
International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 12, No.1 (Jul-2022)

https://dx.doi.org/10.12785/ijcds/120112

Analysis of Software Effort Estimation Based on Story Point
and Lines of Code using Machine Learning

Amrita Sharma1 and Neha Chaudhary2

1Department of Computer Applications, Manipal University Jaipur, Jaipur, India
2Department of Computer Science Engineering, Manipal University Jaipur, Jaipur, India

Received 14 Jun. 2021, Revised 3 May 2022, Accepted 15 Jun. 2022, Published 1 Jul. 2022

Abstract: Estimating the software work is a crucial job of persons participating in software project management. The difficulty in
predicting effort is compounded by the fact that software development is always changing. Several techniques for estimating software
development costs have been developed over the last three decades. There are a variety of cost estimation methodologies, algorithmic
models, non-algorithmic models, and machine learning methods to choose from. To improve accuracy, machine learning approaches are
combined with algorithmic or non-algorithmic models. Researchers in past worked on the effort and time estimation by using one type
of development methodology in their work. Currently, the companies uses both agile and traditional techniques to software development.
A comparison of agile and traditional development utilizing the neural network (NN) and genetic algorithm is presented in this research
(GA). Estimation is performed on the Zia dataset and a github dataset using story points and lines of code, respectively. The smallest
error and highest accuracy were attained utilizing machine learning approaches for projected effort values. The value of R2 based on
story point is achieved using neural network and genetic algorithm is 0.97 and 0.96 respectively. On other hand, the value of R2 based
on lines of code is achieved using neural network and genetic algorithm is 0.94 and 0.80 respectively. The mean magnitude relative
error is used for comparison of proposed models with previous works. The dataset with the story point give best results followed by
projects with lines of code.

Keywords: Software Effort estimation, story point, lines of code, machine learning.

1. Introduction
As the size and complexity of software grow, it becomes

more difficult to build. One of the most significant pro-
cesses in software development is software cost estimation.
The software estimation consists of estimating the effort
and time for developing the software. For efficient project
planning, a realistic estimate is essential[1].

A. Software Effort
An effort is used to quantify workforce utilization in

software engineering and is defined as the entire time spent
by members of a development team to complete a task. The
process of estimating how much effort will be necessary to
develop or maintain a software program is known as effort
estimation. This effort is generally quantified in terms of
a person’s work hours. In the early stages of the software
development life cycle, effort estimating is used to help
build project plans and budgets. A project manager or
product owner can use this method to correctly anticipate
expenses and allocate resources.

Although effort estimating can be used in a traditional
software development process, it is most usually associated

with Agile. The project owner is responsible for maintaining
a backlog of project deliverables. They will calculate the
time it will take to accomplish each item. They will look
at user stories and story points rather than time or cost
estimations.

B. Software Cost Estimation
Estimation techniques for software cost are classified

into three categories, algorithmic models, non-algorithmic
models, and machine learning models[2]. Algorithmic mod-
els uses some mathematical equations for estimation. CO-
COMO and its expansions, SEER-SEM, ESTIMAC, PUT-
NAM’s model, and others are examples of algorithmic
models [3]. The regression analysis is used to evaluate these
models using past projects. Non-algorithmic models include
expert judgment, estimation by analogy, top-down, bottom-
up, etc. these models gives estimation by picking previous
completed project and its parameters and comparing it
with new project’s parameters. Many studies have been
conducted in this field to obtain reliable estimation results.
Several decades of research have been conducted utilizing
various machine learning algorithms to discover superior
estimation. Machine learning models are created with the

E-mail address: amritasharma9468@gmail.com, chaudhary.neha@jaipur.manipal.edu

http://journals.uob.edu.bh

132 Amrita Sharma, et al.: Analysis of Software Effort Estimation Based on Story Point and Lines of Code

algorithmic or non-algorithmic models combined with ma-
chine learning techniques. Software is now built using a
variety of development methodologies in software engi-
neering. These techniques’ estimations are dependent on a
variety of input parameters. Different size estimate matrices
are used in these development methodologies. Researchers
have used a variety of machine learning approaches and
evolutionary algorithms to improve the accuracy of effort
estimation. In this publication, a comparison of the genetic
algorithm and the artificial neural network is presented. In
prior work, a genetic algorithm was employed to optimize
the parameters for traditional project effort estimation. This
approach is used to estimate effort in agile projects. In this
paper, effort estimation using an artificial neural network is
used for both agile and traditional projects.

The following is a breakdown of the work. Section 2
discusses the relevant work done for estimating software
effort. The problem statement is explained in part three.
Section 4 discusses the proposed work and details the
strategies used. The results and validations are discussed in
Section 5, and the results are analyzed in Section 6 based
on story points and lines of code. The paper comes to a
close with section 7.

2. RELATED WORK
This section examines the effort and duration estimation

work completed for projects using various development
processes, which include a variety of techniques and ap-
proaches. The review is carried out for research projects
that are based on various size matrices. Pospieszny et al.
[3] suggested an ensemble model based on three machine
learning techniques: support vector machine (SVM), Mul-
tilayer Perceptron (MLP), and Generalized Linear Models
(GLM) (GLM). The presented methodologies are used to
estimate software effort and duration using the ISBSG
dataset. The author validates and compares their earlier
work with the MMRE and PRED, finding that the SVM
and ensemble model produces better results. For software
cost, Rijwani et al. [4] used a multi-layered feed-forward
neural network. The COCOMO II dataset was used to train
this model using back-propagation methods. The COCOMO
81 dataset is transformed to the COCOMO II dataset
using the Rosetta stone tool in this study. The MSE and
MMRE are used to validate the estimation values. The
four neural networks, general regression neural network
(GRNN), multilayer perceptron (MLP), cascade correlation
neural network (CCNN), and radial basis function neu-
ral network, have been compared by Nassif et al. [5].
(RBFNN). The MAR is used to determine the accuracy
of neural networks. We found the neural network with the
best estimation and significance in terms of model input. In
this study, the CCNN outperformed the RBFNN in terms
of prediction. Lopez-Martin [6] used the ISBSG dataset
version 11 to create the dataset samples, which he then
trained and tested using the MLP and RBFNN. The model
was created using the dataset’s appropriate independent
variables. Only a few projects were able to be chosen to

model the network by the writers. The residual analysis
and the Friedman statistical test were used to evaluate
the duration prediction, which was then compared to the
simple statistical regression analysis. For projects written
in third-generation languages, these two neural networks
were more accurate in predicting software development
time. Zahid et al. [7] established a software cost estimating
framework that uses eight distinct data mining algorithms
to obtain more accurate effort and duration estimates while
excluding less useful aspects. Using the above-mentioned
data mining techniques, a general input selection procedure
was suggested in this article for five datasets from various
sources. The median of the magnitude of the relative error
and prediction methods were used to validate the findings.
When compared to when no input selection technique was
used, the results showed that the input selection procedure
provided less MdMRE. Using the multilayer regression ap-
proach, Peter et al. [8] proposed the ATLM baseline model.
The multilayer regression technique is useful for automating
database transfer without having to tune any parameters.
The effort for the three datasets, COCOMO 81, Desharnais,
and OrgAll, was estimated using this baseline model. The
LSD, MMRE, PRED, and RE were used to validate the
estimation results. According to Federica and Alessio [9],
the ATLM has not been thoroughly investigated. As a result,
the author suggested a method for estimating effort based on
linear programming (LP4EE). Experiments and robustness
demonstrated the LP4EE approach to be superior to the
ALTM [8]. The 10 separate datasets were used to implement
the introduced method in [9]. The MAE and MdAE were
used to compare the method to the ALTM and other state-
of-the-art methodologies. Panda et al. [10] use four different
neural networks to estimate the effort in agile development:
the General Regression Neural Network (GRNN), the Prob-
abilistic Neural Network (PNN), the Cascade-Correlation
Neural Network (CCNN), and the Group Method of Data
Handling (GMDH) Polynomial Neural Network. The user
narrative point analysis took these neural networks into
account. The neural network models were used to calculate
the cost of software development. On a few common pa-
rameters, the neural networks were compared. Zia et al. [11]
used an agile methodology dataset to estimate development
time and cost based on story size, velocity, story complexity,
friction, and dynamic factors, resulting in lower MMRE
values for time and cost. By proposing the parameters of an
estimating model for the agile methodology utilizing story
points and velocity, Khuat and Le [12] presented a hybrid
algorithm employing the PSO and ABC to obtain improved
accuracy. The Zia dataset was utilized to suggest a model,
which was then tested using the MMRE, MdMRE, PRED,
R2, and MAR. For software effort estimation, Nassif et al.
[13] employed a multilayer perceptron neural network. In
this study, the size of the software in the use case point
and the productivity of the team were used as inputs. The
back-propagation approach was used to train the network,
and the model’s output was a software development effort.
The mean relative error approach was used to validate
the results. A total of 160 ISBSG projects, academics,

http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 12, No.1, 131-140 (Jul-2022) 133

and small software development enterprises were used in
this study. Several studies have employed productivity to
calculate effort with the UCP, which is dependent on expert
guesses. In several studies, productivity is combined with
the size measure UCP to estimate effort. However, most
productivity estimates are based on expert guesses, which
can lead to inconsistency. To bridge this gap, Azzeh and
Nassif [14] created a hybrid model that included the SVM
and RBNN machine learning approaches. These methods
were designed for the categorization and forecasting stages,
as well as the model, built with the help of industry and
student projects. The SA, MAE, MBRE, and MIBRE were
used to evaluate this model, and the findings were superior
to previous studies [13] [15] [16]. In their analogy-based
estimation for software work estimation, Shahpar et al. [17]
used the PSA-SA (Particle swarm optimization- Simulated
annealing) approach for feature weighting. The performance
of this technique was compared to that of the MMRE,
MdMRE, and PRED on the Albrecht dataset. Nevena et al.
[18] proposed a Taguchi-based artificial neural network with
two alternative activation functions. Six separate datasets
based on lines of code are used in this research. The
clustering approach is used to apply the input values. The
mean magnitude relative error was used to validate the
results. By executing a minimal number of iterations, this
work reduces the execution time.

3. Problem statement
To estimate the program effort using various size criteria,

several machine learning and soft computing techniques
were used. In the past, methods for measuring effort were
employed for a single size metric, such as lines of code or
story points. Any research paper that uses heterogeneous
size measures to apply their proposed software estimating
approach is not listed. The neural network and genetic
algorithm are utilized in this study to assess the performance
of both strategies for the two types of size metrics, story
points and lines of code.

4. PROPOSED WORK
Based on story points and lines of code, this research

proposes an artificial neural model to estimate software
effort and timeline. The genetic algorithm suggested in
the earlier study [19] is also improving the software ef-
fort estimation model for agile projects. Following that, a
comparison is made to estimate work based on story points
and lines of code.

A. Artificial Neural Network
The artificial neural network, like the real brain, is

made up of interconnected basic processing devices called
neurons. An input layer, a hidden layer, and an output layer
make up a basic artificial neural network structure [20].
Various inputs are used as inputs to the neurons. Each input
is multiplied by a connection weight (w) (n). The products
are then passed to a function, which produces the output
[21]. The neural network’s ability to learn from prior data
makes it suitable for estimating effort. Figure 1 depicts the
basic structure of an artificial neural network.

The artificial neural network creates a complex inter-
action between the dependent and independent factors for
estimating software effort. It uses the training data set
to generate acceptable answers for the unknown data set.
Many researchers have presented many neural network
models for handling complicated real-world problems in
the past. We use an artificial neural network to estimate
software development effort based on two size matrices in
this paper. Using an artificial neural network, this research
determines which size matrices provide the best estimation.
Artificial neural networks were used on projects based on
lines of code and story points. Figure 2 depicts a neural
network model for estimating effort using story points. The
architecture of an artificial neural network utilizing the agile
development approach involves one input layer with two
neurons representing the project’s story point and velocity,
one hidden layer with at least 10 neurons, and one output
layer with one output representing development time. A
neural network model of effort estimation for lines of code
is presented in figure 3. Similarly, the design of a neural
network developed traditionally has one input layer with
one neuron, which represents the project’s lines of code,
one hidden layer, and one output layer, which represents the
estimation results and represents the project’s development
time. A feed-forward back propagation network is what
this network is. Other parameters in the prediction from
story points and lines of code are the same, such as the
Levenberg-Marquardt method for training, gradient descent
with momentum weight for learning, and bias learning func-
tion for learning. The mean square error is the network’s
performance function.

B. Genetic algorithm
A genetic algorithm (GA) is a search method for finding

a good solution in a multidimensional space that repli-
cates the biological natural selection process. Currently,
genetic algorithms outperform complete search techniques
[22], [23], [24]. This approach has been applied with the
COCOMO model in [19]. The approach was previously
applied to improve the COCOMO model’s four coefficients.
For the agile approach, an estimation model introduced in
[12] is used, in which the estimationn is done with the story
point, velocity, and five parameters. The approach is used
to improve the five parameters of the prior model in this
paper. The basic components of a genetic algorithm are four.
Chromosome, beginning population, operational functions,
and fitness function are the components in consideration.
The algorithm is showing in figure 4. The following are the
steps of the parameter optimization algorithm [19]:

Step 1: For the five variables, the initial population is
generated using real binary coding. Each individual variable
has a decimal value ranging from 0 to 9. The starting
population is Xi=1, 2,...10, where Xi is the population
number.

Step 2: the objective function, showing in equation 1,
is used for effort estimation using the story point using the

http://journals.uob.edu.bh

134 Amrita Sharma, et al.: Analysis of Software Effort Estimation Based on Story Point and Lines of Code

Figure 1. A simple structure of a neural network

Figure 2. Neural Network Model For Effort Estimation Based on Story Point

individuals.

E f f ort = (A∗S P)/(B∗V)+C ∗ In(S P)+D∗ In(V)+E (1)

The effort is estimated for project j using individual i using
equation 2.

E f f orti j = (Xi1∗S P j)/(Xi2∗V j)+Xi3∗In(S P j)+Xi4∗In(V j)+Xi5
(2)

Step 3: Equation 3 is used to calculate an individual’s fitness
for a certain project.

f itnessi j = ((ActVal j − EstVali j))/ActVal j (3)

Where ActValj and EstValij are the j project’s actual effort
and estimated effort with i individuals respectively.

Equation 4 is used to calculate an individual’s fitness

for all projects by taking the average of the value obtained
in equation 3.

Fitness = Average(f itnessi j) (4)

Step 4: The algorithm will come to an end after the
maximum number of iterations have been completed, or
after the population’s best fitness has been identified.

Step 5: The parents are chosen using the roulette wheel
technique of selection.

Step 6: A uniform crossover method is applied to create
children from the chosen parents in a crossover. The genes
are picked at random from the parents in this manner. The
children are generated using Eqs. (5) and (6) after a random

http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 12, No.1, 131-140 (Jul-2022) 135

Figure 3. Neural Network Model For Effort Estimation Based on Lines of Code

chromosome is generated.

Child1 = a ∗ p1 + (1 − a) ∗ p2 (5)

Child2 = a ∗ p2 + (1 − a) ∗ p1 (6)

Where a is a random chromosome and p1 and p2 are the
parents’ chromosomes.

Step 7: The fitness of the merged population is assessed
after offspring are merged in the initial population to
produce new populations. The best outcomes are selected.
Then, using the roulette wheel approach, new parents are
chosen.

C. Data set
The proposed method is used to estimate develop-

ment time by using both traditional and agile development
methodologies. The number of lines of code and story
points is used to estimate the length of time it will take
to complete the project. The estimation with story points is
based on the Zia dataset [12]. This dataset contains twenty-
one projects from six software companies [11]. The agile
methodology was used to create these projects. A dataset of
nine projects is used in this work [19] for estimation with
lines of code. This dataset contains nine python language
projects, six of which are student projects and three of
which are extracted from a GitHub repository.

D. Evaluation criteria
Some mathematical equations are used as evaluation

criteria to see if the proposed model is operating well
or not. The suggested model’s performance is assessed

using the mean magnitude relative error (MMRE) [25]. For
comparing the proposed work to past work, the mean square
error (MSE) and coefficient of determination (R2) [26] are
applied. The following are the evaluation criteria applied in
this work:

MMRE = ((ActVal − EstVal))/ActVal (7)

MS E = (ActVal − EstVal)2 (8)

R2 = 1 − (ActVal − EstVal)2/(ActVal − (ÂctVal))2 (9)

Where ActVal denotes the actual value, EstVal denotes
the estimated value, and ÂctVal denotes the actual value’s
mean.

E. Experimental details
Twenty-one Zia dataset projects were used to test the

suggested approach of genetic algorithm for effort estima-
tion necessary for developing agile projects. The genetic
algorithm uses real binary encoding to build the initial
population. The projects’ effort is estimated with the help
of specific individuals. The mean magnitude relative error
is taken into account while determining fitness. The fitness
of the algorithm is calculated using both the actual and
estimated effort. With the roulette wheel selection approach,
the best-fit individuals are chosen. Crossover and mutation
are the two operative sets of a genetic algorithm. To obtain
the child individuals, the crossover is applied to the parent
individuals.

The artificial neural network experiment was carried
out for both agile and traditional projects. The dataset
is divided into training, validation, and testing datasets,

http://journals.uob.edu.bh

136 Amrita Sharma, et al.: Analysis of Software Effort Estimation Based on Story Point and Lines of Code

Figure 4. Neural Network Model For Effort Estimation Based on Lines of Code

respectively, to estimate software development costs using
agile and traditional development methodologies. The data
was divided at random by a neural network model. The
data for agile is separated into 70 per cent, 15 per cent,
and 15 per cent training, validation, and testing datasets,
while the data for traditional projects is divided into 60 per
cent, 20 per cent, and 20 per cent training, validation, and
testing datasets. The back-propagation function trainlm is
used to train the model. For agile and traditional approaches,
the hidden layers are 4 and 2, respectively. The project’s
velocity and total user story points for agile approaches,
and the kilo lines of code for traditional approaches, are
the input parameters, and the output parameter is the project
development time.

5. DISCUSSION
Matlab code and the MatLab neural network toolbox

are used to conduct genetic algorithm and neural network
studies. The five initial populations for the genetic algorithm
have been defined. The genetic algorithm is used to opti-
mize the parameters provided in [12] utilizing the twenty-
one projects from the agile dataset. The child individuals
are located using the uniform crossover. The algorithm’s
maximum iterations are 1000. Based on the fitness function,
the best set of parameters is chosen. The MMRE, or mean
magnitude relative error, is the fitness function. The best
findings of parameters for agile effort estimation are used
to select a set of parameters. The following are the model’s
optimum parameters as determined by the genetic algo-

http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 12, No.1, 131-140 (Jul-2022) 137

rithm: A= 1.528102485 B=1.610603017 C=0.098278468
D=2.663927182 E=2.718403087

The agile model is used to estimate the required effort
for agile development using a set of parameters. The work
is compared to an existing model for estimating agile effort
using the mean magnitude relative error. In comparison to
the existing model of agile work estimating, we discovered
that the value of error is the smallest. The error value from
the current model was 30.76671, but it was 6.742869 from
the agile model’s optimized parameters. Figure 5 depicts
the real effort, the existing model’s value of effort, and the
estimated value of effort from the genetic algorithm.

Artificial neural networks are also used in traditional
and agile projects. Using the twenty-one projects of the
Zia dataset [11] and the nine projects of the dataset [19],
the neural network is trained using the back-propagation
approach. The datasets are separated into three groups:
training, testing, and validation. After the network has been
trained, the required effort for agile projects is achieved, and
the development time for traditional projects is reduced.

Table 1 shows the values of needed effort derived from
the genetic algorithm and neural network for agile projects.
The comparison of the real effort, estimated effort, and
effort from the existing model using the genetic algorithm
is shown in figure 5, and the comparison of the real and
estimated effort values using the neural network is shown
in figure 6 for the agile dataset. Table 2 shows the values
of the required effort for traditional projects using the
genetic algorithm and neural network. Figure 7 showing
the actual value and estimated values of required effort for
the traditional projects using genetic algorithm and neural
network.

Figure 5. Actual, Estimated Effort and effort from existing parame-
ters for agile projects using GA

6. ANALYSIS OF RESULTS
In this paper, an artificial neural network is used to

provide an estimates model for both agile and traditional
projects. The prior work’s proposed evolutionary method
is used for parameter optimization in order to evaluate

Figure 6. Actual Effort and estimated effort for agile projects by
using NN

Figure 7. Actual development time, time from the NN and GA for
the traditional projects

Figure 8. MMRE values of Effort from Neural Network and previous
models for an agile dataset

http://journals.uob.edu.bh

138 Amrita Sharma, et al.: Analysis of Software Effort Estimation Based on Story Point and Lines of Code

TABLE I. Actual time and estimated time for agile dataset

Story point velocity Actual Effort Estimated Effort from NN Estimated Effort from GA

156 2.7 63 58.55264 58.90127
202 2.5 92 87.60839 80.6662
173 3.3 56 58.39326 54.05853
331 3.8 86 85.85413 87.15399
124 4.2 32 32.24533 32.59593
339 3.6 91 91.1036 93.79215
97 3.4 35 31.44829 31.39752
257 3 93 93.05162 85.50479
84 2.4 36 34.76436 37.12756
211 3.2 62 63.16225 66.85247
131 3.2 45 47.83794 43.11271
112 2.9 37 42.50776 40.794
101 2.9 32 37.59734 37.19078
74 2.9 30 27.17001 28.34406
62 2.9 21 23.97659 24.41054
289 2.8 112 98.91936 102.0788
113 2.8 39 43.87053 42.40129
141 2.8 52 54.16337 51.8985
213 2.8 80 77.57226 76.31322
137 2.7 56 53.68131 52.21915
91 2.7 35 35.06025 36.03734

TABLE II. Effort values for traditional projects using neural network and Genetic algorithm

KLOC Actual time Estimated time from NN Estimated time from GA

16.675 7 4.58746 6.622391
44.144 12 11.97919 14.70587
5.206 2 3.027065 2.551075
2.78 1 0.89231 1.525638
2.015 1 -0.07298 1.171965
8.392 5 4.162545 3.772673

12 3 4.501828 5.0573783
5.6 3 3.248832 2.7082396
16 4 4.582043 6.4018978

Figure 9. MMRE values of Effort from GA and previous models for
Agile Dataset

Figure 10. MMRE values of Neural Network model and previous
models for traditional projects

http://journals.uob.edu.bh

Int. J. Com. Dig. Sys. 12, No.1, 131-140 (Jul-2022) 139

the effort for agile projects. Projects with a size matrix
of lines of code and story points are examined for use
with the suggested paradigm. The mean magnitude relative
error is used to evaluate estimating for agile and traditional
projects (MMRE). The presented work is also compared
to earlier work in order to validate it. The MMRE is
used to make the comparison. Figure 8 shows the error
between the neural network and the DBN-ALO [25] and
Zia’s regression model [11] using the agile dataset. The
error between the genetic algorithm and Zia’s regression
[11] model and ABC-PSO [12] is shown in Figure 9. The
error between the neural network and Arora Mishra’s model
[21] and MLFFN-BP [4] is shown in Figure 10. The mean
magnitude relative error, mean square error, and R2, or
coefficient of determination, are used to compare traditional
and agile techniques. The comparison for agile projects is
shown in table III, whereas the comparison for traditional
projects is shown in table IV. For the agile methodology, the
artificial neural network model yielded the lowest MMRE
and highest R2 values, while the traditional methodology
yielded the higher MMRE than agile. In comparison to
traditional projects, the genetic algorithm produced better
outcomes in terms of MMRE, MSE, and R2 for agile
projects, as proposed in [19].

7. CONCLUSION AND FUTURE WORK
The artificial neural network is used in this study to

forecast the effort and length of project development using
the back-propagation approach using two types of develop-
ment methodologies: traditional and agile. We acquire the
estimated effort values for agile projects and the expected
development time values for traditional programs from this
work. In comparison to prior research studies, the results
of the work demonstrate a significant improvement in
estimated values using datasets of various categories (based
on lines of code and user story).

Effort estimation for the agile dataset is also done using
the genetic algorithm to optimize the parameters of the
estimation model provided in [12]. Our prior work on the
genetic method was used to standard projects with size
matrix lines of code. This approach has already been used
to optimize the parameters of Boehm’s basic COCOMO
model. The results are more precise with the modified
parameters.

The artificial neural network is used in this project.
In the future, we will combine various machine learning
approaches with feature selection for the other development
methodologies to improve estimation accuracy.

References
[1] S. S. Ch and S. P. Singh, “Software cost estimation techniques using

soft computing,” in International Peer Reviewed Refereed Journal,
vol. 2, no. II, 2015, pp. 42–52.

[2] A. Saeed, W. H. Butt, F. Kazmi, and M. Arif, “Survey of software
development effort estimation techniques,” in Proceedings of the
2018 7th International Conference on Software and Computer
Applications, 2018, pp. 82–86.

[3] P. Pospieszny, B. Czarnacka-Chrobot, and A. Kobylinski, “An
effective approach for software project effort and duration estimation
with machine learning algorithms,” Journal of Systems and Software,
vol. 137, pp. 184–196, 2018.

[4] P. Rijwani and S. Jain, “Enhanced software effort estimation using
multi layered feed forward artificial neural network technique,”
Procedia Computer Science, vol. 89, pp. 307–312, 2016.

[5] A. B. Nassif, M. Azzeh, L. F. Capretz, and D. Ho, “Neural network
models for software development effort estimation: a comparative
study,” Neural Computing and Applications, vol. 27, no. 8, pp.
2369–2381, 2016.

[6] C. López-Martı́n and A. Abran, “Neural networks for predicting the
duration of new software projects,” Journal of Systems and Software,
vol. 101, pp. 127–135, 2015.

[7] Z. H. Wani, K. J. Giri, and R. Bashir, “A generic data mining
model for software cost estimation based on novel input selection
procedure,” International Journal of Information Retrieval Research
(IJIRR), vol. 9, no. 1, pp. 16–32, 2019.

[8] P. A. Whigham, C. A. Owen, and S. G. Macdonell, “A baseline
model for software effort estimation,” ACM Transactions on Soft-
ware Engineering and Methodology (TOSEM), vol. 24, no. 3, pp.
1–11, 2015.

[9] F. Sarro and A. Petrozziello, “Linear programming as a baseline for
software effort estimation,” ACM transactions on software engineer-
ing and methodology (TOSEM), vol. 27, no. 3, pp. 1–28, 2018.

[10] A. Panda, S. M. Satapathy, and S. K. Rath, “Empirical validation
of neural network models for agile software effort estimation based
on story points,” Procedia Computer Science, vol. 57, pp. 772–781,
2015.

[11] S. K. T. Ziauddin and S. Zia, “An effort estimation model for
agile software development,” Advances in computer science and its
applications (ACSA), vol. 2, no. 1, pp. 314–324, 2012.

[12] T. T. Khuat and M. H. Le, “A novel hybrid abc-pso algorithm for
effort estimation of software projects using agile methodologies,”
Journal of Intelligent Systems, vol. 27, no. 3, pp. 489–506, 2018.

[13] A. B. Nassif, D. Ho, and L. F. Capretz, “Towards an early software
estimation using log-linear regression and a multilayer perceptron
model,” Journal of Systems and Software, vol. 86, no. 1, pp. 144–
160, 2013.

[14] M. Azzeh and A. B. Nassif, “A hybrid model for estimating software
project effort from use case points,” Applied Soft Computing, vol. 49,
pp. 981–989, 2016.

[15] G. Karner, “Resource estimation for objectory projects,” Objective
Systems SF AB, vol. 17, pp. 1–9, 1993.

[16] G. Schneider and J. P. Winters, Applying use cases: a practical
guide. Pearson Education, 2001.

[17] Z. Shahpar, V. Khatibi, and A. Khatibi Bardsiri, “Hybrid pso-sa
approach for feature weighting in analogy-based software project
effort estimation,” Journal of AI and Data Mining, vol. 9, no. 3, pp.
329–340, 2021.

[18] N. Rankovic, D. Rankovic, M. Ivanovic, and L. Lazic, “Improved
effort and cost estimation model using artificial neural networks and

http://journals.uob.edu.bh

140 Amrita Sharma, et al.: Analysis of Software Effort Estimation Based on Story Point and Lines of Code

TABLE III. Error values for projects based on SP using NN and GA

MMRE MSE R2

Error from NN for Agile 6.220651 17.03561 0.973897
Error from GA for Agile 6.742859 21.46326 0.967112

TABLE IV. Error values for projects based on LOC using NN and GA

MMRE MSE R2

Error from NN for traditional projects 19.88667 0.600919 0.944562
Error from GA for traditional projects [22] 24.03720 2.185249 0.798399

taguchi method with different activation functions,” Entropy, vol. 23,
no. 7, p. 854, 2021.

[19] A. Sharma and N. Chaudhary, “Software cost estimation for python
projects using genetic algorithm,” in International Conference on
Communication and Intelligent Systems. Springer, 2019, pp. 137–
148.

[20] R. Bhatnagar, V. Bhattacharjee, and M. K. Ghose, “Software devel-
opment effort estimation–neural network vs. regression modeling
approach,” International Journal of Engineering Science and Tech-
nology, vol. 2, no. 7, pp. 2950–2956, 2010.

[21] S. Arora and N. Mishra, “Software cost estimation using artificial
neural network,” in Soft Computing: Theories and Applications.
Springer, 2018, pp. 51–58.

[22] J. Murillo-Morera, C. Castro-Herrera, J. Arroyo, and R. Fuentes-
Fernández, “An automated defect prediction framework using ge-
netic algorithms: A validation of empirical studies,” Inteligencia
Artificial, vol. 19, no. 57, pp. 114–137, 2016.

[23] ——, “An empirical validation of learning schemes using an au-
tomated genetic defect prediction framework,” in Ibero-American
Conference on Artificial Intelligence. Springer, 2016, pp. 222–234.

[24] J. Murillo-Morera, C. Quesada-López, C. Castro-Herrera, and
M. Jenkins, “A genetic algorithm based framework for software
effort prediction,” Journal of software engineering research and
development, vol. 5, no. 1, pp. 1–33, 2017.

[25] A. Kaushik, D. K. Tayal, and K. Yadav, “A comparative analysis
on effort estimation for agile and non-agile software projects using
dbn-alo,” Arabian Journal for Science and Engineering, vol. 45,

no. 4, pp. 2605–2618, 2020.

[26] A. Sharma and N. Chaudhary, “Linear regression model for ag-
ile software development effort estimation,” in 2020 5th IEEE
International Conference on Recent Advances and Innovations in
Engineering (ICRAIE). IEEE, 2020, pp. 1–4.

Amrita Sharma Amrita sharma is a re-
search scholar. She has done Master Of
Computer Applications from Sikkim Mani-
pal University. She has done B.Sc. degree
in Information Technology from the Sikkim
Manipal University. Now she is doing PhD
from Manipal University Jaipur, India. Her
research area are software cost estimation,
software testing, and machine learning. She
has presented and published her research

work in the scopus indexed international conferences.

Neha Chaudhary Neha Chaudhary is As-
sociate Professor at the manipal university
Jaipur, India. She has done her PhD from
the Gautam Buddha Technical University,
Delhi. She has published so many papers in
scopus index journals, book chapters, and
conference proceedings. Her research area
are software testing, software estimation,
machine learning and artificial intelligence.

http://journals.uob.edu.bh

