (20nm), dual core ARM based
on CPU of 1.5 GHz and DDR4 memory of 2GB. The
new directions are using heterogeneous computing (HGC)
which combines the capability of more than one type of
sophisticated computing processors. Joardar et al. [63]
accelerated DNN segmentation based U-Net through the
proposed heterogeneous architecture called GRAMARCH
that merges the advantages of Resistive Random-Access
Memory (ReRAM) with in-memory computation while
GPUs have inherent parallelism simultaneously by
employing a high-throughput 3D Network-on-Chip(NoC).

4. U-NET IMPROVEMENTS

The main improvements produced from the reviewed
studies are summarized in the table I as a fast referencing:
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TABLE I. PERFORMANCE CHALLENGES WITH THE MOST
IMPROVEMENTS

Challenge Improvements

Training
dataset size

Data augmentation:[4],[6],[12],[13],[14],[16],[19],
[21],[22],[23],[24],[26],[27],[28],[31],[32],[34],[35],
[36],[40], [41],[42],[43],[46],[47],[49],[50],[51],[54],
[55],[61]

Accuracy

Dilated convolution: [6],[8]
Attention technique:[8],[19],[22],[39],[40]
Residual technique: [8],[11],[12],[17],[18],[22],[24],
[27],[39],[43]
Dense technique: [10],[27],[36],[37],[38],[51],[52],
[55]
Recurrent technique: [18]
Cascade:[12],[17],[55]
Deformable convolution:[20],[55]
Multipath fusion:[6],[10]
high-resolution 3D U-Net:[14],[31]
Depthwise separable convolution:[26]

FLOPs Compressed model: C-UNet++ and C-UNet[26],
SD-UNet [61]

Overfitting

Data augmentation: [4],[14],[16],[21],[22],[24],[27],
[31],[32],[36],[42],[43],[47],[50],[54],[61]
Dropout:[4],[17],[32],[44],[58]
BN:[16],[32]
Regularization: Sparsity[33], Incremental
quantization (INQ)[38], loss(Lreg or weight
decay)[43], L2[44]
Early stopping:[7],[8],[14],[16]
Others: Dense connection[10], Small patch[20],
Stack multiple similar structure[51], Fliter shar-
ing[53]

Memory size
limitation

Tiling[4],Hybrid parallelism[5], Partially reversible
U-Net[13], Data exchange[14], Big memory[15],
Memory sharing[30], Spatial partitioning[31],
Parameters sharing[57], Small batch and online
normalization[59]
Compressed model:[16],[22],[26],[33],[58],[60],[62]

Time

Model compression:[16],[58]
GPU:[4],[16],[29], TPU [32], Heterogeneous[63]
Compressed model: TernaryNet[33], Squeeze U-
Net[60], SD-UNet [61], knowledge distillation [62]

Latency Hardware accelerators: [25],[29]
Throughput Hardware accelerators: [25],[5]

Power Model compression:[16],[26],[58], Hardware accel-
erators [30]

Energy Hardware accelerators[30], Model compression[60]

Model
compression

Decrease number of convolution layer[9], Shared-
weights residual unit[17], Ternary quantisation[33],
Incremental quantization [38], UNET3+[52],Filter
sharing [53], Knowledge distillation[57], U-Net
Fixed-Point Quantization[58], Squeeze U-Net [60],
Depth wise separable convolution:[26],[61],[62]

Object
appearance

MFP-Unet [6], Dense Multi-path U-Net[10],
Deformable convolution blocks [20], U-NetPlus [21],
Attention gate (AG)[40],UNET3+ [52]

Class
imbalance

Hybrid sampling [11], Hybrid loss [22], A variant of
the Dice loss: [24],[27]

Generalization
Unet-GAN[7],DUNet[20],U-Net with GN or
IN[23], Generalized U-Net[32],H-DenseUNet[36],
CE-Net[43], ScleraSegNet[47], AHCNet[48]

5. CONCLUSIONS
The studies and works that have been made on the

performance analysis of the U-Net architecture designs
show a significant performance advances over the traditional
approaches. The developments in U-Nets can be classified
regarding to different approaches, especially, the design
feature of the structural units, and the fast implementation.
Therefore, this review highlights the efforts of researchers
through the main details of U-Net and its application to
different tasks. It is demonstrated also the challenges and
recent directions in the field of technology implementation.
Out of the results from prior paper works, it is concluded
that the performance of U-Net networks depends on the
amount of data for the application and the implementation
of both the training and inference. The good management
of a variety of hardware’s and improved frameworks can
accelerate performance and achieves better results. Some
points that can be helpful for future works are: data
augmentation for increasing training examples. Attention
technique for silent detection features. Residual technique
allow deepest network and tackle gradient vanishing. Dense
technique is used to enhance information flow and deep
supervision. The suitable performance in term of time,
memory space and energy will be either using software
based on data swapping with heterogeneous cooperation
CPU-GPU or using hardware computing with FPGA which
is faster than CPU but slower than GPU. FPGA is more
energy efficient than both CPU and GPU. On the other
hand, TPU is for cloud based service. However, despite
of U-Net and its variants have shown significant results in
analyzing many tasks, there are some open challenges. First
there is a need for a design that matches with the power
and heat of the platform battery trying to use advanced
software optimization techniques to accelerate training at
an affordable cost and save battery power for the platform.
Second, attempt to delete some layers to achieve a simple
design while maintaining accuracy. Third, try to design an
adaptive model which can be able to work at real-time.
Finally, there is a necessity for designing a hybrid optimizer.

REFERENCES

[1] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional
networks for semantic segmentation,” Proceedings of the IEEE
conference on computer vision and pattern recognition. Boston,
MA, USA, pp. 3431–3440, 2015.

[2] V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A
Deep Convolutional Encoder-Decoder Architecture for Image
Segmentation,” IEEE transactions on pattern analysis and machine
intelligence, vol. 39, no. 12, pp. 2481–2495, 2017.

[3] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking
Atrous Convolution for Semantic Image Segmentation,” arXiv
preprint arxiv:1706.05587, 2017.

[4] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
networks for biomedical image segmentation,” Proceedings of
the International Conference on Medical image computing and
computer-assisted intervention, Springer, Cham, pp. 234–241,
2015.

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


988 Ula T. Salim, et al.: U-Net Convolutional Networks Performance Based on Software-Hardware
Cooperation Parameters: A Review

[5] Y. Oyama, N. Maruyama, N. Dryden, E. McCarthy, P. Harrington,
J. Balewski, S. Matsuoka, P. Nugent, and B. Van Essen, “The
Case for Strong Scaling in Deep Learning: Training Large 3D
CNNs with Hybrid Parallelism,” arXiv preprint arxiv:2007.12856,
2020.

[6] S. Moradi, M. G. Oghli, A. Alizadehasl, I. Shiri, N. Oveisi, M.
Oveisi, M. Maleki, and J. Dhooge, “A Novel Deep Learning Based
Approach for Left Ventricle Segmentation in Echocardiography:
MFP-Unet,” arXiv preprint arXiv: 1906.10486, 2019.

[7] W. Yan, Y. Wang, S. Gu, L. Huang, F. Yan, L. Xia, g and Q. Tao,
“The Domain Shift Problem of Medical Image Segmentation and
Vendor-Adaptation by Unet-GAN,” International Conference on
Medical Image Computing and Computer-Assisted Intervention.
Springer, Cham, pp. 623–631, 2019.

[8] T. Zhou, S. Canu, and S. Ruan, “An automatic COVID-19 CT
segmentation based on U-Net with attention mechanism,” arXiv
preprint arXiv:2004.06673, 2020.

[9] B. V. Isunuri, and J. Kakarla, “Fast brain tumor segmentation
using optimized U-Net and adaptive thresholding,” Automatika,
vol. 61, no. 3, pp. 352-360, 2020.

[10] J. Dolz, I. Ben Ayed, and C. Desrosiers, “Dense multi-path
U-Net for ischemic stroke lesion segmentation in multiple image
modalities,” International MICCAI Brainlesion Workshop, pp.
271–282, 2018.
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