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Abstract: This paper proposes to detect, recognize, and track a specific object in video sequences using Convolutional Neural
Networks (CNNs). The CNNs used are the TensorFlow SSD model and Inception model, with a use case of airplane detection as a
test subject, although it can be widely extensible to any class of objects as per the application. For the SSD model, images of planes
were downloaded and annotated using bounding boxes to identify regions of interest. Training and test sets were split, after which
TensorFlow specific records were generated. Whereas, for the Inception model, the last layer of the Neural Network was trained with
multiple images of airplanes and random images to obtain a classifier for identify planes vs. no planes. The SSD model was accurate,
generating crisp bounding boxes with a relatively high accuracy. The Inception model had a higher accuracy than the SSD model in
terms of false positives and false negatives. But it does not display bounding boxes as the model is not meant to find the region of
interest. The GPU outperformed the CPU in training and testing by a wide margin. The Inception model is suitable to extract frames
in which a specific object is present if the position of the object is not of importance. The SSD model is suitable if the specific object
needs to be detected with its position in a video frame.
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1. Introduction
Object recognition is used in computer vision, video

analytics and image processing tasks, wherein the instances
of semantic objects of a certain class (such as humans,
buildings, cars and so on) in digital images and videos
[1] are studied for various use cases. Object recognition
has profound applications in various domains and is also
a challenging task as only the target object from multiple
other objects present in a frame must be identified and
tracked regardless of the pose, variations in viewpoints,
illuminations etc. It remains an open research problem
even after several years of research in the field. One of
the primary and extremely useful applications of object
recognition is its use case in Physical Security Systems.
It can be used to detect intruders and trigger alarms to
enhance security in areas of high sensitivity. It can also
be used to detect foreign objects such as drones in high
surveillance and high security areas. Its utility also includes
surveillance and detection near country borders against
intruding vehicles or people. These systems help in taking
corrective measures in real time to avoid any untoward
incidents.

In any traditional object recognition problem, the main
task is to identify different categories of objects in an

image. It also seldom involves figuring out the pose of the
so recognized objects [2]. A key method used in object
recognition involves extracting features from images or
video frames and are extremely important, as they describe
characteristics of the object in question. The features are
fed into a classifier to perform recognition. However, in
most cases, extracting these features is not an easy task,
due to a variety of factors such as noise in the image.
A more commonly used method for object recognition is
picture segmentation. In picture segmentation, a picture is
divided into a variety of associated, important dimensions
and a pixel grid in a specific dimension with respect to
application. This process is dependent on the measurements
of the image. In a segment of a picture, all pixels in a
dimension are qualitatively like each other with respect
to the hues, intensity, and surface consistency [3]. After
this, feature extraction is performed to obtain important
features. Finally, the features are fed to a classifier and
object recognition is performed.

A more sophisticated technique which is used in certain
applications is object recognition via contorted lumines-
cence and form. In this technique, the shape of an object is
guessed based on some approximations obtained from the
scene object. This guess is usually called a model shape.
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These paradigms can actively relegate a model shape to
a scene shape or vice versa. Thereafter, the cost of the
distortion can be used to measure the similarity between
shapes [4]. The same principle is extended to perform object
recognition for a set of objects.

Apart from the techniques listed above, quite a few other
techniques are also common in real time scenarios. In some
cases, video object partitioning by making use of a unified
Bayesian is employed. This technique helps segment objects
from a rough form to a finer form. Thereafter, there are a
few segment models which help in enhancing fragmentation
results [5]. Another technique uses an algorithm which
improves recognition and segments articles in the fore of
an egocentric video. This paradigm is especially useful in
a SIFT based recognition system [5]. A more modern ap-
proach involves automatically generating a semantic map on
the scene data. Using this information, camera sensors are
boosted to identify the article and dynamically programmed
partitioning [5]. Semantic texton forests are employed for
the binning of the image and segmentation of the object.
This process involves the usage of hierarchical clustering
and local image classification techniques [5].

With the advent of artificial intelligence and re-
emergence of deep learning, many new techniques have
come into the light for solving traditional object detection
problems. This paper focuses on the specific object recogni-
tion problem of airplane detection in varying backgrounds.
We will be employing Google’s TensorFlow framework and
applying Convolutional Neural Networks to perform this
task.

With most traditional computer vision techniques, we
face a few hurdles in pursuit of the optimal solution. For
starters, the complexity of an object recognition problem
increases once we bring in varying scene backgrounds,
especially if it matches the object to be recognized in
a scene. Secondly, the application of additional tracking
algorithms if needed, after the object recognition process,
is harder and more computationally intensive for each run
of the system. These two problems are addressed rather
well by using CNNs. The background of an object does
not affect the prediction made and using techniques such as
Single Shot Detection on a MobileNet model, the run-time
processing time also reduces.

The other problem addressed with use of CNNs is the
possibility of producing an extremely lightweight model
(Inception), which can run on live videos with high frame
rates. This is especially important for high security require-
ments, since for fast paced targets, a single frame can make
or break the whole purpose of the system.

With more focus on deep learning-based applications,
more and more techniques based on convolutional neural
networks are coming into the scene. Efficient deep learning
frameworks such as Google’s TensorFlow, Caffe and so on
are gaining a lot of traction due to their robustness and

abstracted views.

Proposed system uses TensorFlow to detect and track
specific objects in videos. Two models are compared after
the training procedure to highlight the pros and cons of
each. Also, a comparative analysis of the training and
object recognition phases using CPUs (Intel Core series
processors) and GPUs (NVIDIA GTX 970M) is performed.
TensorFlow is an open-source library which is used for
calculations using dataflow graphs and is especially useful
for machine learning applications. Statistical features are
represented by nodes in the graph. Tensors, which are multi-
dimensional arrays shared between operations, form the
edges in the graph. The architecture allows for users and
developers to distribute complex arithmetic tasks between
one or more cores (either CPU or GPU) in a desktop, server,
or mobile device. This is all enabled through a single API.
TensorFlow was originally envisioned to be employed for
ML and Deep Learning-based research internally within
Google’s ML Research group. But the same was scalable
enough to be applied for other use-cases as well. The Single
Shot Detector (SSD) model [6], [7] and the Inception model
are Convolutional Neural Networks (CNN) developed for
precise processing of images. For this project, the above
two models will be trained to detect and track airplanes in
each video.

2. Proposed System
In brief, the methodology incorporated is as follows: For

the SSD Model, images of airplanes were downloaded and
were annotated using bounding boxes to identify regions
of interest. Images were split into training and test sets,
after which TensorFlow specific records were generated
for training and test sets. The SSD model was trained
independently on the CPU and GPU and tested at multiple
checkpoints. For the Inception model, the last layer of
Google’s pertained Inception Neural Network was retrained
with two sets of images, one of “Airplanes” and the other of
“Generic” images. This generated a classifier that classifies
images as either Planes or Not-Planes. The model was tested
and compared with the SSD model on multiple criteria [8].

Although the experiment was to specifically detect
planes in a video, the principle used here is easily extensible
to the context of other objects as well for other applications
[9]. It’s also possible to detect and track more than one
specific object class in a video. The only drawbacks being
an increase in time spent annotating the training images and
training the models.

The following are the design considerations:

• Appropriate split of the images into training and
testing batches to ensure the model has an appropriate mix
of different images

• Finding the optimal hardware on which the training of
the model must be done which is effectively identifying
the tradeoffs between speed and complexity of hardware
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in the case of a CPU and GPU

• Identifying the optimal video quality on which the
video must be run to ensure minimal lag and maximum
accuracy

• Identifying the appropriate differences and use cases for
TensorFlow SSD and TensorFlow Inception models

A. System Architecture
The system architecture is as depicted by Figure 1.

The system can be divided into 3 main modules: Training,
Models and Run-Time. The Training module is responsible
for data pre-processing and training model checkpoints. The
Model module is the frozen graph, which is run using the
Runtime module. Finally, the Runtime module uses the
frozen variables from the modules to classify and detect
objects in the video.

Figure 1. System Architecture

B. Single Shot Detector
For the SSD model the images of planes are downloaded

from ImageNet and annotated to make them ready for use
with the TensorFlow learning scripts. The dataset generator
is the module that generates the dataset in the format, as
required by the TensorFlow API. They were split into train
and test sets and the corresponding .csv files for training
were generated which were subsequently converted into
tfRecords (TensorFlow compatible format) for training the
SSD model.

The web scraper program is used to download relevant
images from a Google Image Search. Once these images are
downloaded, we manually go through them to ensure that
they have the required features for our dataset. In our case,
we downloaded images from the search for “Airplane”.

These images are then run through the annotation pro-
gram that lets us draw boxes around the area of interest

in the images and store these in a generic XML format.
These images and annotations are used for the training
process with the TensorFlow training scripts. The Model
trainer takes our generically annotated images and uses it
to generate a model that is compatible with our runtime
program.

The XML annotations are first fed to a CSV converter,
which translates the XML annotations into a format that
is accepted by the training scripts. These CSV annotations,
along with the images, are fed to the training scripts. The
training scripts use these to generate TFRecords, a Tensor-
Flow specific storage format before the training phase. The
training graph is used by the object detector, which is the
runtime program, to detect images with features like those
of the dataset [10]. The runtime uses a video capture device
to extract frames from either a camera or a video file. These
images are processed individually in the program loop.

Within the program loop, the individual frames are
processed by feeding them to the trained model graph that
provides the bounding box and confidence levels. These
outputs are used to draw the bounding box and print details
on the final output image, which is displayed as the output
video stream [11], [12].

The SSD model was trained for about 100,000 steps on
CPU and GPU and tested at multiple checkpoints.

C. Inception Model
For the Inception model, the last layer of Google’s

pertained Inception Neural Network was retrained with
two sets of images, one of “Airplanes” and the other of
“Generic” images. Since Inception is a classifier, one set of
600 images of planes was used to build the “plane” class
and one set of 600 images was used to create a “generic”
class. The inception model internally splits the input image
set into training and validation sets in every step. The given
image set is used to retrain the last layer of the inception
model and generate a new TensorFlow Graph File which
can be used in the runtime program. A total of 8000 steps
were used to retrain the model. The model obtained here
was of high accuracy.

3. Experimental Setup
For training the TensorFlow SSD model, the experimen-

tal setup on the hardware side included the MacBook Pro,
with an Intel 2.9 GHz i5 Processor with 8 GB RAM and
on an ASUS RoG with an Intel 2.5 GHz i7 Quad Core
Processor, and a GeForce GTX 970M GPU.

The plane’s images were downloaded from ImageNet,
which is an open-source data repository for image-based
datasets. To label the images, the labelImg annotation
software was used. The software generated an xml file for
each image with the edge coordinates of the regions of
interest in the image.

For training the TensorFlow Inception model, the exper-
imental setup used a MacBook Pro with an Intel 2.6 GHz
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quad core i7 with 16 GB RAM. Since the training wasn’t as
rigorous as the SSD training process, only CPU computing
was utilized for training the Inception model training. The
images used to train the model were from the Common
Objects in Context dataset (COCO).

A. Batch Size Selection
The batch size is essentially the number of images the

hardware can simultaneously support in each step while
training the model in parallel to ensure faster training. The
optimal batch size for a given hardware specification would
be the one that would prevent memory overflow error while
ensuring that the training time is optimized [12]. For the
CPU and the GPU, the batch sizes that were tested were 1,
2, 10, 14 and 16. The results were observed as follows: a
memory overflow error was encountered for a Batch size of
16 or greater on the GPU; the same error was encountered
with a batch size of 4 or greater on CPU. It was decided
that for the CPU, a batch size of 2 was optimal, while for
the GPU, a batch size of 16 was optimal. Each step took
around 1.35 seconds on the GPU and around 20.57 seconds
on the CPU.

B. Video Optimality Test
The next testing module was to determine the optimal

video resolution range for best detection and minimal
latency. Different video qualities were used for detection
on the GPU to compare the video latencies and detection
accuracies and hence determine a range of video qualities
for the purpose of this test [13]. The video qualities (res-
olutions) used were 144p, 360p, 480p, 720p, 1080p. The
model was found to be inaccurate with 144p, and a slight
improvement was observed with 360p. There were a few
errors with 480p and a good performance improvement
was observed with 720p. While it was found to be more
accurate, 1080p showed a significant increase in latency.
The video quality from 480p to 720p was optimal for speed
on the above specified GPU hardware.

In the above test, though 480p and 720p showed optimal
speed among all other resolutions, it is fairly apparent
that a higher resolution would mean better object detection
accuracy, since more pixels are available around the desired
object [14], [15]. However, there were a few exceptions to
this rule, which were more random than explanatory.

4. Results and Analysis
The following chapter highlights the results and analysis

of the proposed system, which includes the CPU vs GPU
training time, the analysis of weights and biases, training
checkpoint analysis, comparison of TensorFlow SSD and
TensorFlow Inception model.

A. CPU vs. GPU Training Time
An important aspect is to do comparative analysis of the

training performance of the TensorFlow SSD model on a
CPU and GPU. For analysis, the CPU on which training
was performed was an Intel i5 (8 GB RAM, 2.9 GHz). The
GPU on which the model was trained was an NVIDIA GTX

970M. The Figure 2 clearly indicates that at a training step
of approximately 3,500 on the above CPU, the time taken to
reach the above point was around 20 hours and 5 minutes.

Figure 2. CPU Training Graph

However, the same training process for a checkpoint
of close to 2500 steps was observed when the model was
trained with a GPU. As can be observed from Figure 3, we
obtained a remarkable speedup, with the checkpoint being
reached in about 1 hour and 20 minutes. This speedup is a
welcome result for larger datasets.

Figure 3. GPU Training Graph

B. Weights and Biases
For training visualization, weights and biases are sought

out for the layers in the model as training progresses. The
visualization is shown below.

The BW graphs stand for biases and weights. The
Figures 4, 5, 6, 7, 8 are the biases and weights for
the 5 fully connected layers of the neural network. The
Box Predictor number indicates the layer number of the
fully connected layers of the neural network. Each of the
graphs is basically a histogram. The x axis indicates the
value of the bias in the bias graph and value of weights
in the weights graph. The y axis indicates the distribution
of the values, that is, the number of instances which have
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the specific value of weight/bias. The z axis indicates the
training step at which the data is recorded.

Figure 4. Bias and Weight for BoxPredictor0

Figure 5. Bias and Weight for BoxPredictor1

Figure 6. Bias and Weight for BoxPredictor2

Figure 7. Bias and Weight for BoxPredictor3

Figure 8. Bias and Weight for BoxPredictor4

C. Training Checkpoint Analysis
As indicated by the experimental setup above, the

training was accomplished on the plane dataset for about
100,000 steps until the model converged to a loss less
than 1.0 on an average. For the SSD Model, the various
checkpoints obtained above were tested to verify the best
model as the iterations progress. For analysis, the models
were tested on the test set as well as videos of planes from
the open-source YouTube-8M video data set maintained by
Google. The criteria for analysis were testing the number
of false positives and false negatives in each video which
consisted of multiple planes and a video which had no
planes and consisted of people and other vehicles. The
length of the videos was about 50 seconds each.

Clearly as the total loss in training decreased with the
increase in number steps until the point of convergence,
which was around 41117 steps, the model performed well
with a very small number of false positives and false
negatives. Beyond 41117 the model started producing full
frame errors with almost no significant recognition. Table I
summarizes all our findings with respect to checkpoint
analysis.

D. Inception vs. SSD
Table II compares SSD and the Inception model. It

brings about the pros and cons of each model and their
typical use cases.

Table III gives a brief comparison of R-CNN, R-FCN
and the SSD during Real-Time Usage, the results of which
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TABLE I. CHECKPOINT ATTRIBUTES

Model Name False
Neg-
ative
Count

False
Pos-
itive
Count

Model Performance

.ckpt-22222 10 1 Almost no detection

.ckpt-32000 2 7 Few Boxes were obtained accurately, but confidence was lower

.ckpt-41117 3 1 False positives almost eliminated, and heavy reduction in false negative
count

.ckpt-72542 2 10 Detection occurred in a few frames but with full frame errors cropping up

.ckpt (more than
100000 steps)

1 12 Abundance of full frame errors. Model cannot be used at all.

TABLE II. INCEPTION VS. SSD – A COMPARISON

Inception SSD

No Bounding Boxes Bounding Boxes

Trains only last layer of model Trains all layers of Model

Very Low Training Time High Training Time

Can be Trained easily with CPU CPU training is extremely slow and
not recommended. GPU is a must.

Higher Accuracy levels Accuracy is good but lower than In-
ception for not very large datasets

Very Good Classifier. Its specialty is
to classify.

Specialty is to identify specific ob-
jects within a frame and location of
objects in the frame.

Cannot find object position in the
frame

Can find the objects specific position
in the frame

are obtained from a paper [16] by Google Research.

E. CPU vs. GPU Comparison
The comparison of the CPU and GPU that has been used

in terms of cost of the device themselves, operational costs
and the performance-power metrics for these experiments
are illustrated in Table IV.

F. Sample of Obtained Results
Figure 9 shows the identification of a fighter jet in a non-

uniform background. The SSD model was run on this frame
to obtain the bounding box around the object of interest. The

airplane was detected quite accurately with a confidence
level of 99%.

Figure 10 shows another application of the SSD model
on a frame with a light, uniform background. As with
the previous case, the airplane in the frame was identified
accurately, with a confidence of 97%.

Figure 11 shows the application of the SSD model on
a frame where multiple objects of interest (airplanes) are
present in a single frame. The model accurately annotates
the airplanes in the frame, with varying confidence levels.
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TABLE III. FASTER R-CNN VS. R-FCN VS. SSD (REAL-TIME USAGE COMPARISON)

Factors Faster R-CNN R-FCN SSD

Mean
Average
Precision
(mAP)

Lower than SSD for
real-time processing

Lower than SSD for real-time
processing

Has the highest mAP amongst
the three for real-time process-
ing

Memory
Usage

Highest Memory Uti-
lization

Memory Utilization factor in-
between the other two models

Lowest memory utilization
amongst the three

Accuracy vs
GPU Time

Takes the longest time
for object recognition on
a GPU but most accurate

Takes moderate amount of
time for object recognition on
a GPU and almost as accurate
as SSD

Takes the least time for ob-
ject recognition on a GPU with
good accuracy but accuracy is
lesser than that of Faster-CNN

TABLE IV. CPU VS. GPU: COST AND PERF-POWER METRICS)

Factors CPU Intel i5 8 GB RAM
2.9 GHz

GPU NVIDIA GTX 970M

Cost Price Approximately 200$ Approximately 400$

Power
Usage
Cost For
Processor
Considering
Each Proper
Training
Run

Run time: 1205 mins
TDP: 65W Cost per
kWh: 0.077$ Total cost:
0.1$ Run time: 80 mins

TDP: 75W Cost per kWh:
0.077$ Total cost: 0.01$

GFLOPS
(Single
Precision)

71.68 @ TDP (1.102
GFLOPS/watt)

2365 @ TDP (31.53
GFLOPS/watt)

GFLOPS
(Double
Precision)
31.35 @
TDP

(0.482 GFLOPS/watt)
73.9 @ TDP

(0.985 GLOPS/watt)

Figure 12 shows the SSD model in its working for
an instance of airplanes where the angle of viewing the
plane is directly below it. The frame is also such that the
actual airplane is blurred. Even in this case, the airplane
was identified. However, the confidence dropped to 90%.

Figure 13 shows the working of the Inception model
on the frame of a video. The Inception model, being a
light-weight model, ran much faster than the SSD model.
However, no bounding boxes were obtained in this case.
Rather, a higher confidence value was obtained.

5. Conclusion
In conclusion, the SSD and Inception models were

successful in detecting planes in a video with minimal
lag and high accuracy. The Inception model is suitable
to extract frames in which a specific object is present if
the position of the object is not of importance. The SSD
model is suitable if the specific object needs to be detected
and recognized with its position in a video frame. Also,
for the use case, the requirement of a GPU for training
the model is important as it was clearly observed that the
training efficiency with a GPU was higher. This model can
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Figure 9. Jet Identified by SSD Model: Case 1

Figure 10. Airplane Identified by SSD Model: Case 2

Figure 11. Multiple Airplanes Identified by SSD Model: Case 3

Figure 12. Airplane Identified by SSD Model: Case 4

Figure 13. Fighter Jet Identified by Inception Model: Case 5

track the object even if they come to a standstill suddenly
(shortcoming of Temporal Differencing), and it works even
if there is an excessive movement (shortcoming of Median
Flow Tracker). The higher the occlusion, the lower was
the detection accuracy. The future work involves improving
accuracy and detection for occluded objects by using a
larger and more diverse dataset and detection of war-tanks
in a war-field since it is a challenging Computer Vision
problem, due to the existence of camouflaging techniques.
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