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Abstract: Frequency-hopping spread spectrum (FHSS) spreads the signal over a wide bandwidth where the carrier frequencies change
rapidly according to a pseudorandom number making signal classification difficult. Classification becomes more complex with the
presence of additive white Gaussian noise (AWGN) and interference due to background signals. In this paper, an artificial neural
network (ANN) based system is proposed to classify FHSS signals in the presence of AWGN and background signal. The probability
of correct classification (PCC) of the FHSS signals is computed by the linear discriminant (LD) and ANN. Based on the signal-to-noise
ratio (SNR) range at 0.9 PCC, the performance of the LD and ANN respectively is 5.1 dB and 2.5 dB in the presence of AWGN
only, whereas their performance is 14 dB and 2.3 dB when the background signal is present. Consequently, the ANN-based system
outperformed the LD method by between 2.6 and 11.7 dB of SNR.
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1. Introduction
Multi-signal environment contains different types of

wireless technologies sharing a mutual frequency band [1].
An example would be Bluetooth, Wi-Fi, and Zigbee sharing
the 2.4 GHz frequency [2]. The signals might have a
constant or variable carrier frequency that depends on the
wireless technology used. Utmost importantly, there must
be no carrier frequency overlap amid the numerous wireless
technologies, as this might cause interference among users.
For example, two different Wi-Fi users can interfere with
each other. Therefore, a spectrum monitoring system could
be used to regulate carrier frequency usage across various
wireless technologies as well as to detect unknown or
unauthorized signal sources [3].

Frequency-hopping spread spectrum (FHSS) spreads
the signal over a large bandwidth where the frequency
is switched quickly in a pseudorandom manner that is
known to the communicating parties for the synchronized
communication [1], [4]. To switch the carrier frequency,
the pseudo-noise (PN) pattern is utilized to produce the
random number [5]. FHSS is employed in civilian as well
as military applications such as drones [6], SINCGARS
[7], and Bluetooth [8]. The military employs FHSS to
evade jamming as well as interception by an opponent,
whereas drones employ it to prevent interference from
another drones by utilizing a hopping sequence [9]. The use
of FHSS systems is allowed by the Federal Communications

Commission (FCC) in unlicensed frequency bands which
could be abused by a rogue device [10], for example, drones
[6], [11]. Recent events that relate to drone abuse: (i) drones
attacked an oilfield in Abqaiq, Saudi Arabia on Sep. 14,
2019 causing a 50% cut in oil production [12] and (ii)
drone-assisted drug trafficking at Kranji, Singapore on Jun.
17, 2020 [13].

The analysis of an FHSS signal needs a technique
appropriate for representing time-varying signal which is
suitable for time-frequency (TF) analysis as it represents the
time-varying signal mutually in both the domains of time
and frequency [14]. Time-frequency distributions (TFDs)
are divided into two categories: linear TFD and quadratic
TFD (QTFD). The former like the short-time Fourier trans-
form (STFT) [15] is utilized to acquire the time-frequency
representation (TFR) of FHSS signals and estimate their
parameters like hop duration as well as frequency. An
issue pertaining to the TFR acquired from the STFT or
spectrogram is the uncertainty principle that is the trade-
off amid frequency and time resolution. To compare, the
STFT has four times lower computational complexity (CC)
than the QTFD [16]. Another category of the linear TFD
is the wavelet transform that gives rise to the notion of
multi-resolution analysis [17], it applies a variety of filters
on a signal. It produces a low frequency resolution at the
high frequency range of a signal, whereas a high frequency
resolution at the low frequency range [18]. Because of this
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attribute, it is inappropriate for the FHSS signals due to
dispersion of the frequency content at the observed band of
frequency. Generally, the QTFD produces high resolution
in frequency and time, it applies if the cross-terms are
attenuated but with high CC, whereas there is no cross-
term in the STFT [14], [19]. The FHSS signal’s parameters
like hop frequency and duration could be measured utilizing
the QTFD. For estimating these FHSS parameters, two
approaches were utilized: the TF moments and instanta-
neous frequency [20]. Amid the two approaches, the latter
precisely measure the parameters. The spectrogram method
is utilized in this work due to low CC as this is significant
for the applications of the FHSS to apply techniques in
actual-time and on embedded systems.

After the estimation of a signal’s parameters, it is fol-
lowed by the classification task. The correlation among vari-
ables within data in the form of mathematical expressions
is known as statistical modeling [21]. Statistical classifiers
include: rule-based classifier [16], distance classifier using
linear discriminant (LD) function [22], [23], [24], and
maximum likelihood classifier [25]. In [24], FHSS signals
classification is computed by the LD method that uses
the Euclidean distance-based classifier. It has attained 90%
probability of correct classification (PCC) at the SNR range
of -1.6 to 3.5 dB in the existence of AWGN only, whereas its
performance is declined to 0.9 to 12 dB with the existence
of the background signal. Statistical models have less pre-
diction ability and face difficulty to predict from noisy data.
In comparison, machine learning (ML) has more predictive
ability without human intervention since it can learn from
data without depending on rule- based programming [21].
For example, the ML-based algorithm used for the clas-
sification of digital communication signals outperformed
the maximum likelihood classifier by 12 dB of SNR at
90% accuracy [25], [26]. Examples of ML algorithms are
decision trees, naive Bayes, and artificial neural network
(ANN) [27]. Decision tree works by using a tree structure
with a set of “if-then” rules for classifying data points which
can easily overfit the data when the subbranches of the
tree are overgrowing. Naive Bayes encodes probabilistic
relationships among features by assuming every feature as
independent which reduces the accuracy for overlapping
classes. The ANN consists of a number of perceptrons to
build a model like the human brain for decision making
which can learn very complex functions and provides
effective solutions in feature selection, and classification
[27]. In some cases, large datasets are required for the
ANN to be effective but it has powerful tuning options
to prevent over- and under-fitting which makes it a good
choice for achieving human-like decision making. The ANN
is widely used for many pattern recognition applications
such as speech signals [28], radar signals [29], and digital
communication signals [26]. Classification of modulation
recognition such as phase- shift keying (PSK), frequency-
shift keying (FSK), and linear frequency modulation (LFM)
is performed by using the STFT where 100% accuracy is
achieved at 10 dB of SNR [30]. In [31], the ANN is used

to classify PSK, FSK, and quadrature amplitude modulation
(QAM) signals and achieved the PCC > 90% at SNR ≥ 0
dB. A supervised classification system based on TFD and
multi-layer perceptron (MLP) is proposed to classify radar
signals in which 98% of correct classification is achieved
at 6 dB of SNR [29]. This method is improved in [32] by
achieving 94.7% accuracy at -2 dB of SNR. Performance
of the three classifiers such as radial basis function (RBF)
neural network (NN), probability NN, and MLP NN is
investigated in [26] for the classification of the amplitude
shift-keying (ASK), PSK, and QAM signals. Among the
three classifiers, the MLP NN performed best by achieving
95.7% accuracy at -2 dB of SNR. Despite its relatively
higher CC, the ANN based on studied literature is used
as a classifier in this paper due to its higher accuracy.

The uneven number of samples among classes in the
training set degrades the performance of ML algorithms
[33], [34]. The results achieved in [35] show the per-
formance degradation of the classifier when trained on
imbalanced data (original dataset). It is shown in [36]
that the accuracy of the classifier is degraded by 5% on
imbalanced data. Therefore, resampling is required on the
minority classes to ensure a balanced number of samples
among classes. Examples of resampling techniques are: ran-
dom oversampling (ROS), random undersampling (RUS),
synthetic minority oversampling technique (SMOTE), and
majority weighted minority oversampling technique (MW-
MOTE) [37], [38], [39]. Among the simplest is the ROS in
which minority samples are randomly duplicated to obtain
a balanced dataset without introducing new information to
the dataset. In the RUS, samples from the majority class are
randomly removed which may cause the loss of important
data. Synthetic samples from minority samples are created
from SMOTE which increases the generalization ability of
a classifier while the MWMOTE creates synthetic samples
in specific regions.

The goal of this work is to develop an ANN-based
system to achieve a precise classification of FHSS signals in
the existence of AWGN and the background signal. Rapid
switching of the carrier frequency according to a pseu-
dorandom number makes the FHSS signals classification
challenging. The ANN needs the training to classify various
types of FHSS signals, which require a proper dataset.
Hence, a dataset of the FHSS signals needs to be generated.
A pseudorandom sequence of hopping frequencies observed
from an FHSS signal represents one observation of all
the possible hopping sequences of the signal. Therefore, a
technique is developed that can derive the possible hopping
sequences of the FHSS signal by using the hop frequencies.
The uneven number of observations among classes in the
training set degrades the performance of the ANN. The
number of observations of an FHSS signal depends on the
number of hop frequencies. Therefore, a given set of FHSS
signals with a varying number of hop frequencies among the
FHSS signals results in a different number of observations,
thereby building an imbalanced dataset. Thus, resampling
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Figure 1. Block diagram of the proposed ANN-based classification
system.

methods such as the ROS and SMOTE are performed to
balance the dataset to enhance the ANN performance. From
the studied literature, it is expected that the ANN with
a balanced dataset will perform better compared to an
imbalanced dataset.

The proposed ANN-based classification system shown
in Fig. 1 is briefly described in this paragraph, whereas
its detailed explanation is in Section 3. The spectrogram is
produced from the intermediate frequency (IF) to acquire
the TFR of the FHSS signal. From the TFR, the FHSS
signal’s parameters like hop frequency and duration are
measured. Afterward, the dataset of the FHSS signals is
derived followed by the segregation of the data into training
and test data. Resampling is applied to the training data to
ensure a balanced number of observations among the classes
and used as input for the ANN training to obtain the trained
ANN. The test data is used to evaluate the performance of
the trained ANN.

The rest of the paper is structured as: the signal model
and problem statement are defined in Section 2. The TFD,
parameter estimation, and the proposed ANN-based system
are described in Section 3. Section 4 presents the results
and discussion, whereas the conclusions are summarized in
Section 5.

2. SignalModel
In this section, the signals utilized in this work such

as FHSS and orthogonal frequency-division multiplexing
(OFDM) are defined. The FHSS-based wireless technolo-
gies like those utilized by Bluetooth and drones often use
2.4 GHz frequency band, which take a large bandwidth of
100 MHz [6], [40]. Hence, a radio-frequency (RF) signal
with 2.4 GHz frequency is chosen, but this work could also
be employed to another frequency bands, for example, 5.8
GHz. The Wi-Fi signal is represented by the OFDM signal,
which will be treated as the background signal. For FHSS
and OFDM, the modulation methods used in this work are
binary phase-shift keying (BPSK) and quadrature phase-
shift keying (QPSK), respectively. The expression for the
FHSS signal is given as [41]:

s(t) = a(t)e j2π f c(t)t, 0 ≤ t ≤ T (1)

where the signal is represented by a(t), the signal duration
by T , and the time-varying channel frequency by fc(t).

The OFDM signal that is often utilized in Wi-Fi is given
as [42]:

v(t) = A
64∑

k=1

a(t)e j2π( fc+ fk)t, 0 ≤ t ≤ T (2)

where the signal is represented by a(t), the constant chan-
nel frequency by fc, the subcarrier frequency by fk, the
frequency index by k which is in range of 1 ≤ k ≤ 64, and
the signal amplitude by A. Note that based on IEEE802.11
b/g/n standard, subcarrier spacing of ∆ fk = 312.5 kHz with
64 subcarriers is used for Wi-Fi.

Realistically, noise corrupts the received signal, which
is then interfered with by background signals that could be
expressed as:

y(t) = s(t) + v(t) + n(t) (3)

where the FHSS signal is represented by s(t), the back-
ground signal by v(t), and the additive white Gaussian noise
(AWGN) by n(t).

The FHSS signal with four cases of interference are
evaluated for simulation motives as follows:

• Case 1: FHSS + AWGN

• Case 2: FHSS + AWGN + 1/
√

2 OFDM

• Case 3: FHSS + AWGN + OFDM

• Case 4: FHSS + AWGN +
√

2 OFDM

The OFDM signal in Cases 2, 3, and 4 is incorporated
within the range of the IF at 27 MHz frequency. In Case
2 and Case 4, multiplication by 1/

√
2 and

√
2 forms the

OFDM signal’s power at half and double, respectively, with
the FHSS signal’s power.

A. Parameters of FHSS Signals
In this paper, a dataset of real signals is not used

to verify the performance of the classifier. However, the
parameters of the signals used are similar to FHSS signals
used in [20], [43] and background signals such as OFDM
signal [42]. Table I presents the parameters of the five FHSS
signals, where each FHSS signal is dissimilar from others
with respect to hop duration and hop frequencies. Amid
the five FHSS signals, the FHSS 1 has the shortest hop
duration that contributes in capturing 16 frequencies within
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TABLE I. Parameters of the FHSS signals.

Signal
Hop

Duration
(µs)

No. of
Hop

Frequencies
Hop Frequencies (MHz)

FHSS 1 2 16
fc = k × 6 MHz;
k = 1, 2, . . . , 16

FHSS 2 3.5 9
fc = k × 7 MHz;
k = 1, 2, . . . , 9

FHSS 3 5 6
fc = k × 15 MHz;
k = 1, 2, . . . , 6

FHSS 4 6.5 4
fc = k × 7 MHz;

k = 1, 2, 3, 4

FHSS 5 8 4
fc = k × 15 MHz;

k = 1, 2, 3, 4

the signal length of 32 µs compared to the FHSS 2 that has
less frequencies. Therefore, the hop frequency count relies
on the hop duration and the length of the signal.

B. Parameters of OFDM Signal
The OFDM signal utilized in Wi-Fi, digital audio/video

transmission, and 4G cellular technology is considered as
a background signal in this paper. It depicts a Wi-Fi signal
with a subcarrier spacing of 312.5 kHz, 64 subcarriers,
and a channel bandwidth of 20 MHz. The OFDM signal’s
parameters employed in the paper are shown in Table II.

TABLE II. OFDM signal parameters.

Signal
Signal
Length

(µs)

No. of
Subcarriers

Bandwidth
(MHz)

Carrier
Frequency

(MHz)
OFDM 32 64 20 27

C. Problem Statement
An FHSS signal is a time-varying signal with a rapidly

changing carrier frequency over time, as opposed to a fixed-
frequency signal in which the frequency stays constant.
The change in carrier frequencies across a large frequency
range along with noise in the RF spectrum forms the FHSS
signals classification difficult [41]. Furthermore, the sharing
of frequency bands such as in the 2.4 GHz frequency band
results in interference between the fixed frequency wireless
technology (Wi-Fi) and FHSS based wireless technology
(drone). Accurate classification of FHSS signals together
with the necessity to scan a wide range of frequencies
within a short time interval becomes a difficult challenge
when combined with noise represented as AWGN, which
is naturally present in wireless communication [6], [44].

ML is the analysis of algorithms that have the ability
to automatically learn from observations of data [27]. An
ML algorithm requires training for which a proper dataset is
needed. A pseudorandom sequence of hopping frequencies
observed from an FHSS signal represents one observation of
all the possible hopping sequences of the signal. Therefore,
a technique is required that can determine the total number
of possible hopping sequences of the FHSS signal to
determine the total number of observations in the dataset.

Most of the ML algorithms assume that the training
set is evenly distributed among classes [33]. However,
in many real-world applications, the number of observa-
tions among classes is often imbalanced which reduces
the classification accuracy of an ML algorithm [34]. The
number of observations of an FHSS signal depends on the
number of hop frequencies. Therefore, a given set of FHSS
signals with a varying number of hop frequencies among the
FHSS signals results in a different number of observations,
thereby building an imbalanced dataset. Thus, a method is
required to balance the dataset for the increased learning
and decision-making capacity of an ML algorithm.

3. Analysis and Classification of FHSS Signals
The method employed for the classification of FHSS

signals in the existence of AWGN and the background
signal is described in this section. TFD is used to analyze
the FHSS signals followed by the parameter estimation,
determination of the dataset, and the network structure of
the employed ANN. The dataset generation and experiments
simulation were performed in MATLAB.

A. Time-Frequency Distribution
The signal is down converted from RF at 2.4 GHz to

the IF at 50 MHz. The shift in the frequency from RF to
IF is shown in Fig. 2.

2.4 GHz 2.45 GHz 2.5 GHz 0 MHz 50 MHz 100 MHz

RF signal IF signal

Figure 2. Time-frequency analysis bandwidth.

The TFR can be obtained from the IF using the spec-
trogram that is expressed as follows [14]:

X(n, k) =
N−1∑
m=0

x(m)w(m − n)e− j2πkm/Nw (4)

S x(n, k) = |X(n, k)|2 (5)

where the signal length is represented by N, the signal by
x(n), the window function by w(n) with length Nw, and the
TFR by S x(n, k).

A value of the threshold is required to distinguish the
FHSS signals from background signals defined in Section
2. The determination of the threshold is obtained from a
baseline signal, which is without the presence of FHSS sig-
nals, but could contain any combination of the background
signals or at least AWGN. From the start, the baseline signal
will be obtained and its power spectrum would be acquired
by frequency marginal of TFR [14], [20].

Px(k) =
∞∑

n=0

S x(n, k) (6)
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The peak value of AWGN’s power spectrum is used as a de-
fault threshold PT de f , because it is present throughout the
frequency range. For background signals such as OFDM, it
appears at a certain range of frequency and has peak power
greater than AWGN. For the OFDM signal’s frequency, a
larger threshold is required, which can be expressed as:

PT (k) = max(PT de f , PB(k)) (7)

where the threshold at k frequency is represented by PT (k)
and the maximum power of a background signal by PB(k).

The threshold setting PT (k) over the spectrum is shown
Fig. 3, where it is customized adaptively to its peak value.
For this example, the chosen values of the threshold for
specific bands of frequency are:

(a) 0.001 W for 0 – 28 MHz, 45 – 75 MHz, and 93 –
100 MHz.

(b) 0.004 W for 28 – 45 MHz.

(c) 0.002 W for 75 – 93 MHz.

B. Parameter Estimation
In this section, the FHSS signal’s parameters like the

hop duration and hop frequency will be measured from the
TFR [43].

1) Hop Frequency Estimation
The power spectrum is obtained from the TFR by using

(6) to estimate hop frequencies from the peaks of the
power spectrum as shown in Fig. 4. The expression for the
measured hop frequency and signal bandwidth for BPSK
can be formulated as:

f̂c = fp (8)

ˆfBW = fupp − flow (9)

where fp is the peak frequency, flow and fupp are the lower
and upper frequencies estimated from 50% peak power.

Figure 3. Threshold setting from power spectrum of baseline signal.

Figure 4. Power spectrum from TFR.

Figure 5. Instantaneous power from TFR.

2) Hop Duration Estimation
The TFR is assessed within a range of frequency close

to the hop frequency to determine the hop duration at that
frequency and the instantaneous power is given as:

Pi(n) =
fupp∑

k= flow

S x(n, k) (10)

where flow and fupp are the lower and upper frequency limit,
respectively, within the hop frequency measured in (8). By
estimating the pulse width at a reference level of 50% from
the peak as illustrated in Fig. 5, the instantaneous power at
each measured hop frequency is computed and utilised to
measure the hop duration.

C. Composition of Dataset
A dataset is required to train the ANN that will be used

to classify the various types of FHSS signals. Ideally, the
dataset size must be sufficiently large as well as balanced to
optimize the classification performance [27]. The following
is the derivation of the FHSS signals dataset.

1) Determination of Number of Possible Hopping Se-
quences of FHSS Signals
A pseudorandom sequence of hopping frequencies ob-

served from an FHSS signal represents one observation
of all the possible hopping sequences of the signal. The
following example describes the derivation of the total
number of possible hopping sequences of an FHSS signal.
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An FHSS signal with three hop frequencies ( f1, f2,
f3) is selected in this example. For the given hopping
sequence, only one frequency should appear at any given
hop duration. By considering all observations, the possible
hopping sequences for this signal are shown in Table III
where each column represents a hopping sequence of the
frequencies. There are six possible hopping sequences of
three frequencies which can be expressed as 3! = 6. Thus,
it can be concluded that the factorial of the number of
hop frequencies of an FHSS signal produces the possible
hopping sequences.

TABLE III. Possible hopping sequences for an FHSS signal with
three hop frequencies.

Hopping
Sequence

1

Hopping
Sequence

2

Hopping
Sequence

3

Hopping
Sequence

4

Hopping
Sequence

5

Hopping
Sequence

6
f1 f1 f2 f2 f3 f3
f2 f3 f1 f3 f1 f2
f3 f2 f3 f1 f2 f1

For a particular type of FHSS signal, all the possible
hopping sequences can be calculated as follows:

Phs = n! (11)

where Phs is the possible hopping sequences and n is the
number of hop frequencies of an FHSS signal.

Based on the signal parameters defined for all the FHSS
signals in Table I, all the number of possible hopping
sequences for each signal is calculated by (11) using the
number of hop frequencies. The results for all FHSS signals
are shown in Table IV. It is observed that the number of
possible hopping sequences of an FHSS signal increases
with the number of hop frequencies. Between the FHSS
signals, FHSS 1 and FHSS 2 have more possible hopping
sequences compared to the rest of FHSS signals.

2) Determination of Number of Selected Hopping Se-
quences of FHSS Signals
Once the number of possible hopping sequences is

determined for all FHSS signals using (11), the next step
is to calculate the number of selected hopping sequences

TABLE IV. The number of possible hopping sequences for all FHSS
signals.

Signal
No. of Hop
Frequencies

No. of Possible
Hopping Sequences

FHSS 1 16 2.09 × 1013

FHSS 2 9 362880

FHSS 3 6 720

FHSS 4 4 24

FHSS 5 4 24

that will be used to determine the dataset. It is not practical
to use all the possible hopping sequences, especially for
FHSS 1 and FHSS 2 due to their large numbers that
contribute to time complexity and computation cost [45].
Thus, it is important to find a suitable number of selected
hopping sequences to make inferences from the possible
hopping sequences.

A similar problem is also encountered in social sci-
ences where it is required to infer the characteristics of
a population based on data collected from samples from
the population because it is not practical to gather data
from the entire population due to the difficulty of getting
the cooperation to participate in the study. Furthermore, the
risk of irrelevant intervention can occur if more samples are
used than required. The following equation can be utilized
to determine the sample size from a population [46].

s =
X2NP(1 − P)

d2(N − 1) + X2(1 − P)
(12)

where s is the required sample size, X2 is the chi-square
value for 1 degree of freedom at desired confidence level
which is 3.841, N is the population size, P is the population
proportion (assumed to be 0.5 as this will provide maximum
sample size) and d is the degree of accuracy expressed as
a proportion which is 0.05. In our work, the population
size and the required sample size are considered as the
number of possible hopping sequences and the number of
selected hopping sequences, respectively. Thus, the number
of selected hopping sequences for the FHSS signal can be
calculated by using (12).

From this equation, the number of selected hopping
sequences for FHSS 1 is:

s =
3.841(2.09 × 1013)(0.5)(1 − 0.5)

(0.05)2(2.09 × 1013 − 1) + 3.841(1 − 0.5)
≈ 384

where N = 2.09 × 1013 for the FHSS 1 as determined in
Table IV, s is the number of selected hopping sequences
for FHSS 1, values for X2, P and d2 are discussed in
the previous paragraph. Similarly, the numbers of selected
hopping sequences according to (12) for the FHSS 2,
FHSS 3, FHSS 4, and FHSS 5 are 384, 250, 23, and
23 respectively. Therefore, the number of selected hopping
sequences among the FHSS signals used in this study is
imbalanced.

D. Structure of Dataset
In this subsection, the derivation of the FHSS signals

dataset is discussed. It is followed by segregating the dataset
into training and testing sets. The main objective in this
subsection is to determine the total number of observations
from the number of selected hopping sequences in the
dataset for all the FHSS signals. The structure of the dataset
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TABLE V. Dataset of the FHSS signals and noise.

Class No. of Selected
Hopping Sequences

SNR (dB)
Levels

Total No. of
Observations

Training
Observations

Testing
Observations

FHSS 1 384 4, 6, 8, 10, 12, 14 384 × 6 = 2304 1620 684
FHSS 2 384 4, 6, 8, 10, 12, 14 384 × 6 = 2304 1620 684
FHSS 3 250 4, 6, 8, 10, 12, 14 250 × 6 = 1500 1050 450
FHSS 4 23 4, 6, 8, 10, 12, 14 23 × 6 = 138 96 42
FHSS 5 23 4, 6, 8, 10, 12, 14 23 × 6 = 138 96 42

Noise 2304 1620 684
Total 8688 6102 2586

of the FHSS signals and noise is shown in Table V where
noise is included as a separate class in the dataset due to
the possibility of no signal at the ANN input. Thus, the
ANN has to be intelligent enough to differentiate between
noise and FHSS signals. Following is the derivation of the
dataset: first, the number of selected hopping sequences
is determined in previous sub-section, then the dataset is
generated under six SNR levels from 4 dB to 14 dB of
SNR with step size of 2 dB for the ANN training [47].
The latter is chosen to cover the range from low to high
SNR within the operating condition of the ANN. Each
SNR level will contain the number of selected hopping
sequences, so multiplying six to the number of selected
hopping sequences of each class produces the total number
of observations of each class. For noise, the number of
observations selected is equal to the number of the majority
class (FHSS 1 or FHSS 2) observations. Thus, the total
number of observations in the dataset is 8688.

Splitting of a dataset into two parts that is training
and testing takes place in supervised learning where it is
a common practice that the training-set contains 70 to 80
percent of data while the remaining data is used for testing
[27]. Therefore, in this work, 6102 observations (70%) are
used for the ANN training and 2586 observations (30%) are
used for testing as shown in Table V.

The dataset structure in Table V is imbalanced because
of the different number of hop frequencies among the FHSS
signals that result in different numbers of observations.
A significant decline of area under the receiver operating
characteristic curve (AUC) is observed in [35] when the
ANN is trained on imbalanced data. The increase of class
imbalance in the training-set has a progressively detrimental
effect on ANN’s performance. To handle the imbalanced
dataset, resampling is required to balance the dataset which
will be discussed further in the following subsection.

E. Classification of FHSS Signals
The LD and the ANN-based methods are proposed to

classify FHSS signals in the existence of AWGN as well
as the background signal. The following are the detailed
explanations of these methods.

1) Linear Discriminant
LD is a function that is a linear combination of the

components of feature vector x [48].

g(x) = wT x + w0 (13)

where weight vector is represented by w, a feature vector
by x, and the bias by w0. To estimate distance between
patterns, the Euclidean distance could be utilized, which is
used to make recognition choices [22]. It is given as:

d(x, y) =

√√√ l∑
i=1

|xi − yi|
2 (14)

where x and y represent the two vectors or points and l
represents the elements in each vector.

The pseudo code of the LD method for the classification
of the five FHSS signals is shown in Algorithm 1.

Algorithm 1: Linear Discriminant (LD)
Data: Ideal FHSS signals xi where i = 1, 2, · · · , 5;

Estimated FHSS signal y.
Result: Classified signal z.
Determine the Euclidean distances amid the ideal
and estimated FHSS signals: d = [norm (y − xi)];

Find the minimum distance amid the determined
Euclidean distances: m = min(d);

if m = first point of d then
z = FHSS 1

else if m = second point of d then
z = FHSS 2

else if m = third point of d then
z = FHSS 3

else if m = fourth point of d then
z = FHSS 4

else if m = fifth point of d then
z = FHSS 5

else z = unknown;

2) Artificial Neural Network
The ANN pattern recognition is used as a classifier

which uses the scaled conjugate backpropagation algorithm
[49] for the training with tan-sigmoid activation function
at the hidden layer and SoftMax at the output layer. Tan-
sigmoid provides fast convergence of training algorithms
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while SoftMax determines the multi-class probability at
once [48]. ANNs are static networks in which the archi-
tecture should be pre-determined to fit the problem and
it is fixed. The architecture of employed ANN for the
classification of the FHSS signals is shown in Fig. 6 where
the input layer is composed of 32 nodes (each receiving
one input from the feature vector), the output layer has
six elements (five elements indicate the predicted FHSS
signals and one element indicate the noise only) and there
is one hidden layer comprising of 32 neurons. There are
five different FHSS signals which have a varying number
of hop frequencies and durations, thereby having a different
number of elements of each signal. Therefore, zero-padding
is needed to get a fixed-length input vector [50]. Zero-
padding is applied to all the FHSS signals except FHSS 1
because FHSS 1 has 32 elements (16 hop frequencies and
16 hop durations) which are equal to the input layer of
ANN while all the other FHSS signals have less than 32
elements.

3) Resampling Methods for Imbalanced Dataset
The following are the resampling methods used in this

paper.
a) Random Oversampling

ROS works by randomly duplicating the minority class
observations until the class distribution is balanced [37].
The structure of the training data becomes balanced after
applying the ROS on minority classes (FHSS 3, FHSS 4,
FHSS 5). Hence, the total number of training observations
becomes 9720, as there are six classes where each class will
equally have 1620 observations of training.

b) Synthetic Minority Oversampling Technique
SMOTE creates synthetic observations by randomly

selecting a minority observation and then compute its k-
nearest neighbors by using (14) among minority observa-
tions [38]. The synthetic observation is generated as:

S = [(M2 − M1) × r] + M1 (15)

where M1 is a randomly selected minority observation, M2

Figure 6. The ANN architecture employed for the classification of
the FHSS signals.

is the nearest neighbour, r is a uniformly distributed random
number between 0 and 1 and S is the newly generated
synthetic observation. The training data becomes balanced,
the same as described in the previous paragraph.

F. k-Fold Cross-Validation
In k-fold cross-validation (CV), data are split into k-

folds of equal size where k−1 folds are used for training and
the remaining fold is used for validation as shown in Fig.
7 [51]. This process repeats k-times and then the classifier
is evaluated on the test data. Validation is used to measure
the performance of a network, and to halt training when the
performance stops improving to avoid overfitting. 5-fold CV
is used in this paper due to the large dataset.

4. Results
This section discusses and illustrates the TFR of the

FHSS signals with the background signal. Thereafter, the
PCC of the FHSS signals is computed for various SNR
levels for all four cases stated in Section 2. The training
of the proposed model of ANN is conducted three times.
Therefore, the total number of methods conducted for each
case is four: (i) LD, (ii) ANN with imbalanced data (ANN-
ID), (iii) ANN-ROS, and (iv) ANN-SMOTE. Thereafter, the
SNR range at 0.9 PCC of FHSS signals for all the four cases
is evaluated. Finally, the training performance of ANN with
respect to cross-entropy error is discussed.

A. Time-Frequency Representation
The TFR of the FHSS signals in the existence of AWGN

and the background signal is shown in Fig. 8. A fixed
frequency Wi-Fi signal included within the range of the
IF at 27 MHz frequency is used as the background signal.
The the FHSS 5 has the longest hop duration, whereas the
FHSS 1 has the shortest hop duration, thereby contributing
in 16 and 4 hop frequencies, respectively, inside the signal
length of 32 µs.

B. Probability of Correct Classification
1) Case 1: FHSS + AWGN

The plots of PCC versus SNR where interference is
modeled as AWGN are shown in Fig. 9. In all four
methods of Case 1, the FHSS 4 signal with the fewer hop
frequencies performs best, whereas the FHSS 1 signal with

Figure 7. Block diagram of the 5-fold CV [48].
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(a) FHSS 1

(b) FHSS 2

(c) FHSS 3

(d) FHSS 4

(e) FHSS 5

Figure 8. TFR of the FHSS signals in the presence of AWGN and
the background signal.

the greater hop frequencies performs worst. Between the
FHSS 4 and FHSS 5, the FHSS 5 performs less due to
the class overlap [34] with the FHSS 3 and FHSS 1.

2) Case 2: FHSS + AWGN + 1/
√

2 OFDM
In this case, interference is modeled as AWGN, with

the OFDM signal acting as the background signal, where
the power of the latter is half that of the FHSS signal.
The performance of the LD is declined significantly due
to the background signal while the ANN still performs
well as shown in Fig. 10. For all the methods of Case
2, FHSS 2 performs least because its three frequencies
are overlapping with the background signal as depicted in
Fig. 8(b) while the rest of the FHSS signals have lesser
overlapping frequencies.

3) Case 3: FHSS + AWGN + OFDM
In this case, the OFDM signal’s power is equivalent to

the FHSS signal’s power. The LD method’s performance
is negatively affected by an increase in the power of the
background signal, but it does not have much effect on the
ANN as shown in Fig. 11.

4) Case 4: FHSS + AWGN +
√

2 OFDM
The FHSS signal’s power is half with the OFDM sig-

nal’s power in this case. The overall performance is almost
the same as in Case 3, an increase in the power of the
background signal has negative affect on the performance
of the LD method, but it has not much effect on the ANN
as shown in Fig. 12.

C. Box Plots of SNR Range at 0.9 Probability of Correct
Classification
Box plot is a visual representation of statistical data

based on the five-number summary: minimum, first quartile,
median, third quartile, and maximum [52]. The prompt
appearance of the center, spread, and overall range make
the box plot ideal for comparing distributions. In this
section, the results achieved in the previous subsection are
summarized by using the box plots as shown in Fig. 13. The
distribution of the FHSS signals within the ranges shown in
the box plots at 0.9 PCC are as follows: FHSS 3, FHSS 4,
and FHSS 5 signals with least number of frequencies
are close to the minimum SNR limit while FHSS 1 and
FHSS 2 signals with the most number of frequencies are
close to the maximum SNR limit. Based on the SNR range,
the best performance is for Case 1 and the worst perfor-
mance is for Case 4. This is expected in Case 4 since the
interference is not just AWGN but also background signal
due to OFDM. Furthermore, the power of the FHSS signal
halves the background signal power. The performance for
Case 2 and Case 3 where the background signal is present
but at lower or equal power to the background signal
produced better performance than Case 4.

It is observed from Case 1 that the narrowest and
the widest SNR ranges (SNR range: difference between
maximum and minimum SNR limit) among the ANN based
methods are 2.4 dB and 2.5 dB which are smaller compared
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(a) LD (b) ANN-ID

(c) ANN-ROS (d) ANN-SMOTE

Figure 9. PCC of the FHSS signals for Case 1: FHSS + AWGN.

(a) LD (b) ANN-ID

(c) ANN-ROS (d) ANN-SMOTE

Figure 10. PCC of the FHSS signals for Case 2: FHSS + AWGN + 1/
√

2 OFDM.

to the SNR range of 5.1 dB of the LD method. Similarly, in
Case 4, the SNR ranges among the ANN based methods are
1.7 dB and 2.3 dB which are smaller compared to the SNR
range of 14 dB of the LD method. These results indicate the
more consistent and better performance of the ANN based
methods than the performance of the LD. Furthermore, in
Case 4, the SNR ranges for the ANN-SMOTE and ANN-
ROS are 1.7 dB and 1.9 dB which are less than the SNR
range of 2.3 dB of the ANN-ID.

The ANN-SMOTE performed better than the ANN-ROS
in all the four cases. This is because the SMOTE adds
artificial observations to the training dataset which increases
the generalization ability of the ANN while the ROS does
not introduce any new information to the training dataset.

Thus, it can be concluded that: (i) The proposed ANN based
system performed consistently well in both Case 1 and
Case 4 while the performance of the LD is inconsistent and
degraded significantly in Case 4. (ii) The ANN performed
better with the balanced dataset than with the imbalanced
dataset. Furthermore, Table VI shows the comparison of the
average classification accuracy at 0 dB of SNR of the ANN-
SMOTE with related works. The classification performance
of the ANN-SMOTE is better than [24], [29], and [31],
whereas close to [26].

D. Cross Entropy Error of Artificial Neural Network
In this section, the cross-entropy (CE) error of the

training of the proposed ANN model conducted three times
is discussed. CE is the measure of error between computed

http:// journals.uob.edu.bh

http://journals.uob.edu.bh


785

(a) LD (b) ANN-ID

(c) ANN-ROS (d) ANN-SMOTE

Figure 11. PCC of the FHSS signals for Case 3: FHSS + AWGN + OFDM.

(a) LD (b) ANN-ID

(c) ANN-ROS (d) ANN-SMOTE

Figure 12. PCC of the FHSS signals for Case 4: FHSS + AWGN +
√

2 OFDM.

TABLE VI. Comparison of classification performance with related
works.

Method Signal Type
Average Accuracy

at SNR = 0 dB
ANN [31] Modulated signals 90%

MLP [29] Radar signals 82%

MLP [26] Modulated signals 99.51%

LD [24] FHSS signals 51%

ANN-SMOTE FHSS signals 95.77% (Case 1)

or predicted outputs and target outputs of the training data
[53]. Minimizing CE error results in good classification,
lower values are better, and zero CE means no error.

Fig. 14 shows the learning performances of ANN train-
ing for three methods with respect to CE. In Fig. 14(a), the
ANN-ID model achieved the best validation performance of
0.0017 CE error at the epoch of 43 which means that the
model is optimized at the epoch of 43. Although the training
curve is converging after the epoch of 43, the performance
of the model no longer continues to improve, as the CE
error for validation starts increasing which may indicate
the possibility of overfitting. Therefore, to avoid overfitting,
early stopping of training is applied if the error increases
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(a) Case 1 (b) Case 2

(c) Case 3 (b) Case 4

Figure 13. Box plots of SNR range at 0.9 PCC: (a) Case 1: FHSS + AWGN, (b) Case 2: FHSS + AWGN + 1/
√

2 OFDM, (c) Case 3: FHSS +
AWGN + OFDM, and (d) Case 4: FHSS + AWGN +

√
2 OFDM.

(a) ANN-ID

(b) ANN-ROS

(c) ANN-SMOTE

Figure 14. CE error of the ANN.

for six consecutive epochs [54]. In Fig. 14(b), the ANN-
ROS model achieved the best validation performance of
0.0011 CE error at the epoch of 61 which is slightly less
than the ANN-ID but it took 18 more epochs to converge to
minimum CE error compared to the ANN-ID. So, the ANN-
ROS model converges slower than the ANN-ID. In Fig.
14(c), the ANN-SMOTE model achieved the best validation
performance of 0.00025 CE error at the epoch of 46 which
is less than the other two ANN models.

Furthermore, the validation curve converges until the last
training epoch as shown in Fig. 14(c). The performance of
ANN-SMOTE continues to improve until the training curve
reaches its goal of CE error below 10−6. This increases the
generalization ability of ANN that is why the ANN-SMOTE
model performs better than the other two models of ANN.

5. Conclusion
The use of an ANN-based system was proposed to

classify FHSS signals in the existence of AWGN and
the background signal. In this approach, from the TFR,
the FHSS signal’s parameters like hop frequency and hop
duration were measured. The ANN requires training for
which a proper dataset is needed. Therefore, a technique
was developed to derive the total number of possible
hopping sequences of an FHSS signal that were used to
determine the total number of observations in the dataset.
Due to a varying number of hop frequencies among the
FHSS signals, the issue of an imbalanced dataset occurred
that degraded the performance of the ANN. Therefore, to
enhance the ANN’s performance, resampling methods such
as the ROS and SMOTE were used to balance the dataset.

The PCC of the FHSS signals for various SNR levels
was evaluated. Based on the SNR range at 0.9 PCC in the
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worst case of interference (Case 4), the SNR ranges of the
LD, ANN-ID, ANN-ROS, and ANN-SMOTE are as fol-
lows: 14 dB, 2.3 dB, 1.9 dB, and 1.7 dB, respectively. These
results show that the ANN-SMOTE method outclassed the
LD method by 12.3 dB (the difference between the SNR
ranges: 14 dB – 1.7 dB) of SNR. Furthermore, the ANN-
SMOTE performed better by 0.6 dB of SNR than the ANN-
ID.
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