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Abstract: In the era of the big data analysis, genomic signal processing (GSP) is gaining popularity to analyze the genomics data.
GSP is used to extract the useful or hidden information from the genomics data such as DNA sequences using digital signal processing
tools. The hidden information is closely associated with the different biological functionalities in the living organisms. CpG Island is
one of such hidden information in DNA sequences, which is associated with the gene silencing, cancers and many other epigenetic
diseases. Therefore, the extraction of the information about the CpG islands is highly needed to serve the people. So, in this work
an algorithm based on wavelet transform has been proposed to overcome the fixed window length limitation of short-time Fourier
transform based method for the detection of CpG Islands. The performance assessment of proposed method has been carried out on
hundred DNA sequences of human species and detection performance has been improved over other state of art methods in terms of

sensitivity, accuracy, and F-measure.
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1. INTRODUCTION

The completion of human genome sequencing project
provided tremendous opportunities for researchers working
in the area of genomic signal processing, big data analysis,
and bioinformatics. The genomics data such as deoxyri-
bonucleic acid (DNA) sequences include a lot of concealed
information which needs to be analyzed to extract important
biological information. DNA sequences are made up of
four nucleotides: thymine (T), guanine (G), cytosine (C),
and adenine (A). It is reported in literature that in DNA
sequences different patterns are present such as three-base
periodicity based protein coding region [1], [2], [3], [4], [5],
[6], [7], tandem repeats [8], [9], [10], [11], introns retention
[12], Helitrons [13], [14], splice sites [15], CpG islands
(CGID) [16] and many more. In this paper the emphasis
is on CpG islands detection using a signal processing
based algorithm. CGI regions in DNA sequences are those
segments which have high frequency CG dineucleotide as
opposed to other regions which are considered as non
CGIs [16]. It has been reported in literature that various
biological processes are associated with CGIs which make
the detection of CGIs in DNA sequences essential [17]. It
is reported that CGIs are associated with promoter regions
and hence these find application in the identification of the
promoter regions and consequently to predict the genes in

DNA sequences [18]. Also, gene silencing, cancers and
many other epigenetic issues [19] are caused by the process
of methylation of CGIs which happens by the addition
of methyl group (CHj3) to the 5-position of the carbon.
These are some of the reasons which make the detection
of CGIs in DNA sequences necessary and therefore various
algorithms have been proposed so far and are reported in
literature which is discussed in detail in section 2 of the
paper. The organization of the rest of the paper is as follows:
in Section 2 detailed discussion of related work has been
presented, materials and methods have been discussed in
Section 3, description of data set and evaluation parameters
has been given in Section 4, in Section 5 results have been
discussed, and the paper has been concluded in Section 6.

2. RerateED WORK

It is known that the results provided by the biologists
for CGI detection obtained using experimental methods
are accurate but these methods are highly time consuming
because of vast amount of genomic data [20]. But the
computational methods developed by researchers for the
detection of CGIs are effective and efficient [21]. The
first computational method for CGI detection was proposed
by Gardiner-Garden and Frommer (GGF) [22], according
which a particular DNA segment is termed as CGI if it
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satisfies the following three conditions: (i) minimum 200
nucleotides are contained in the segment (ii) Concentration
of C+G nucleotide should be at least equal to 50 %, and (iii)
minimum value required for observed/expected (O/E) ratio
is 0.6. Later the ensuing method developed by Takai and
Jones [23] gave more firm conditions for a DNA segment
to be classified as CGI.

Recently, Tahir et al. [16] reviewed various com-
putational methods of CGI detection. It is reported that
the computational algorithms for CGI identification are
classified as window based, Hidden Markov Model (HMM)
based, density based, and distance-/length based algorithms
[16], [24]. In window based methods, a moving window is
applied to examine the genome using predefined statistical
conditions of CGI. Some of the methods developed based on
this approach are discussed in [23], [25], [26], [27]. These
window based methods are very much used because these
strictly follow the given statistical parameters for classifica-
tion of a section of DNA as CGI. But these methods have
a major limitation in terms of their dependency on window
size which plays a significant role in correctly prediction
of CGI. The larger window size has the advantage of in-
crease in predictive granularity but computationally slower.
Whereas the smaller window size is computationally faster
but has the drawback of probably missing a potential CGI
[16], [24].

Hidden Markov model based CGI detection methods are
discussed in [20], [28], [29], [30]. These HMM based
methods utilize two separate models based on Markov
chains for CGI and non CGI and then compute log-score
of the sequences for the two models. These methods are
basically data dependent as the transition probability tables
vary according to data and also these are computationally
inefficient [16], [24].

The principle of density based CGI detection methods
is to find out the density of CpG sites [31], [32]. In these
methods, the ratio of number of CpG sites in CGI and
the total span of CGI is calculated to compute the density
of CGI. The basic operation of density based methods is
initialization of low threshold value of density to capture the
approximate boundary of CGI and then subsequently a high
threshold value is applied to finally capture the CGI borders
where the DNA sequence within that border satisfies the
density requirement. The dependency on the thresholds of
density is considered as a major limitation of these density
based methods [16], [24].

The distance-/length based approach of CGI detection
is discussed in [33] and is considered as a faster approach
for prediction of CGI. This approach is basically formulated
on the clustering of data according to the distance between
CpG sites. This method provided a new direction for the
understanding of CGI by studying the sequence property
of any two adjoining CpG sites. The authors criticized
this method because of its dependency on sequence com-

position which results in dissimilar results for same CGI
in different circumstances [16], [24]. A method called
CpGeclusterTLBO has been developed by Cheng et al. in
which the clustering approach and teaching-learning-based
optimization (TLBO) algorithm has been used. In this
method, the use of clustering is to identify the probable
CGIs and TLBO has been used for the optimization of
probable CGIs with respect to the actual CGIs [34].

Currently, digital signal processing based CGI detection
methods have also been developed [35], [36], [37], [38].A
method has been developed by Rushdi and Tuqan [35]in
which FIR filter and Markov chain method altogether are
used for CGI detection. In this method, two different
models have been developed out of which one model is
for CGI another model is for non CGI; and then filtered
likelihood ratio test measure is generated with the help of
FIR filter. Mariapushpam et al. proposed discrete Wavelet
transform (DWT) based CGI identification algorithm [36].
In this algorithm DWT based filtering along with adaptive
filtering has been utilized to identify CGI. Recently, an
algorithm has been proposed in which modified P-spectrum
has been employed for the identification of CGIs in the
DNA sequences [37].

Short-time Fourier transform (STFT) based CGI detec-
tion algorithm has been presented, in which the spectrums
of the dominant periodicities have been utilized to detect
the CGIs [38]. As it has been known that STFT based
algorithm’s performance may suffer because in STFT fixed
window length criteria has been utilized. Therefore, to avoid
the problem of fixed window length, an algorithm based
upon wavelet transform has been proposed for the identi-
fication of the CGIs. In the proposed algorithm, spectrums
corresponding to the dominating periodicities present in the
CGIs have been calculated using wavelet transform. The
sum of these spectrums has been calculated to find the
resultant spectrum of the CGIs. An appropriate threshold
has been selected to get the resultant spectrum of candidate
CGls, and then it has been verified using GGF criteria to
remove the falsely detected spectrum of candidate CGIs.
The verified resultant spectrums of candidate CGIs have
been calculated for 24 combinations of integer mappings.
Finally, the sum of these 24 verified spectrums of candidate
CGIs has been calculated to get the final spectrum of CGIs.
The key contributions of the proposed algorithm are:

i) Wavelet transform has been used to overcome the
fixed window length limitation of the STFT,

ii) Selection of optimal threshold,
iii) Detection performance has been improved.

The proposed algorithm has been tested on the data set
of 100 human DNA sequences. The performance assess-
ment of proposed algorithm has been done with state of
art CGI detection algorithms. The results specify that the
approach proposed in this paper is better than the other
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reported algorithms.

3. MATERIALS AND METHODS
A. Characteristic Feature in CpG Islands

Characteristic features associated with CGIs in DNA
sequences have already been reported in [38] as dominant
periodicities of CGIs and these periodicities have been
utilized in this paper to detect the CGIs in human DNA
sequences.

B. Proposed Algorithm for CpG Island Detection

The algorithm for the detection of CpG Islands using
wavelet transform is represented in Table 1.

The major steps of the proposed algorithm are described
in detail using following points:

1. Conversion of A, T, C, G characters of DNA sequence
to numerical values.

2. Calculate the spectrums corresponding to the domi-
nant periodicities 2 to 10 using wavelet transform.

3. Compute the sum of the spectrums of the dominant
periodicities to get the resultant spectrum.

4. Select an appropriate threshold to get the resultant
spectrum of candidate CGls.

5. GGF criteria have been used to verify the resultant
spectrum of candidate CGIs and to remove the falsely
detected spectrum of candidate CGIs.

6. Combine the 24 verified resultant spectrum of candi-
date CGlIs to compute the final spectrum of CGIs.

Above steps of the proposed algorithm have been ex-
plained below with the help of a benchmark DNA sequence
having accession number L44140 [39] and this sequence
has been considered as an example DNA sequence:

1. Numerical Conversion

The conversion of four characters of DNA sequence into
numerical values has to be performed for the digital signal
processing techniques to be applied. In this work, the A, T,
G, C characters of DNA are converted to numerical values
using all 24 representations of integer mapping scheme [38]
to avoid the bias due to mapping. One of the representation
of integer mapping scheme has been shown which assigns
the numerical values to DNA charactersas A=1,T=4,G
= 3, C = 2. The representation of 24 mappings of integer
mapping to the DNA characters is depicted in Table II.

2. Modified Gabor Wavelet Transform (MGWT)

As it has been already reported that CpG islands are
associated with periodicities 2-10 base pairs (bps) [38].
So, in this work the Gabor wavelet based transform has
been tuned to identify the spectrums corresponding to peri-
odicities 2-10 bps; and this transform is called as modified

Gabor wavelet transform (MGWT). And it is calculated for
a numeric sequence z(x) using (1):

X*llz .
Z(n,b), = f () e B e gy )

(1) has been used to the capture the spectrums of
different periodicity, the value of wy = L/p has been fixed
for the detection of periodicity “p” component, where L
is considered as the length of the DNA segment which
has to be analyzed and 2 to 10 values of periodicity have
been considered of variable p. To obtain the spectrum of
the sequence, squared complex modulus of the MGWT

coeflicients has been calculated as:

M. p), = |Z(nb),[ @)

In the work proposed in this paper, 40 analyzing func-
tions corresponding to 40 scale values have been used
and these are exponentially separated between 0.1 and 0.7
for each p-periodic periodicity. The spectrums obtained
corresponding to periodicity 2 to 10 have been added lin-
early to compute the resulting spectrum RM,,(n) employing
corresponding mapping scheme ‘m’.

10
RM,, () = »" M (n, p) 3)
p=2

RM,,(n) for example DNA sequence L44140 has been
shown in Fig. 1.

Resulting spectrurm
09H True location of CGls

08H B
07 H 7

0BR B

Power spectrum

ol LIl T i

I il | |
i] 0s 1 15 2 25
Mucleotide position W 10°

Figure 1. Resulting spectrum RM,,(n)

3. Thresholding

A suitable threshold value has been chosen experimen-
tally to get the spectrum of candidate CGIs from resulting
spectrum. The experiment has been conducted for DNA
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TABLE 1. Wavelet transform based algorithm for CpG islands detection

Input: DNA sequence
1) For nr = 1:24

2) For periodicities = 2:10,

Calculate spectrums of periodicities using wavelet transform.

End (loop end for periodicities).

Calculate the addition of spectrums of periodicities.
Apply suitable thresholding to select the candidate CpG Islands.

Apply the GGF criteria to verify the CpG islands.
3) Store the final spectrum for each nrth iteration.

4) End (loop end for nr) and calculate sum of final spectrums of all 24 iterations.

Output: CpG Islands are detected

TABLE II. 24 combinations of integer mapping

Numeric values to DNA characters

BEE28888832
TR TR T T I
O 0NN W~

B 2B
noTo
o= o

m=13
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sequence 144140 considered as an example sequence by
varying the threshold values from 10 % to 50 % is depicted
in Table III.

The proposed algorithm’s performance for example
DNA sequence 144140 at threshold value 15 % is better
compared to other threshold values in terms of Sn, AC
and it has been observed from Table III. Hence, in this
paper the threshold value has been selected as 15 % for all
analysis work of the proposed MGWT based CGI detection
algorithm.

The sections of the spectrum where the peak value is
above the threshold value of 15 % have been then chosen
as candidate CGlIs.

RM,,(n), RM,,(n)> Thr
0, else

Om () = { “

where Thr= 15% of max (RM,,(n))

Q,u(n) is the spectrum of the candidate CGlIs, and for
example DNA sequence 144140 it has been shown in Fig.
2.

Resulting spectrum
0.9 H True location of CiGls

0&H b
07 h B

06[ | 4

Power spectrum

ol I I

| b |
1] 0.s 1 16 2 25
Mucleotide position w 105

Figure 2. Candidate CpG Island’s spectrum

4. Verification of Candidate CpG Islands

The GGF criterion has been applied to the respective
segments of the corresponding spectrum of the candidate
CGls, to get verified spectrum of the candidate CGIs. It
is also used to reduce the falsely detected spectrum of the
candidate CGlIs. Verified spectrum of the candidate CGIs
has been calculated using (5):

On(n), Seg.of Q,(n) meeting GGF Criteria
0, else

Vi (n) = {
Q)

V,,(n) is the verified spectrum of the candidate CGlIs,
and for example DNA sequence 1L.44140 it has been shown
in Fig. 3.

Yerified spectrum of candidate CGls
09H | True location of CGls A

0aH [ | _ -
07l 1 ' 1
n&f = .
sl ] - | ,

04 .

Power spectrum

0.3n 4
02h 4
01f ‘ ’ _
0 | | I L )
1] 05 1 1.5 2 258
Mucleotide position N

Figure 3. Verified CpG Island’s spectrum

5. Combination of 24 spectrums of verified CpG Islands to
compute final CpG Islands

Using steps 1-5, verified spectrums of candidate CGIs
have been calculated using integer mapping scheme m=1
to 24. These 24 verified spectrums of candidate CGIs are
then added to find the final CGI spectrum using (6):

24
Fegr(n) =) V() ©)
m=1

Fcgi(n) is the final spectrum of the CGIs and for
example DNA sequence 1.44140 it has been shown in Fig. 4.
The locations of CGIs detected for example DNA sequence

Final spectrurm of CGls
True lacation of CiGls

08n

08H 4
07h I -

06 H 7

Power spectrum

‘JM M n :

045 1 1.8 2 248
Mucleotide position T

Figure 4. Final CpG Island’s spectrum

L44140 using proposed MGWT based algorithm have been
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TABLE III. Evalution parameters with varying thresholds for example DNA sequence 144140
Thresholds
Evaluation parameter 10% 15% 20% 25% 30% 35% 40% 45% 50%

TP 16659 17844 17414 15349 12088 8015 4318 1939 961
FP 24539 30516 27052 18419 12592 6702 2039 570 235
TN 175679 170602 174066 182699 188526 194416 199079 200548 200883
FN 1669 484 914 2979 6240 10313 14010 16389 17367
Sn 0.909 0.974 0.95 0.837 0.66 0.437 0.236 0.106 0.052
Sp 0.874 0.848 0.865 0.908 0.937 0.967 0.99 0.997 0.999
AC 0.891 0911 0.908 0.873 0.798 0.702 0.613 0.551 0.526

shown in Table IV.

There are 17 CGIs present in DNA sequence L44140
and the location of these 17 CGIs has been presented in
Table IV under the column CGI’s true location as per NCBI.
The detection outcome of proposed MGWT based algorithm
has been shown in Table IV under the column CGI locations
identified by proposed algorithm. It has been seen from
Table IV that the MGWT based algorithm has detected all
17 CGIs present in DNA sequence 1.44140; however the
algorithm has detected some false positives. Based on the
%age coverage of the length of true CGIs which are 17,
the performance assessment of the MGWT based algorithm
with state of art CGI detection methods is shown in Table
V.

The MGWT based algorithm’s performance in terms of
%age coverage varying from 80 % to 100 % of span of the
actual CGI is the best compared to other state of art methods
and it has checked from Table V; however the performance
of MGWT based algorithm and STFT based algorithm is
same at 90 % and full coverage of the span of actual CGI.

The applicability of proposed MGWT based algorithm
in the context of the identification of CGIs has been
understood from Table V as the proposed algorithm has
been able to successfully identify all the CGIs present
in benchmark example DNA sequence L44140. Now the
performance of proposed method has been evaluated on a
large data set of hundred DNA sequences using standard
performance metrics and it has been presented in results
section.

4. DatA SET AND PERFORMANCE METRICS
A. CpG Islands Data Set

The CpG Island data set used in this paper for the val-
idation of performance evaluation of the proposed MGWT
based algorithm consists of hundred DNA sequences. These
DNA sequences belong to human species. The data set has
been collected from publically available database provided
by National Centre for Biotechnology Information (NCBI)
[39]. The total number of CGIs in this data set of hundred
DNA sequences is 181. The description comprising of
accession number of DNA sequences, their length, and the
location of actual CGI as per NCBI in the length of the

data set is presented in the supplementary material.

B. Performance Metrics

The comprehensive assessment of the proposed algo-
rithm and the other existing algorithms has been carried
out with the help of the evaluation metrics, sensitivity (Sn),
accuracy (AC) [40], specificity (Sp), F-Measure [38]. The
explanation of evaluation parameters used is as follows:

TP
Sn= — " %)
TP+ FN
TN
SP = TNt FP ®)
Sn+S
AC = % 9)

F — measure — 2 % (pre'c%sion * recall) (10)
precision + recall

where; p
jsion = ————— 11
precision TP+ FP (11
&
TP
recall = ——— (12)
TP+ FN

TP which is called as true positive corresponds to
sections which are predicted accurately by algorithm where
actual CGIs are present, FP known as false positive corre-
sponds to erroneously identified regions by the algorithm
where actual CGIs are not located, TN termed as true neg-
ative represents the appropriately predicted portions where
actual CGIs are not located, and FN called as false negative
shows the missed sections where actual CGIs are located. Sn
abbreviated as sensitivity describes the details concerning
the share of TP correctly captured by the algorithm. Sp
abbreviated as specificity emphasizes the share of truly
predicted TN. The outcome of Sn and Sp is in the range
from O to 1. An algorithm is considered as perfect if is able
to acquire the theoretically desired ideal value of 1 for Sn
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TABLE IV. Detected CpG Islands

CGI’s true location as per NCBI CGI locations identified by proposed algorithm
Start position-End position Start position-End position
3095 - 3426 2935-3207, 10427-10641

11638-13564

40983-42150

44799-45386

48446-50350

59461-61404

67900-69472

81836-82633

98783-99468

106826-108158

114316-114947

128187-129236

148990-149796

156388-157495

160697-161402

186412-186922

216617-217876

10869-13116, 13164-13979, 25224-25530, 27588-28063, 30456-30983, 34927-35171
40115-41829, 41897-42650
43882-46611
48352-52688
58509-62772, 66747-67133
67144-69752, 80359-80681
81542-82710, 85130 85420, 93049-93277
98027-100529
105118-108768
114159-115794, 127000-127238
127348-129369,131543-131904, 136367-136718, 137652-137905,138525-138994
148000-150470, 150764-151072
155288-157715
160782-162048, 162334-162550, 175076-175541
185089-188115, 189537-189740, 194873-195169,202511-202849,214080-214337

216668-218479

TABLE V. Number of CGIs identified in DNA sequence L44140

No. of CGIs based on detection at % coverage of actual length of CGIs (total 17 CGlIs)

Methods 80% 90% 100%
CpGeclusterTLBO 9 5 Nil
CpGPNP 4 3 2
DWT Nil Nil Nil
STFT 15 15 12
Proposed algorithm 16 15 12
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and Sp metrics. Accuracy which combines the outcomes of
Sn and Sp altogether varies between 0 to 1. Its value should
be as close to 1 as achievable for a perfect algorithm. The
F-measure metric is a measure of accuracy which calculates
the harmonic average of the recall and precision. The range
of value of this metric is from O to 1. The value of F-
measure is desired to be achieved as 1.

5. REesurrs ANp Discussion

Four state of art methods of CpG island identifica-
tion, STFT based algorithm, CpGclusterTLBO based CGI
detection algorithm, CpGPNP based algorithm and DWT
based algorithm have been assessed for the examination of
proposed method’s performance. The value of evaluation
metrics TP, FP, FN, and TN obtained for hundred DNA
sequences of human species using all methods considered
in the paper is depicted in Table VI

It has been observed from Table VI that the number of
true positives (TPs) obtained using the proposed algorithm
is the highest amongst all methods and the number of
false negatives (FNs) obtained using proposed algorithm is
the least compared to all methods. This feature is always
desired theoretically for an algorithm to be considered
as perfect that TPs should be as large as possible and
correspondingly FNs should be the least. However, FPs
which is desired to be as low as possible is little higher for
proposed algorithm and CpGclusterTLBO method’s FPs are
the least amongst all methods. Correspondingly the value
of TN obtained of proposed algorithm which should be as
high as possible is little lesser than STFT and CpGTLBO
methods but higher than CpGPNP and DWT based methods.

The proposed method’s performance for CGI detection
is compared utilizing the evaluation metrics sensitivity (Sn),
specificity (Sp), accuracy (AC), and F-measure with state
of art methods on complete data set of human species
comprising of hundred DNA sequences and the obtained
results are depicted in Fig. 5-8.

0.5 1
0.8251

08 1 0708 0.7587

O 0.6247  0.6451 B Sensitivity
06 -

05 -
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02 -

01 -
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& &8 & &

&
&

5 o Q o o
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Figure 5. Graph of Sensitivity of all methods
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Figure 6. Graph of Specificity of all methods
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Figure 7. Graph of Accuracy of all methods
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Figure 8. Graph of F-Measure of all methods
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TABLE VI. Evaluation metrics for hundred DNA sequences of human species

Methods
Evaluation parameter =~ STFT  CpGclusterTLBO CpGPNP DWT Proposed method
TP 94193 83584 79444 76934 102443
FpP 170094 165139 283775 3220837 181252
TN 5112809 5109201 5000128 2063066 5101651
FN 29961 34480 43710 46223 21714

In Fig. 5-8, the methods used for comparison are de-
picted on x-axis and the values obtained for performance
metrics Sn, Sp, AC, and F-measure respectively are pre-
sented on y-axis. The superiority of the proposed algorithm
in performance parameters over other algorithms is exam-
ined in Fig. 5-8. The proposed algorithm’s performance
for CGI identification has been assessed via the evaluation
metrics sensitivity (Sn), specificity (Sp), accuracy (AC), and
F-measure from state of art methods on the hundred DNA
sequences data set of human species. It has been proved
based on the comparison depicted in Fig. 5-8 that the CGI
detection performance of proposed MGWT based algorithm
is better compared to state of art methods. As the number
of TPs of the proposed algorithm is the highest amongst all
methods and the number of FPs of the proposed algorithm is
the least; correspondingly, evaluation parameters sensitivity
(Sn), F-measure and accuracy (AC) of the proposed method
are higher than state of art methods for human species with
value 0.8251, 0.8954, and 0.5024 respectively. However,
as the proposed algorithm has detected false positive little
higher compared to CpGclusterTLBO & STFT based algo-
rithm and true negative little lower than CpGclusterTLBO
& STFT based algorithm. Correspondingly, the specificity
Sp with value 0.9657 of proposed algorithm is almost same
as the Sp of CpGclusterTLBO with value 0.9687 and STFT
based algorithm value 0.9678.

The percentage improvement of the proposed algorithm
over the existing methods in terms of evaluation parameters
Sn, AC, and F-Measure has been computed and is repre-
sented in Table VII.

As seen from Table VII, the proposed MGWT based al-
gorithm’s performance in terms of percentage improvement
over the state of art methods of CGI detection for evaluation
metrics Sn, AC, and F-Measure is better.

The total number of CGIs in 100 DNA sequences
data set is 181. The comparison of the proposed MGWT
based algorithm’s performance in terms of identification of
number of CGIs out of 181 based on percentage coverage of
the length of actual CGIs from state of art methods has also
been carried out. The comparison result has been tabulated
and depicted in Table VIII and Fig. 9 respectively.

The proposed algorithm’s performance is better than the
state of art methods in context of number of CGIs identified

BU_ F e ..'.::;, i
<o CpGelusterTLED

—e— DWT

L] [ CPGPNP
“—STFT:
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Figure 9. Number of CGIs detected out of total 181

at various percentage coverage of actual CGIs length and it
has been observed from Table VIII and Fig. 9. The detection
of number of CGIs of proposed MGWT based algorithm at
percentage coverage of actual CGI length varying from 60
% to 100 % is much higher as compared to state of art
methods.

6. CoNcLusION

In this paper, MGWT based algorithm for the detec-
tion of CGIs is proposed. The algorithm’s assessment has
been carried out on data set of hundred DNA sequences
comprising of human species obtained from NCBI. The
performance of the proposed algorithm is better as com-
pared to the state of art methods of CGI detection in terms
of sensitivity, accuracy, and F-measure. The specificity of
proposed algorithm is almost same as that of CpGeclus-
terTLBO and STFT based methods. Also, the proposed
algorithm has detected more number of CGI at 60 % to
100 % coverage of true CGI length. Hence it has been
concluded that the proposed MGWT based algorithm is an
effective and efficient method for CpG islands detection in
DNA sequences. In future this work can be extended to
reduce the number of false positives and hence improve the
specificity. Also, machine learning based approaches can be
explored and employed in future work.

7. SUPPLEMENTARY MATERIAL

The details of data set of hundred DNA sequences
of human species is presented in Table IX and X.
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TABLE VII. Percentage improvement of proposed algorithm over STFT, CpGclusterTLBO, DWT, CpGPNP

Methods

Evaluation metric ~ STFT  CpGclusterTLBO CpGPNP  DWT

Sn 8.05% 14.2% 21.82%  24.29%

AC 3.6% 6.38% 11.13%  43.31%

F-Measure 3.48% 9.28% 3497%  91.04%

TABLE VIII. Number of CGIs detected
Number of CGIs detected at percentage coverage of true CGIs Length

Methods 60% 70% 80% 90% 100%
CpGclusterTLBO 127/181 111/181  98/181  68/181  40/181
CpGPNP 95/181  85/181  69/181  61/181  50/181
DWT 1/181 1/181 1/181 1/181 1/181
STFT 116/181 108/181 105/181 100/181 91/181
Proposed algorithm 135/181 131/181 125/181 117/181 97/181
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TABLE IX. Detailed description of the data set as per NCBI website

Acc. No.  Length Locations
.No.
1 AL442638 188247 17472-17700, 22868-23148, 93250-93495, 163847-164132
2 AC073335 68275 31813-32080, 33619-34458, 50802-51655
3 ACO073517 67706 35431-35977
4 ACI127379 67291 30060-30318, 38447-39437
5 AC064843 66898 5531-5785
6 AC129782 66860 38868-40898
7 ACO013270 66660 6075-6881, 25374-26035, 34710-36183, 48185-48621
8 AC074386 66610 15847-16381, 16593-16830
9 AC092103 66565 24844-25119
10 AC124014 66552 56936-57769
11 AL137791 66254 30724-31272, 46196-46906, 52979-53956, 61007-62096
12 AC096553 66229 11867-12256
13 AC105413 65958 50478-50751
14 AC005003 65750 38374-41067
15 AC145546 65625 52797-53645
16 AC105402 65449 15774-16973, 28628-28925
17 AC112698 65335 42309-43546
18 AC104129 65189 2966-3334, 8763-9020, 14023-14383, 20695-20991, 26472-26735, 28330-29188, 31762-32009,
55671-55878
19 BNO0O00001 64961 895-1123
20 AC138782 64744 23500-24633
21 AC005021 64607 24663-25225, 63177-63512
22 AC093086 64601 58914-59518
23 AC005233 64359 16579-18003
24 ACO013436 63823 12411-12652, 21066-21331, 24980-26051, 26467-26807, 60097-60448
25 ACI131957 63780 45526-45799
26 AC004694 63749 9107-9494, 54481-54756
27 AC108463 63525 26008-26366, 26575-26982, 27079-27538
28 AC080165 63279 8258-8531
29 ACO010890 62764 11407-11926, 13574-13801, 53142-53415, 53755-54041
30 AC108142 62624 8864-11837
31 AC080068 62623 535-774
32 AC093785 62466 31397-31665
33 AC003079 62331 50250-50471
34 AC078937 62035 38149-39359
35 AC114803 61579 3256-4009
36 AC093652 61340 48156-49072
37 AC093377 61056 729-1003
38 AC073201 60776 9738-11862
39 ACI113611 60597 8638-9514
40 AC099394 60024  2826-4863, 10806-11866, 19723-19934, 25482-25769, 31861-32884, 36728-36931, 54994-55361
41 AC098831 59776 39343-39572, 51406-51689
42 AC074013 59657 22602-22873, 51602-52508, 53105-53331
43 AC062028 59634 44629-44851
44 AC106875 59580 4526-5382
45 AC023670 59565 25568-27400
46 AC079882 59427 39153-39736
47 AC006008 57554 28800-30423
48 AC108222 21776 21237-21776
49  AHO006464 21230 1187-2051
50 AC093609 20710 7857-8257
51 AL590794 18042 11568-12215
52 AC136375 17863 16369-17534
53 BD432859 14646 2762-2973, 4065-5181
54 AC111201 13470 4327-4727, 5323-5554, 12500-13455
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TABLE X. Detailed description of the data set as per NCBI website continued
Acc. No. Length Locations
S.No.

55 NMO005876 10782 6154-7734
56 NMO053043 10168 9597-9820
57 AC093460 10103 6951-7418
58 AC108032 9716 30-269
59 X86012 9541 335-3853
60 AC106048 8594 7941-8180
61 AHO008870 6797 341-1340
62 AC079401 6568 3086-3935
63 AHO007568 6513 543-803, 1212-1430, 1662-2474
64 AC105385 5952 2844-3080
65 AJ308559 5596 1228-1657
66 M92844 3889 3198-3889
67 AF196313 3700 2092-3580
68 AF281043 3662 1611-2734
69 U48937 3278 2588-3230
70 AF307776 3113 2334-2745, 2791-3064
71 AJ000757 3046 650-2840
72 AJ289875 2916 2325-2916
73 L07287 2704 1-1350
74 792546 73511 20746-21240
75 AL591222 147211 54605-55080, 68825-69091
76 ALS513502 174636 116364-117432
77 AL513498 155780 18305-18582
78 AL357615 171446 56753-57030, 59607-59874
79 AL353786 139565 19000-19400
80 AL121926 139544 102641-104201, 126562-127299
81 AL049547 129811 27801-29311, 37094-37773, 109041-110125, 113196-114024, 126815-127265
82 AL031706 13012 7-552
83 ALO031703 35098 15319-17699, 25107-26048, 30327-30736, 31615-32204
84 AJ006998 123521 11140-11417
85 AL031707 28707 6050-6520, 6693-7445, 24481-25248, 28059-28669
86 AL024496 27210 1284-1927, 9755-10674, 13099-13615, 15578-16126, 21132-21595
87 AL109743 96006 31713-33048, 56464-57695
88 AC027644 188207 27115-27651, 51380-51705, 130590-131909
89 AC110076 105211 93622-94410
90 AC073271 117930 102756-103541
91 AC005282 98219 8323-9168, 79507-80293
92 AC110787 7335 11-1165
93 L47124 6996 3226-4068
94 AC010990 6708 2347-2685, 4079-4357
95 AF129290 6324 2026-2238, 2436-2679, 2730-3021, 3033-3353, 3355-3637, 4479-4891
96 D13370 3730 226-1645
97 AHO004914 5426 1018-1636
98 AC079588 4249 1137-2422
99 AHO009772 4240 1-555, 656-1588
100 AL132818 38860 33379-33940
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